
UM1884 HAL HASH Generic Driver

 DocID027704 Rev 7 397/2232

30 HAL HASH Generic Driver

30.1 HASH Firmware driver registers structures

30.1.1 HASH_InitTypeDef

Data Fields

 uint32_t DataType

 uint32_t KeySize

 uint8_t * pKey

Field Documentation

 uint32_t HASH_InitTypeDef::DataType
32-bit data, 16-bit data, 8-bit data or 1-bit data. This parameter can be a value of
HASH_Data_Type.

 uint32_t HASH_InitTypeDef::KeySize
The key size is used only in HMAC operation.

 uint8_t* HASH_InitTypeDef::pKey
The key is used only in HMAC operation.

30.1.2 HASH_HandleTypeDef

Data Fields

 HASH_InitTypeDef Init

 uint8_t * pHashInBuffPtr

 uint8_t * pHashOutBuffPtr

 uint8_t * pHashKeyBuffPtr

 uint8_t * pHashMsgBuffPtr

 uint32_t HashBuffSize

 __IO uint32_t HashInCount

 __IO uint32_t HashITCounter

 __IO uint32_t HashKeyCount

 HAL_StatusTypeDef Status

 HAL_HASH_PhaseTypeDef Phase

 DMA_HandleTypeDef * hdmain

 HAL_LockTypeDef Lock

 __IO HAL_HASH_StateTypeDef State

 HAL_HASH_SuspendTypeDef SuspendRequest

 FlagStatus DigestCalculationDisable

 __IO uint32_t NbWordsAlreadyPushed

Field Documentation

 HASH_InitTypeDef HASH_HandleTypeDef::Init
HASH required parameters

 uint8_t* HASH_HandleTypeDef::pHashInBuffPtr
Pointer to input buffer

 uint8_t* HASH_HandleTypeDef::pHashOutBuffPtr
Pointer to output buffer (digest)

 uint8_t* HASH_HandleTypeDef::pHashKeyBuffPtr
Pointer to key buffer (HMAC only)

HAL HASH Generic Driver UM1884

398/2232 DocID027704 Rev 7

 uint8_t* HASH_HandleTypeDef::pHashMsgBuffPtr
Pointer to message buffer (HMAC only)

 uint32_t HASH_HandleTypeDef::HashBuffSize
Size of buffer to be processed

 __IO uint32_t HASH_HandleTypeDef::HashInCount
Counter of inputted data

 __IO uint32_t HASH_HandleTypeDef::HashITCounter
Counter of issued interrupts

 __IO uint32_t HASH_HandleTypeDef::HashKeyCount
Counter for Key inputted data (HMAC only)

 HAL_StatusTypeDef HASH_HandleTypeDef::Status
HASH peripheral status

 HAL_HASH_PhaseTypeDef HASH_HandleTypeDef::Phase
HASH peripheral phase

 DMA_HandleTypeDef* HASH_HandleTypeDef::hdmain
HASH In DMA Handle parameters

 HAL_LockTypeDef HASH_HandleTypeDef::Lock
Locking object

 __IO HAL_HASH_StateTypeDef HASH_HandleTypeDef::State
HASH peripheral state

 HAL_HASH_SuspendTypeDef HASH_HandleTypeDef::SuspendRequest
HASH peripheral suspension request flag

 FlagStatus HASH_HandleTypeDef::DigestCalculationDisable
Digest calculation phase skip (MDMAT bit control) for multi-buffers DMA-based HMAC
computation

 __IO uint32_t HASH_HandleTypeDef::NbWordsAlreadyPushed
Numbers of words already pushed in FIFO before inputting new block

30.2 HASH Firmware driver API description

30.2.1 How to use this driver

 The HASH HAL driver can be used as follows:

1. Initialize the HASH low level resources by implementing the HAL_HASH_MspInit():
a. Enable the HASH interface clock using __HASH_CLK_ENABLE()
b. When resorting to interrupt-based APIs (e.g. HAL_HASH_xxx_Start_IT())

 Configure the HASH interrupt priority using HAL_NVIC_SetPriority()

 Enable the HASH IRQ handler using HAL_NVIC_EnableIRQ()

 In HASH IRQ handler, call HAL_HASH_IRQHandler() API
c. When resorting to DMA-based APIs (e.g. HAL_HASH_xxx_Start_DMA())

 Enable the DMAx interface clock using __DMAx_CLK_ENABLE()

 Configure and enable one DMA stream to manage data transfer from
memory to peripheral (input stream). Managing data transfer from peripheral
to memory can be performed only using CPU.

 Associate the initialized DMA handle to the HASH DMA handle using
__HAL_LINKDMA()

 Configure the priority and enable the NVIC for the transfer complete interrupt
on the DMA Stream: use HAL_NVIC_SetPriority() and
HAL_NVIC_EnableIRQ()

2. Initialize the HASH HAL using HAL_HASH_Init(). This function:
a. resorts to HAL_HASH_MspInit() for low-level initialization,
b. configures the data type: 1-bit, 8-bit, 16-bit or 32-bit.

3. Three processing schemes are available:

UM1884 HAL HASH Generic Driver

 DocID027704 Rev 7 399/2232

a. Polling mode: processing APIs are blocking functions i.e. they process the data
and wait till the digest computation is finished, e.g. HAL_HASH_xxx_Start() for
HASH or HAL_HMAC_xxx_Start() for HMAC

b. Interrupt mode: processing APIs are not blocking functions i.e. they process the
data under interrupt, e.g. HAL_HASH_xxx_Start_IT() for HASH or
HAL_HMAC_xxx_Start_IT() for HMAC

c. DMA mode: processing APIs are not blocking functions and the CPU is not used
for data transfer i.e. the data transfer is ensured by DMA, e.g.
HAL_HASH_xxx_Start_DMA() for HASH or HAL_HMAC_xxx_Start_DMA() for
HMAC. Note that in DMA mode, a call to HAL_HASH_xxx_Finish() is then
required to retrieve the digest.

4. When the processing function is called after HAL_HASH_Init(), the HASH peripheral is
initialized and processes the buffer fed in input. When the input data have all been fed
to the IP, the digest computation can start.

5. Multi-buffer processing is possible in polling and DMA mode.
a. In polling mode, only multi-buffer HASH processing is possible. API

HAL_HASH_xxx_Accumulate() must be called for each input buffer, except for
the last one. User must resort to HAL_HASH_xxx_Start() to enter the last one
and retrieve as well the computed digest.

b. In DMA mode, multi-buffer HASH and HMAC processing are possible.

 HASH processing: once initialization is done, MDMAT bit must be set thru
__HAL_HASH_SET_MDMAT() macro. From that point, each buffer can be
fed to the IP thru HAL_HASH_xxx_Start_DMA() API. Before entering the last
buffer, reset the MDMAT bit with __HAL_HASH_RESET_MDMAT() macro
then wrap-up the HASH processing in feeding the last input buffer thru the
same API HAL_HASH_xxx_Start_DMA(). The digest can then be retrieved
with a call to API HAL_HASH_xxx_Finish().

 HMAC processing (requires to resort to extended functions): after
initialization, the key and the first input buffer are entered in the IP with the
API HAL_HMACEx_xxx_Step1_2_DMA(). This carries out HMAC step 1 and
starts step 2. The following buffers are next entered with the API
HAL_HMACEx_xxx_Step2_DMA(). At this point, the HMAC processing is
still carrying out step 2. Then, step 2 for the last input buffer and step 3 are
carried out by a single call to HAL_HMACEx_xxx_Step2_3_DMA(). The
digest can finally be retrieved with a call to API HAL_HASH_xxx_Finish().

6. Context swapping.
a. Two APIs are available to suspend HASH or HMAC processing:

 HAL_HASH_SwFeed_ProcessSuspend() when data are entered by
software (polling or IT mode),

 HAL_HASH_DMAFeed_ProcessSuspend() when data are entered by DMA.
b. When HASH or HMAC processing is suspended, HAL_HASH_ContextSaving()

allows to save in memory the IP context. This context can be restored afterwards
to resume the HASH processing thanks to HAL_HASH_ContextRestoring().

c. Once the HASH IP has been restored to the same configuration as that at
suspension time, processing can be restarted with the same API call (same API,
same handle, same parameters) as done before the suspension. Relevant
parameters to restart at the proper location are internally saved in the HASH
handle.

7. Call HAL_HASH_DeInit() to deinitialize the HASH peripheral.

30.2.2 Initialization and de-initialization functions

This section provides functions allowing to:

 Initialize the HASH according to the specified parameters in the HASH_InitTypeDef
and create the associated handle

HAL HASH Generic Driver UM1884

400/2232 DocID027704 Rev 7

 DeInitialize the HASH peripheral

 Initialize the HASH MCU Specific Package (MSP)

 DeInitialize the HASH MSP

This section provides as well call back functions definitions for user code to manage:

 Input data transfer to IP completion

 Calculated digest retrieval completion

 Error management

This section contains the following APIs:

 HAL_HASH_Init()

 HAL_HASH_DeInit()

 HAL_HASH_MspInit()

 HAL_HASH_MspDeInit()

 HAL_HASH_InCpltCallback()

 HAL_HASH_DgstCpltCallback()

 HAL_HASH_ErrorCallback()

30.2.3 Polling mode HASH processing functions

This section provides functions allowing to calculate in polling mode the hash value using
one of the following algorithms:

 MD5

 HAL_HASH_MD5_Start()

 HAL_HASH_MD5_Accumulate()

 SHA1

 HAL_HASH_SHA1_Start()

 HAL_HASH_SHA1_Accumulate()

 For a single buffer to be hashed, user can resort to HAL_HASH_xxx_Start().

 In case of multi-buffer HASH processing (a single digest is computed while several buffers
are fed to the IP), the user can resort to successive calls to HAL_HASH_xxx_Accumulate()
and wrap-up the digest computation by a call to HAL_HASH_xxx_Start().

This section contains the following APIs:

 HAL_HASH_MD5_Start()

 HAL_HASH_MD5_Accumulate()

 HAL_HASH_SHA1_Start()

 HAL_HASH_SHA1_Accumulate()

30.2.4 Interruption mode HASH processing functions

This section provides functions allowing to calculate in interrupt mode the hash value using
one of the following algorithms:

 MD5

 HAL_HASH_MD5_Start_IT()

 SHA1

 HAL_HASH_SHA1_Start_IT()

 API HAL_HASH_IRQHandler() manages each HASH interruption.

 Note that HAL_HASH_IRQHandler() manages as well HASH IP interruptions when in
HMAC processing mode.

This section contains the following APIs:

UM1884 HAL HASH Generic Driver

 DocID027704 Rev 7 401/2232

 HAL_HASH_MD5_Start_IT()

 HAL_HASH_SHA1_Start_IT()

 HAL_HASH_IRQHandler()

30.2.5 DMA mode HASH processing functions

This section provides functions allowing to calculate in DMA mode the hash value using
one of the following algorithms:

 MD5

 HAL_HASH_MD5_Start_DMA()

 HAL_HASH_MD5_Finish()

 SHA1

 HAL_HASH_SHA1_Start_DMA()

 HAL_HASH_SHA1_Finish()

 When resorting to DMA mode to enter the data in the IP, user must resort to
HAL_HASH_xxx_Start_DMA() then read the resulting digest with
HAL_HASH_xxx_Finish().

 In case of multi-buffer HASH processing, MDMAT bit must first be set before the
successive calls to HAL_HASH_xxx_Start_DMA(). Then, MDMAT bit needs to be reset
before the last call to HAL_HASH_xxx_Start_DMA(). Digest is finally retrieved thanks to
HAL_HASH_xxx_Finish().

This section contains the following APIs:

 HAL_HASH_MD5_Start_DMA()

 HAL_HASH_MD5_Finish()

 HAL_HASH_SHA1_Start_DMA()

 HAL_HASH_SHA1_Finish()

30.2.6 Polling mode HMAC processing functions

This section provides functions allowing to calculate in polling mode the HMAC value using
one of the following algorithms:

 MD5

 HAL_HMAC_MD5_Start()

 SHA1

 HAL_HMAC_SHA1_Start()

This section contains the following APIs:

 HAL_HMAC_MD5_Start()

 HAL_HMAC_SHA1_Start()

30.2.7 Interrupt mode HMAC processing functions

This section provides functions allowing to calculate in interrupt mode the HMAC value
using one of the following algorithms:

 MD5

 HAL_HMAC_MD5_Start_IT()

 SHA1

 HAL_HMAC_SHA1_Start_IT()

This section contains the following APIs:

 HAL_HMAC_MD5_Start_IT()

HAL HASH Generic Driver UM1884

402/2232 DocID027704 Rev 7

 HAL_HMAC_SHA1_Start_IT()

30.2.8 DMA mode HMAC processing functions

This section provides functions allowing to calculate in DMA mode the HMAC value using
one of the following algorithms:

 MD5

 HAL_HMAC_MD5_Start_DMA()

 SHA1

 HAL_HMAC_SHA1_Start_DMA()

 When resorting to DMA mode to enter the data in the IP for HMAC processing, user must
resort to HAL_HMAC_xxx_Start_DMA() then read the resulting digest with
HAL_HASH_xxx_Finish().

This section contains the following APIs:

 HAL_HMAC_MD5_Start_DMA()

 HAL_HMAC_SHA1_Start_DMA()

30.2.9 Peripheral State methods

 This section permits to get in run-time the state and the peripheral handle status of the
peripheral:

 HAL_HASH_GetState()

 HAL_HASH_GetStatus()

 Additionally, this subsection provides functions allowing to save and restore the HASH or
HMAC processing context in case of calculation suspension:

 HAL_HASH_ContextSaving()

 HAL_HASH_ContextRestoring()

 This subsection provides functions allowing to suspend the HASH processing

 when input are fed to the IP by software

 HAL_HASH_SwFeed_ProcessSuspend()

 when input are fed to the IP by DMA

 HAL_HASH_DMAFeed_ProcessSuspend()

This section contains the following APIs:

 HAL_HASH_GetState()

 HAL_HASH_GetStatus()

 HAL_HASH_ContextSaving()

 HAL_HASH_ContextRestoring()

 HAL_HASH_SwFeed_ProcessSuspend()

 HAL_HASH_DMAFeed_ProcessSuspend()

30.2.10 Detailed description of functions

HAL_HASH_Init

Function name HAL_StatusTypeDef HAL_HASH_Init (HASH_HandleTypeDef *
hhash)

Function description Initialize the HASH according to the specified parameters in the
HASH_HandleTypeDef and create the associated handle.

UM1884 HAL HASH Generic Driver

 DocID027704 Rev 7 403/2232

Parameters hhash: HASH handle

Return values HAL: status

Notes Only MDMAT and DATATYPE bits of HASH IP are set by
HAL_HASH_Init(), other configuration bits are set by HASH or
HMAC processing APIs.

 MDMAT bit is systematically reset by HAL_HASH_Init(). To
set it for multi-buffer HASH processing, user needs to resort
to __HAL_HASH_SET_MDMAT() macro. For HMAC multi-
buffer processing, the relevant APIs manage themselves the
MDMAT bit.

HAL_HASH_DeInit

Function name HAL_StatusTypeDef HAL_HASH_DeInit
(HASH_HandleTypeDef * hhash)

Function description DeInitialize the HASH peripheral.

Parameters hhash: HASH handle.

Return values HAL: status

HAL_HASH_MspInit

Function name void HAL_HASH_MspInit (HASH_HandleTypeDef * hhash)

Function description Initialize the HASH MSP.

Parameters hhash: HASH handle.

Return values None:

HAL_HASH_MspDeInit

Function name void HAL_HASH_MspDeInit (HASH_HandleTypeDef * hhash)

Function description DeInitialize the HASH MSP.

Parameters hhash: HASH handle.

Return values None:

HAL_HASH_InCpltCallback

Function name void HAL_HASH_InCpltCallback (HASH_HandleTypeDef *
hhash)

Function description Input data transfer complete call back.

Parameters hhash: HASH handle.

Return values None:

Notes HAL_HASH_InCpltCallback() is called when the complete
input message has been fed to the IP. This API is invoked
only when input data are entered under interruption or thru
DMA.

 In case of HASH or HMAC multi-buffer DMA feeding case
(MDMAT bit set), HAL_HASH_InCpltCallback() is called at the

HAL HASH Generic Driver UM1884

404/2232 DocID027704 Rev 7

end of each buffer feeding to the IP.

HAL_HASH_DgstCpltCallback

Function name void HAL_HASH_DgstCpltCallback (HASH_HandleTypeDef *
hhash)

Function description Digest computation complete call back.

Parameters hhash: HASH handle.

Return values None:

Notes HAL_HASH_DgstCpltCallback() is used under interruption, is
not relevant with DMA.

HAL_HASH_ErrorCallback

Function name void HAL_HASH_ErrorCallback (HASH_HandleTypeDef *
hhash)

Function description Error callback.

Parameters hhash: HASH handle.

Return values None:

Notes Code user can resort to hhash->Status (HAL_ERROR,
HAL_TIMEOUT,...) to retrieve the error type.

HAL_HASH_SHA1_Start

Function name HAL_StatusTypeDef HAL_HASH_SHA1_Start
(HASH_HandleTypeDef * hhash, uint8_t * pInBuffer, uint32_t
Size, uint8_t * pOutBuffer, uint32_t Timeout)

Function description Initialize the HASH peripheral in SHA1 mode, next process
pInBuffer then read the computed digest.

Parameters hhash: HASH handle.

 pInBuffer: pointer to the input buffer (buffer to be hashed).

 Size: length of the input buffer in bytes.

 pOutBuffer: pointer to the computed digest. Digest size is 20
bytes.

 Timeout: Timeout value

Return values HAL: status

Notes Digest is available in pOutBuffer.

HAL_HASH_MD5_Start

Function name HAL_StatusTypeDef HAL_HASH_MD5_Start
(HASH_HandleTypeDef * hhash, uint8_t * pInBuffer, uint32_t
Size, uint8_t * pOutBuffer, uint32_t Timeout)

Function description Initialize the HASH peripheral in MD5 mode, next process
pInBuffer then read the computed digest.

Parameters hhash: HASH handle.

 pInBuffer: pointer to the input buffer (buffer to be hashed).

UM1884 HAL HASH Generic Driver

 DocID027704 Rev 7 405/2232

 Size: length of the input buffer in bytes.

 pOutBuffer: pointer to the computed digest. Digest size is 16
bytes.

 Timeout: Timeout value

Return values HAL: status

Notes Digest is available in pOutBuffer.

HAL_HASH_MD5_Accumulate

Function name HAL_StatusTypeDef HAL_HASH_MD5_Accumulate
(HASH_HandleTypeDef * hhash, uint8_t * pInBuffer, uint32_t
Size)

Function description If not already done, initialize the HASH peripheral in MD5 mode
then processes pInBuffer.

Parameters hhash: HASH handle.

 pInBuffer: pointer to the input buffer (buffer to be hashed).

 Size: length of the input buffer in bytes, must be a multiple of
4.

Return values HAL: status

Notes Consecutive calls to HAL_HASH_MD5_Accumulate() can be
used to feed several input buffers back-to-back to the IP that
will yield a single HASH signature once all buffers have been
entered. Wrap-up of input buffers feeding and retrieval of
digest is done by a call to HAL_HASH_MD5_Start().

 Field hhash->Phase of HASH handle is tested to check
whether or not the IP has already been initialized.

 Digest is not retrieved by this API, user must resort to
HAL_HASH_MD5_Start() to read it, feeding at the same time
the last input buffer to the IP.

 The input buffer size (in bytes) must be a multiple of 4
otherwise, the HASH digest computation is corrupted. Only
HAL_HASH_MD5_Start() is able to manage the ending buffer
with a length in bytes not a multiple of 4.

HAL_HASH_SHA1_Accumulate

Function name HAL_StatusTypeDef HAL_HASH_SHA1_Accumulate
(HASH_HandleTypeDef * hhash, uint8_t * pInBuffer, uint32_t
Size)

Function description If not already done, initialize the HASH peripheral in SHA1 mode
then processes pInBuffer.

Parameters hhash: HASH handle.

 pInBuffer: pointer to the input buffer (buffer to be hashed).

 Size: length of the input buffer in bytes, must be a multiple of
4.

Return values HAL: status

Notes Consecutive calls to HAL_HASH_SHA1_Accumulate() can be
used to feed several input buffers back-to-back to the IP that
will yield a single HASH signature once all buffers have been

HAL HASH Generic Driver UM1884

406/2232 DocID027704 Rev 7

entered. Wrap-up of input buffers feeding and retrieval of
digest is done by a call to HAL_HASH_SHA1_Start().

 Field hhash->Phase of HASH handle is tested to check
whether or not the IP has already been initialized.

 Digest is not retrieved by this API, user must resort to
HAL_HASH_SHA1_Start() to read it, feeding at the same time
the last input buffer to the IP.

 The input buffer size (in bytes) must be a multiple of 4
otherwise, the HASH digest computation is corrupted. Only
HAL_HASH_SHA1_Start() is able to manage the ending
buffer with a length in bytes not a multiple of 4.

HAL_HASH_SHA1_Start_IT

Function name HAL_StatusTypeDef HAL_HASH_SHA1_Start_IT
(HASH_HandleTypeDef * hhash, uint8_t * pInBuffer, uint32_t
Size, uint8_t * pOutBuffer)

Function description Initialize the HASH peripheral in SHA1 mode, next process
pInBuffer then read the computed digest in interruption mode.

Parameters hhash: HASH handle.

 pInBuffer: pointer to the input buffer (buffer to be hashed).

 Size: length of the input buffer in bytes.

 pOutBuffer: pointer to the computed digest. Digest size is 20
bytes.

Return values HAL: status

Notes Digest is available in pOutBuffer.

HAL_HASH_MD5_Start_IT

Function name HAL_StatusTypeDef HAL_HASH_MD5_Start_IT
(HASH_HandleTypeDef * hhash, uint8_t * pInBuffer, uint32_t
Size, uint8_t * pOutBuffer)

Function description Initialize the HASH peripheral in MD5 mode, next process
pInBuffer then read the computed digest in interruption mode.

Parameters hhash: HASH handle.

 pInBuffer: pointer to the input buffer (buffer to be hashed).

 Size: length of the input buffer in bytes.

 pOutBuffer: pointer to the computed digest. Digest size is 16
bytes.

Return values HAL: status

Notes Digest is available in pOutBuffer.

HAL_HASH_IRQHandler

Function name void HAL_HASH_IRQHandler (HASH_HandleTypeDef * hhash)

Function description Handle HASH interrupt request.

Parameters hhash: HASH handle.

Return values None:

UM1884 HAL HASH Generic Driver

 DocID027704 Rev 7 407/2232

Notes HAL_HASH_IRQHandler() handles interrupts in HMAC
processing as well.

 In case of error reported during the HASH interruption
processing, HAL_HASH_ErrorCallback() API is called so that
user code can manage the error. The error type is available in
hhash->Status field.

HAL_HASH_SHA1_Start_DMA

Function name HAL_StatusTypeDef HAL_HASH_SHA1_Start_DMA
(HASH_HandleTypeDef * hhash, uint8_t * pInBuffer, uint32_t
Size)

Function description Initialize the HASH peripheral in SHA1 mode then initiate a DMA
transfer to feed the input buffer to the IP.

Parameters hhash: HASH handle.

 pInBuffer: pointer to the input buffer (buffer to be hashed).

 Size: length of the input buffer in bytes.

Return values HAL: status

Notes Once the DMA transfer is finished,
HAL_HASH_SHA1_Finish() API must be called to retrieve the
computed digest.

HAL_HASH_SHA1_Finish

Function name HAL_StatusTypeDef HAL_HASH_SHA1_Finish
(HASH_HandleTypeDef * hhash, uint8_t * pOutBuffer, uint32_t
Timeout)

Function description Return the computed digest in SHA1 mode.

Parameters hhash: HASH handle.

 pOutBuffer: pointer to the computed digest. Digest size is 20
bytes.

 Timeout: Timeout value.

Return values HAL: status

Notes The API waits for DCIS to be set then reads the computed
digest.

 HAL_HASH_SHA1_Finish() can be used as well to retrieve
the digest in HMAC SHA1 mode.

HAL_HASH_MD5_Start_DMA

Function name HAL_StatusTypeDef HAL_HASH_MD5_Start_DMA
(HASH_HandleTypeDef * hhash, uint8_t * pInBuffer, uint32_t
Size)

Function description Initialize the HASH peripheral in MD5 mode then initiate a DMA
transfer to feed the input buffer to the IP.

Parameters hhash: HASH handle.

 pInBuffer: pointer to the input buffer (buffer to be hashed).

 Size: length of the input buffer in bytes.

HAL HASH Generic Driver UM1884

408/2232 DocID027704 Rev 7

Return values HAL: status

Notes Once the DMA transfer is finished, HAL_HASH_MD5_Finish()
API must be called to retrieve the computed digest.

HAL_HASH_MD5_Finish

Function name HAL_StatusTypeDef HAL_HASH_MD5_Finish
(HASH_HandleTypeDef * hhash, uint8_t * pOutBuffer, uint32_t
Timeout)

Function description Return the computed digest in MD5 mode.

Parameters hhash: HASH handle.

 pOutBuffer: pointer to the computed digest. Digest size is 16
bytes.

 Timeout: Timeout value.

Return values HAL: status

Notes The API waits for DCIS to be set then reads the computed
digest.

 HAL_HASH_MD5_Finish() can be used as well to retrieve the
digest in HMAC MD5 mode.

HAL_HMAC_SHA1_Start

Function name HAL_StatusTypeDef HAL_HMAC_SHA1_Start
(HASH_HandleTypeDef * hhash, uint8_t * pInBuffer, uint32_t
Size, uint8_t * pOutBuffer, uint32_t Timeout)

Function description Initialize the HASH peripheral in HMAC SHA1 mode, next process
pInBuffer then read the computed digest.

Parameters hhash: HASH handle.

 pInBuffer: pointer to the input buffer (buffer to be hashed).

 Size: length of the input buffer in bytes.

 pOutBuffer: pointer to the computed digest. Digest size is 20
bytes.

 Timeout: Timeout value.

Return values HAL: status

Notes Digest is available in pOutBuffer.

 Same key is used for the inner and the outer hash functions;
pointer to key and key size are respectively stored in hhash-
>Init.pKey and hhash->Init.KeySize.

HAL_HMAC_MD5_Start

Function name HAL_StatusTypeDef HAL_HMAC_MD5_Start
(HASH_HandleTypeDef * hhash, uint8_t * pInBuffer, uint32_t
Size, uint8_t * pOutBuffer, uint32_t Timeout)

Function description Initialize the HASH peripheral in HMAC MD5 mode, next process
pInBuffer then read the computed digest.

Parameters hhash: HASH handle.

 pInBuffer: pointer to the input buffer (buffer to be hashed).

UM1884 HAL HASH Generic Driver

 DocID027704 Rev 7 409/2232

 Size: length of the input buffer in bytes.

 pOutBuffer: pointer to the computed digest. Digest size is 16
bytes.

 Timeout: Timeout value.

Return values HAL: status

Notes Digest is available in pOutBuffer.

 Same key is used for the inner and the outer hash functions;
pointer to key and key size are respectively stored in hhash-
>Init.pKey and hhash->Init.KeySize.

HAL_HMAC_MD5_Start_IT

Function name HAL_StatusTypeDef HAL_HMAC_MD5_Start_IT
(HASH_HandleTypeDef * hhash, uint8_t * pInBuffer, uint32_t
Size, uint8_t * pOutBuffer)

Function description Initialize the HASH peripheral in HMAC MD5 mode, next process
pInBuffer then read the computed digest in interrupt mode.

Parameters hhash: HASH handle.

 pInBuffer: pointer to the input buffer (buffer to be hashed).

 Size: length of the input buffer in bytes.

 pOutBuffer: pointer to the computed digest. Digest size is 16
bytes.

Return values HAL: status

Notes Digest is available in pOutBuffer.

 Same key is used for the inner and the outer hash functions;
pointer to key and key size are respectively stored in hhash-
>Init.pKey and hhash->Init.KeySize.

HAL_HMAC_SHA1_Start_IT

Function name HAL_StatusTypeDef HAL_HMAC_SHA1_Start_IT
(HASH_HandleTypeDef * hhash, uint8_t * pInBuffer, uint32_t
Size, uint8_t * pOutBuffer)

Function description Initialize the HASH peripheral in HMAC SHA1 mode, next process
pInBuffer then read the computed digest in interrupt mode.

Parameters hhash: HASH handle.

 pInBuffer: pointer to the input buffer (buffer to be hashed).

 Size: length of the input buffer in bytes.

 pOutBuffer: pointer to the computed digest. Digest size is 20
bytes.

Return values HAL: status

Notes Digest is available in pOutBuffer.

 Same key is used for the inner and the outer hash functions;
pointer to key and key size are respectively stored in hhash-
>Init.pKey and hhash->Init.KeySize.

HAL HASH Generic Driver UM1884

410/2232 DocID027704 Rev 7

HAL_HMAC_SHA1_Start_DMA

Function name HAL_StatusTypeDef HAL_HMAC_SHA1_Start_DMA
(HASH_HandleTypeDef * hhash, uint8_t * pInBuffer, uint32_t
Size)

Function description Initialize the HASH peripheral in HMAC SHA1 mode then initiate
the required DMA transfers to feed the key and the input buffer to
the IP.

Parameters hhash: HASH handle.

 pInBuffer: pointer to the input buffer (buffer to be hashed).

 Size: length of the input buffer in bytes.

Return values HAL: status

Notes Once the DMA transfers are finished (indicated by hhash-
>State set back to HAL_HASH_STATE_READY),
HAL_HASH_SHA1_Finish() API must be called to retrieve the
computed digest.

 Same key is used for the inner and the outer hash functions;
pointer to key and key size are respectively stored in hhash-
>Init.pKey and hhash->Init.KeySize.

 If MDMAT bit is set before calling this function (multi-buffer
HASH processing case), the input buffer size (in bytes) must
be a multiple of 4 otherwise, the HASH digest computation is
corrupted. For the processing of the last buffer of the thread,
MDMAT bit must be reset and the buffer length (in bytes)
doesn't have to be a multiple of 4.

HAL_HMAC_MD5_Start_DMA

Function name HAL_StatusTypeDef HAL_HMAC_MD5_Start_DMA
(HASH_HandleTypeDef * hhash, uint8_t * pInBuffer, uint32_t
Size)

Function description Initialize the HASH peripheral in HMAC MD5 mode then initiate the
required DMA transfers to feed the key and the input buffer to the
IP.

Parameters hhash: HASH handle.

 pInBuffer: pointer to the input buffer (buffer to be hashed).

 Size: length of the input buffer in bytes.

Return values HAL: status

Notes Once the DMA transfers are finished (indicated by hhash-
>State set back to HAL_HASH_STATE_READY),
HAL_HASH_MD5_Finish() API must be called to retrieve the
computed digest.

 Same key is used for the inner and the outer hash functions;
pointer to key and key size are respectively stored in hhash-
>Init.pKey and hhash->Init.KeySize.

 If MDMAT bit is set before calling this function (multi-buffer
HASH processing case), the input buffer size (in bytes) must
be a multiple of 4 otherwise, the HASH digest computation is
corrupted. For the processing of the last buffer of the thread,
MDMAT bit must be reset and the buffer length (in bytes)

UM1884 HAL HASH Generic Driver

 DocID027704 Rev 7 411/2232

doesn't have to be a multiple of 4.

HAL_HASH_GetState

Function name HAL_HASH_StateTypeDef HAL_HASH_GetState
(HASH_HandleTypeDef * hhash)

Function description Return the HASH handle state.

Parameters hhash: HASH handle.

Return values HAL: HASH state

Notes The API yields the current state of the handle (BUSY,
READY,...).

HAL_HASH_GetStatus

Function name HAL_StatusTypeDef HAL_HASH_GetStatus
(HASH_HandleTypeDef * hhash)

Function description Return the HASH HAL status.

Parameters hhash: HASH handle.

Return values HAL: status

Notes The API yields the HAL status of the handle: it is the result of
the latest HASH processing and allows to report any issue
(e.g. HAL_TIMEOUT).

HAL_HASH_ContextSaving

Function name void HAL_HASH_ContextSaving (HASH_HandleTypeDef *
hhash, uint8_t * pMemBuffer)

Function description Save the HASH context in case of processing suspension.

Parameters hhash: HASH handle.

 pMemBuffer: pointer to the memory buffer where the HASH
context is saved.

Return values None:

Notes The IMR, STR, CR then all the CSR registers are saved in
that order. Only the r/w bits are read to be restored later on.

 By default, all the context swap registers (there are
HASH_NUMBER_OF_CSR_REGISTERS of those) are
saved.

 pMemBuffer points to a buffer allocated by the user. The
buffer size must be at least
(HASH_NUMBER_OF_CSR_REGISTERS + 3) * 4 uint8 long.

HAL_HASH_ContextRestoring

Function name void HAL_HASH_ContextRestoring (HASH_HandleTypeDef *
hhash, uint8_t * pMemBuffer)

Function description Restore the HASH context in case of processing resumption.

HAL HASH Generic Driver UM1884

412/2232 DocID027704 Rev 7

Parameters hhash: HASH handle.

 pMemBuffer: pointer to the memory buffer where the HASH
context is stored.

Return values None:

Notes The IMR, STR, CR then all the CSR registers are restored in
that order. Only the r/w bits are restored.

 By default, all the context swap registers
(HASH_NUMBER_OF_CSR_REGISTERS of those) are
restored (all of them have been saved by default beforehand).

HAL_HASH_SwFeed_ProcessSuspend

Function name void HAL_HASH_SwFeed_ProcessSuspend
(HASH_HandleTypeDef * hhash)

Function description Initiate HASH processing suspension when in polling or
interruption mode.

Parameters hhash: HASH handle.

Return values None:

Notes Set the handle field SuspendRequest to the appropriate value
so that the on-going HASH processing is suspended as soon
as the required conditions are met. Note that the actual
suspension is carried out by the functions HASH_WriteData()
in polling mode and HASH_IT() in interruption mode.

HAL_HASH_DMAFeed_ProcessSuspend

Function name HAL_StatusTypeDef HAL_HASH_DMAFeed_ProcessSuspend
(HASH_HandleTypeDef * hhash)

Function description Suspend the HASH processing when in DMA mode.

Parameters hhash: HASH handle.

Return values HAL: status

Notes When suspension attempt occurs at the very end of a DMA
transfer and all the data have already been entered in the IP,
hhash->State is set to HAL_HASH_STATE_READY and the
API returns HAL_ERROR. It is recommended to wrap-up the
processing in reading the digest as usual.

HASH_Start

Function name HAL_StatusTypeDef HASH_Start (HASH_HandleTypeDef *
hhash, uint8_t * pInBuffer, uint32_t Size, uint8_t * pOutBuffer,
uint32_t Timeout, uint32_t Algorithm)

Function description Initialize the HASH peripheral, next process pInBuffer then read
the computed digest.

Parameters hhash: HASH handle.

 pInBuffer: pointer to the input buffer (buffer to be hashed).

 Size: length of the input buffer in bytes.

 pOutBuffer: pointer to the computed digest.

UM1884 HAL HASH Generic Driver

 DocID027704 Rev 7 413/2232

 Timeout: Timeout value.

 Algorithm: HASH algorithm.

Return values HAL: status

Notes Digest is available in pOutBuffer.

HASH_Accumulate

Function name HAL_StatusTypeDef HASH_Accumulate
(HASH_HandleTypeDef * hhash, uint8_t * pInBuffer, uint32_t
Size, uint32_t Algorithm)

Function description If not already done, initialize the HASH peripheral then processes
pInBuffer.

Parameters hhash: HASH handle.

 pInBuffer: pointer to the input buffer (buffer to be hashed).

 Size: length of the input buffer in bytes, must be a multiple of
4.

 Algorithm: HASH algorithm.

Return values HAL: status

Notes Field hhash->Phase of HASH handle is tested to check
whether or not the IP has already been initialized.

 The input buffer size (in bytes) must be a multiple of 4
otherwise, the HASH digest computation is corrupted.

HASH_Start_IT

Function name HAL_StatusTypeDef HASH_Start_IT (HASH_HandleTypeDef *
hhash, uint8_t * pInBuffer, uint32_t Size, uint8_t * pOutBuffer,
uint32_t Algorithm)

Function description Initialize the HASH peripheral, next process pInBuffer then read
the computed digest in interruption mode.

Parameters hhash: HASH handle.

 pInBuffer: pointer to the input buffer (buffer to be hashed).

 Size: length of the input buffer in bytes.

 pOutBuffer: pointer to the computed digest.

 Algorithm: HASH algorithm.

Return values HAL: status

Notes Digest is available in pOutBuffer.

HASH_Start_DMA

Function name HAL_StatusTypeDef HASH_Start_DMA
(HASH_HandleTypeDef * hhash, uint8_t * pInBuffer, uint32_t
Size, uint32_t Algorithm)

Function description Initialize the HASH peripheral then initiate a DMA transfer to feed
the input buffer to the IP.

Parameters hhash: HASH handle.

 pInBuffer: pointer to the input buffer (buffer to be hashed).

HAL HASH Generic Driver UM1884

414/2232 DocID027704 Rev 7

 Size: length of the input buffer in bytes.

 Algorithm: HASH algorithm.

Return values HAL: status

Notes If MDMAT bit is set before calling this function (multi-buffer
HASH processing case), the input buffer size (in bytes) must
be a multiple of 4 otherwise, the HASH digest computation is
corrupted. For the processing of the last buffer of the thread,
MDMAT bit must be reset and the buffer length (in bytes)
doesn't have to be a multiple of 4.

HASH_Finish

Function name HAL_StatusTypeDef HASH_Finish (HASH_HandleTypeDef *
hhash, uint8_t * pOutBuffer, uint32_t Timeout)

Function description Return the computed digest.

Parameters hhash: HASH handle.

 pOutBuffer: pointer to the computed digest.

 Timeout: Timeout value.

Return values HAL: status

Notes The API waits for DCIS to be set then reads the computed
digest.

HMAC_Start

Function name HAL_StatusTypeDef HMAC_Start (HASH_HandleTypeDef *
hhash, uint8_t * pInBuffer, uint32_t Size, uint8_t * pOutBuffer,
uint32_t Timeout, uint32_t Algorithm)

Function description Initialize the HASH peripheral in HMAC mode, next process
pInBuffer then read the computed digest.

Parameters hhash: HASH handle.

 pInBuffer: pointer to the input buffer (buffer to be hashed).

 Size: length of the input buffer in bytes.

 pOutBuffer: pointer to the computed digest.

 Timeout: Timeout value.

 Algorithm: HASH algorithm.

Return values HAL: status

Notes Digest is available in pOutBuffer.

 Same key is used for the inner and the outer hash functions;
pointer to key and key size are respectively stored in hhash-
>Init.pKey and hhash->Init.KeySize.

HMAC_Start_IT

Function name HAL_StatusTypeDef HMAC_Start_IT (HASH_HandleTypeDef *
hhash, uint8_t * pInBuffer, uint32_t Size, uint8_t * pOutBuffer,
uint32_t Algorithm)

Function description Initialize the HASH peripheral in HMAC mode, next process
pInBuffer then read the computed digest in interruption mode.

UM1884 HAL HASH Generic Driver

 DocID027704 Rev 7 415/2232

Parameters hhash: HASH handle.

 pInBuffer: pointer to the input buffer (buffer to be hashed).

 Size: length of the input buffer in bytes.

 pOutBuffer: pointer to the computed digest.

 Algorithm: HASH algorithm.

Return values HAL: status

Notes Digest is available in pOutBuffer.

 Same key is used for the inner and the outer hash functions;
pointer to key and key size are respectively stored in hhash-
>Init.pKey and hhash->Init.KeySize.

HMAC_Start_DMA

Function name HAL_StatusTypeDef HMAC_Start_DMA
(HASH_HandleTypeDef * hhash, uint8_t * pInBuffer, uint32_t
Size, uint32_t Algorithm)

Function description Initialize the HASH peripheral in HMAC mode then initiate the
required DMA transfers to feed the key and the input buffer to the
IP.

Parameters hhash: HASH handle.

 pInBuffer: pointer to the input buffer (buffer to be hashed).

 Size: length of the input buffer in bytes.

 Algorithm: HASH algorithm.

Return values HAL: status

Notes Same key is used for the inner and the outer hash functions;
pointer to key and key size are respectively stored in hhash-
>Init.pKey and hhash->Init.KeySize.

 In case of multi-buffer HMAC processing, the input buffer size
(in bytes) must be a multiple of 4 otherwise, the HASH digest
computation is corrupted. Only the length of the last buffer of
the thread doesn't have to be a multiple of 4.

30.3 HASH Firmware driver defines

30.3.1 HASH

HASH algorithm mode

HASH_ALGOMODE_HASH Algorithm is HASH

HASH_ALGOMODE_HMAC Algorithm is HMAC

HASH algorithm selection

HASH_ALGOSELECTION_SHA1 HASH function is SHA1

HASH_ALGOSELECTION_SHA224 HASH function is SHA224

HASH_ALGOSELECTION_SHA256 HASH function is SHA256

HASH_ALGOSELECTION_MD5 HASH function is MD5

HASH API alias

HAL_HASHEx_IRQHandler is re-directed to

HAL HASH Generic Driver UM1884

416/2232 DocID027704 Rev 7

HASH input data type

HASH_DATATYPE_32B 32-bit data. No swapping

HASH_DATATYPE_16B 16-bit data. Each half word is swapped

HASH_DATATYPE_8B 8-bit data. All bytes are swapped

HASH_DATATYPE_1B 1-bit data. In the word all bits are swapped

HASH Digest Calculation Status

HASH_DIGEST_CALCULATION_NOT_STARTED DCAL not set after input data written
in DIN register

HASH_DIGEST_CALCULATION_STARTED DCAL set after input data written in
DIN register

HASH DMA suspension words limit

HASH_DMA_SUSPENSION_WORDS_LIMIT Number of words below which DMA
suspension is aborted

HASH Exported Macros

__HAL_HASH_GET_FLAG Description:

 Check whether or not the specified
HASH flag is set.

Parameters:

 __FLAG__: specifies the flag to check.
This parameter can be one of the
following values:

 HASH_FLAG_DINIS A new block
can be entered into the input
buffer.

 HASH_FLAG_DCIS Digest
calculation complete.

 HASH_FLAG_DMAS DMA
interface is enabled (DMAE=1) or
a transfer is ongoing.

 HASH_FLAG_BUSY The hash
core is Busy: processing a block of
data.

 HASH_FLAG_DINNE DIN not
empty: the input buffer contains at
least one word of data.

Return value:

 The: new state of __FLAG__ (TRUE or
FALSE).

__HAL_HASH_CLEAR_FLAG Description:

 Clear the specified HASH flag.

Parameters:

 __FLAG__: specifies the flag to clear.
This parameter can be one of the
following values:

UM1884 HAL HASH Generic Driver

 DocID027704 Rev 7 417/2232

 HASH_FLAG_DINIS A new block
can be entered into the input
buffer.

 HASH_FLAG_DCIS Digest
calculation complete

Return value:

 None

__HAL_HASH_ENABLE_IT Description:

 Enable the specified HASH interrupt.

Parameters:

 __INTERRUPT__: specifies the HASH
interrupt source to enable. This
parameter can be one of the following
values:

 HASH_IT_DINI A new block can
be entered into the input buffer
(DIN)

 HASH_IT_DCI Digest calculation
complete

Return value:

 None

__HAL_HASH_DISABLE_IT Description:

 Disable the specified HASH interrupt.

Parameters:

 __INTERRUPT__: specifies the HASH
interrupt source to disable. This
parameter can be one of the following
values:

 HASH_IT_DINI A new block can
be entered into the input buffer
(DIN)

 HASH_IT_DCI Digest calculation
complete

Return value:

 None

__HAL_HASH_RESET_HANDLE_STATE Description:

 Reset HASH handle state.

Parameters:

 __HANDLE__: HASH handle.

Return value:

 None

__HAL_HASH_RESET_HANDLE_STATUS Description:

HAL HASH Generic Driver UM1884

418/2232 DocID027704 Rev 7

 Reset HASH handle status.

Parameters:

 __HANDLE__: HASH handle.

Return value:

 None

__HAL_HASH_SET_MDMAT Description:

 Enable the multi-buffer DMA transfer
mode.

Return value:

 None

Notes:

 This bit is set when hashing large files
when multiple DMA transfers are
needed.

__HAL_HASH_RESET_MDMAT Description:

 Disable the multi-buffer DMA transfer
mode.

Return value:

 None

__HAL_HASH_START_DIGEST Description:

 Start the digest computation.

Return value:

 None

__HAL_HASH_SET_NBVALIDBITS Description:

 Set the number of valid bits in the last
word written in data register DIN.

Parameters:

 __SIZE__: size in bytes of last data
written in Data register.

Return value:

 None

__HAL_HASH_INIT Description:

 Reset the HASH core.

Return value:

 None

HASH flags definitions

HASH_FLAG_DINIS 16 locations are free in the DIN: a new block can be entered in the
IP

UM1884 HAL HASH Generic Driver

 DocID027704 Rev 7 419/2232

HASH_FLAG_DCIS Digest calculation complete

HASH_FLAG_DMAS DMA interface is enabled (DMAE=1) or a transfer is ongoing

HASH_FLAG_BUSY The hash core is Busy, processing a block of data

HASH_FLAG_DINNE DIN not empty: the input buffer contains at least one word of data

HMAC key length type

HASH_HMAC_KEYTYPE_SHORTKEY HMAC Key size is <= 64 bytes

HASH_HMAC_KEYTYPE_LONGKEY HMAC Key size is> 64 bytes

HASH interrupts definitions

HASH_IT_DINI A new block can be entered into the input buffer (DIN)

HASH_IT_DCI Digest calculation complete

HASH Number of Context Swap Registers

HASH_NUMBER_OF_CSR_REGISTERS Number of Context Swap Registers

HASH TimeOut Value

HASH_TIMEOUTVALUE Time-out value

HAL HASH Extension Driver UM1884

420/2232 DocID027704 Rev 7

31 HAL HASH Extension Driver

31.1 HASHEx Firmware driver API description

31.1.1 HASH peripheral extended features

 The SHA-224 and SHA-256 HASH and HMAC processing can be carried out exactly the
same way as for SHA-1 or MD-5 algorithms.

1. Three modes are available.
a. Polling mode: processing APIs are blocking functions i.e. they process the data

and wait till the digest computation is finished, e.g. HAL_HASHEx_xxx_Start()
b. Interrupt mode: processing APIs are not blocking functions i.e. they process the

data under interrupt, e.g. HAL_HASHEx_xxx_Start_IT()
c. DMA mode: processing APIs are not blocking functions and the CPU is not used

for data transfer i.e. the data transfer is ensured by DMA, e.g.
HAL_HASHEx_xxx_Start_DMA(). Note that in DMA mode, a call to
HAL_HASHEx_xxx_Finish() is then required to retrieve the digest.

2. Multi-buffer processing is possible in polling and DMA mode.
a. In polling mode, only multi-buffer HASH processing is possible. API

HAL_HASHEx_xxx_Accumulate() must be called for each input buffer, except for
the last one. User must resort to HAL_HASHEx_xxx_Start() to enter the last one
and retrieve as well the computed digest.

b. In DMA mode, multi-buffer HASH and HMAC processing are possible.

 HASH processing: once initialization is done, MDMAT bit must be set thru
__HAL_HASH_SET_MDMAT() macro. From that point, each buffer can be
fed to the IP thru HAL_HASHEx_xxx_Start_DMA() API. Before entering the
last buffer, reset the MDMAT bit with __HAL_HASH_RESET_MDMAT()
macro then wrap-up the HASH processing in feeding the last input buffer
thru the same API HAL_HASHEx_xxx_Start_DMA(). The digest can then be
retrieved with a call to API HAL_HASHEx_xxx_Finish().

 HMAC processing (MD-5, SHA-1, SHA-224 and SHA-256 must all resort to
extended functions): after initialization, the key and the first input buffer are
entered in the IP with the API HAL_HMACEx_xxx_Step1_2_DMA(). This
carries out HMAC step 1 and starts step 2. The following buffers are next
entered with the API HAL_HMACEx_xxx_Step2_DMA(). At this point, the
HMAC processing is still carrying out step 2. Then, step 2 for the last input
buffer and step 3 are carried out by a single call to
HAL_HMACEx_xxx_Step2_3_DMA(). The digest can finally be retrieved
with a call to API HAL_HASH_xxx_Finish() for MD-5 and SHA-1, to
HAL_HASHEx_xxx_Finish() for SHA-224 and SHA-256.

31.1.2 Polling mode HASH extended processing functions

This section provides functions allowing to calculate in polling mode the hash value using
one of the following algorithms:

 SHA224

 HAL_HASHEx_SHA224_Start()

 HAL_HASHEx_SHA224_Accumulate()

 SHA256

 HAL_HASHEx_SHA256_Start()

 HAL_HASHEx_SHA256_Accumulate()

UM1884 HAL HASH Extension Driver

 DocID027704 Rev 7 421/2232

 For a single buffer to be hashed, user can resort to HAL_HASH_xxx_Start().

 In case of multi-buffer HASH processing (a single digest is computed while several buffers
are fed to the IP), the user can resort to successive calls to
HAL_HASHEx_xxx_Accumulate() and wrap-up the digest computation by a call to
HAL_HASHEx_xxx_Start().

This section contains the following APIs:

 HAL_HASHEx_SHA224_Start()

 HAL_HASHEx_SHA224_Accumulate()

 HAL_HASHEx_SHA256_Start()

 HAL_HASHEx_SHA256_Accumulate()

31.1.3 Interruption mode HASH extended processing functions

This section provides functions allowing to calculate in interrupt mode the hash value using
one of the following algorithms:

 SHA224

 HAL_HASHEx_SHA224_Start_IT()

 SHA256

 HAL_HASHEx_SHA256_Start_IT()

This section contains the following APIs:

 HAL_HASHEx_SHA224_Start_IT()

 HAL_HASHEx_SHA256_Start_IT()

31.1.4 DMA mode HASH extended processing functionss

This section provides functions allowing to calculate in DMA mode the hash value using
one of the following algorithms:

 SHA224

 HAL_HASHEx_SHA224_Start_DMA()

 HAL_HASHEx_SHA224_Finish()

 SHA256

 HAL_HASHEx_SHA256_Start_DMA()

 HAL_HASHEx_SHA256_Finish()

 When resorting to DMA mode to enter the data in the IP, user must resort to
HAL_HASHEx_xxx_Start_DMA() then read the resulting digest with
HAL_HASHEx_xxx_Finish().

 In case of multi-buffer HASH processing, MDMAT bit must first be set before the
successive calls to HAL_HASHEx_xxx_Start_DMA(). Then, MDMAT bit needs to be reset
before the last call to HAL_HASHEx_xxx_Start_DMA(). Digest is finally retrieved thanks to
HAL_HASHEx_xxx_Finish().

This section contains the following APIs:

 HAL_HASHEx_SHA224_Start_DMA()

 HAL_HASHEx_SHA224_Finish()

 HAL_HASHEx_SHA256_Start_DMA()

 HAL_HASHEx_SHA256_Finish()

31.1.5 Polling mode HMAC extended processing functions

This section provides functions allowing to calculate in polling mode the HMAC value using
one of the following algorithms:

HAL HASH Extension Driver UM1884

422/2232 DocID027704 Rev 7

 SHA224

 HAL_HMACEx_SHA224_Start()

 SHA256

 HAL_HMACEx_SHA256_Start()

This section contains the following APIs:

 HAL_HMACEx_SHA224_Start()

 HAL_HMACEx_SHA256_Start()

31.1.6 Interrupt mode HMAC extended processing functions

This section provides functions allowing to calculate in interrupt mode the HMAC value
using one of the following algorithms:

 SHA224

 HAL_HMACEx_SHA224_Start_IT()

 SHA256

 HAL_HMACEx_SHA256_Start_IT()

This section contains the following APIs:

 HAL_HMACEx_SHA224_Start_IT()

 HAL_HMACEx_SHA256_Start_IT()

31.1.7 DMA mode HMAC extended processing functions

This section provides functions allowing to calculate in DMA mode the HMAC value using
one of the following algorithms:

 SHA224

 HAL_HMACEx_SHA224_Start_DMA()

 SHA256

 HAL_HMACEx_SHA256_Start_DMA()

 When resorting to DMA mode to enter the data in the IP for HMAC processing, user must
resort to HAL_HMACEx_xxx_Start_DMA() then read the resulting digest with
HAL_HASHEx_xxx_Finish().

This section contains the following APIs:

 HAL_HMACEx_SHA224_Start_DMA()

 HAL_HMACEx_SHA256_Start_DMA()

31.1.8 Multi-buffer DMA mode HMAC extended processing functions

This section provides functions to manage HMAC multi-buffer DMA-based processing for
MD5, SHA1, SHA224 and SHA256 algorithms.

 MD5

 HAL_HMACEx_MD5_Step1_2_DMA()

 HAL_HMACEx_MD5_Step2_DMA()

 HAL_HMACEx_MD5_Step2_3_DMA()

 SHA1

 HAL_HMACEx_SHA1_Step1_2_DMA()

 HAL_HMACEx_SHA1_Step2_DMA()

 HAL_HMACEx_SHA1_Step2_3_DMA()

 SHA256

 HAL_HMACEx_SHA224_Step1_2_DMA()

 HAL_HMACEx_SHA224_Step2_DMA()

UM1884 HAL HASH Extension Driver

 DocID027704 Rev 7 423/2232

 HAL_HMACEx_SHA224_Step2_3_DMA()

 SHA256

 HAL_HMACEx_SHA256_Step1_2_DMA()

 HAL_HMACEx_SHA256_Step2_DMA()

 HAL_HMACEx_SHA256_Step2_3_DMA()

 User must first start-up the multi-buffer DMA-based HMAC computation in calling
HAL_HMACEx_xxx_Step1_2_DMA(). This carries out HMAC step 1 and intiates step 2
with the first input buffer.

 The following buffers are next fed to the IP with a call to the API
HAL_HMACEx_xxx_Step2_DMA(). There may be several consecutive calls to this API.

 Multi-buffer DMA-based HMAC computation is wrapped up by a call to
HAL_HMACEx_xxx_Step2_3_DMA(). This finishes step 2 in feeding the last input buffer to
the IP then carries out step 3.

 Digest is retrieved by a call to HAL_HASH_xxx_Finish() for MD-5 or SHA-1, to
HAL_HASHEx_xxx_Finish() for SHA-224 or SHA-256.

 If only two buffers need to be consecutively processed, a call to
HAL_HMACEx_xxx_Step1_2_DMA() followed by a call to
HAL_HMACEx_xxx_Step2_3_DMA() is sufficient.

This section contains the following APIs:

 HAL_HMACEx_MD5_Step1_2_DMA()

 HAL_HMACEx_MD5_Step2_DMA()

 HAL_HMACEx_MD5_Step2_3_DMA()

 HAL_HMACEx_SHA1_Step1_2_DMA()

 HAL_HMACEx_SHA1_Step2_DMA()

 HAL_HMACEx_SHA1_Step2_3_DMA()

 HAL_HMACEx_SHA224_Step1_2_DMA()

 HAL_HMACEx_SHA224_Step2_DMA()

 HAL_HMACEx_SHA224_Step2_3_DMA()

 HAL_HMACEx_SHA256_Step1_2_DMA()

 HAL_HMACEx_SHA256_Step2_DMA()

 HAL_HMACEx_SHA256_Step2_3_DMA()

31.1.9 Detailed description of functions

HAL_HASHEx_SHA224_Start

Function name HAL_StatusTypeDef HAL_HASHEx_SHA224_Start
(HASH_HandleTypeDef * hhash, uint8_t * pInBuffer, uint32_t
Size, uint8_t * pOutBuffer, uint32_t Timeout)

Function description Initialize the HASH peripheral in SHA224 mode, next process
pInBuffer then read the computed digest.

Parameters hhash: HASH handle.

 pInBuffer: pointer to the input buffer (buffer to be hashed).

 Size: length of the input buffer in bytes.

 pOutBuffer: pointer to the computed digest. Digest size is 28
bytes.

 Timeout: Timeout value

Return values HAL: status

