
System
CPU

Cortex-M3

M

M

DMA

System flash
128KB

A
D
I

System RAM
20KB

Security
subsystem

Radio
CPU

Cortex-M0

Bus bridge
Modem, frequency

synthesizer, and
RF interfaces

Other
peripherals

L1 interconnect

L2 interconnect

RF Core

Bus Fabric

Analog/Digital Signals

Bus Master

M M

M M

M

Legend

Copyright © 2016, Texas Instruments Incorporated

RF Core www.ti.com

1586 SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

23.1 RF Core
The RF core contains an ARM Cortex-M0 processor that interfaces the analog RF and baseband
circuitries, handles data to and from the system side, and assembles the information bits in a given packet
structure. The RF core offers a high-level, command-based application program interface (API) to the
system CPU (ARM® Cortex®-M3). The RF core can autonomously handle the time-critical aspects of the
radio protocols (802.15.4 RF4CE and ZigBee®, Bluetooth® low energy, and so on), thus offloading the
system CPU and leaving more resources for the user’s application.

The RF core has a dedicated 4-KB SRAM block and runs almost entirely from separate ROM.

23.1.1 High-Level Description and Overview
The RF core receives high-level requests from the system CPU and performs all the necessary
transactions to fulfill them. These requests are primarily oriented to the transmission and reception of
information through the radio channel, but can also include additional maintenance tasks such as
calibration, test, or debug features.

As a general framework, the transactions between the system CPU and the RF core operate as follows:
• The RF core can access data and configuration parameters from the system RAM. This access

reduces the memory requirements of the RF core, avoids needless traffic between the different parts of
the system, and reduces the total energy consumption.

• In a similar fashion, the RF core can decode and write back the contents of the received radio packet,
together with status information, to the system RAM.

• For protocol confidentiality and authentication support purposes, the RF core can also access the
security subsystem.

• In general, the RF core recognizes complex commands from the system CPU (CCA transmissions, RX
with automatic acknowledge, and so forth) and divides them into subcommands without further
intervention of the system CPU.

Figure 23-1 shows the external interfaces and dependencies of the RF core.

Figure 23-1. Limited RF Core Overview With External Dependencies

www.ti.com Radio Doorbell

1587SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

Each block in Figure 23-1 performs the following functions:

System Side
• System CPU: Main system processor that runs the user's application, together with the high-level

protocol stack (for a number of supported configurations) and eventually some higher-level MAC
features for some protocols. The system CPU runs code from the boot ROM and the system flash.

• System RAM: Contains packet information (TX and RX payloads) and the different parameters or
configuration options for a given transaction.

• Security Subsystem: Encompasses the different elements to provide protocol confidentiality and
authentication.

• DMA: Optionally charged with the task of moving information from the radio RAM to the system RAM
and vice versa, if direct CPU access is not used.

Radio Side
• Radio CPU: Main RF core processor. Receives high-level commands from the system CPU and

schedules them into the different parts of the RF core.
• Modem, Frequency Synthesizer, RF Interfaces: This is the core of the radio, converting the bits into

modulated signals and vice versa.

23.2 Radio Doorbell
The radio doorbell module (RFC_DBELL) is the primary means of communication between the system
CPU and the radio CPU, also known as command and packet engine (CPE). The radio doorbell contains
a set of dedicated registers, parameters in any of the RAMs of the device, and a set of interrupts to both
the radio CPU and the system CPU.

In addition, parameters and payload are transferred through the system RAM or the radio RAM. If any
parameters or payload are in the system RAM, the system CPU must remain powered, while if everything
is in the radio RAM, the system CPU may go into power-down mode to save current.

During operation, the radio CPU updates parameters and payload in RAM and raises interrupts. The
system CPU may mask out interrupts, so that it remains in idle or power-down mode until the entire radio
operation finishes.

Because the system CPU and the radio CPU share a common RAM area, ensure that no contention or
race conditions can occur. This is achieved in software by rules set up in the radio hardware abstraction
layer (HAL).

System
CPU

System RAM
Radio
CPU

L
1

L
2

CMDR

CMDSTA

IRQ to Radio
CPU

Radio Doorbell

IRQs to
System CPU

Event Fabric

Wake-up IRQ
Controller

4

Radio RAM

Copyright © 2017, Texas Instruments Incorporated

Radio Doorbell www.ti.com

1588 SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

Figure 23-2 shows the relevant modules for information exchange between the CPUs.

Figure 23-2. Hardware Support for the HAL

23.2.1 Command and Status Register and Events
Commands are sent to the radio through the CMDR register, while the CMDSTA read-only register
provides status back from the radio. The CMDR register can only be written while it reads 0; otherwise,
writes are ignored. When the CMDR register is 0 and a nonzero value is written to it, the radio CPU is
notified and the CMDSTA register becomes 0. After this, the value written is readable from the CMDR
register until the radio CPU has processed the command, at which point it goes back to 0.

When the command has been processed by the radio CPU, the CMDSTA register contains a nonzero
status, which is provided when the CMDR register goes back to 0. At the same time, an RFCMDACK
interrupt occurs. This interrupt is also mapped to the RFACKIFG register, which should be cleared when
the interrupt has been processed.

See Section 23.3.2 for the format of the command and status registers.

23.2.2 RF Core Interrupts
The RF core has four interrupt lines to the ARM Cortex-M3 (see Figure 23-2). The following interrupts are
controlled by the radio doorbell module:
• RF_CPE0 (interrupt number 9)
• RF_CPE1 (interrupt number 2)
• RF_HW (interrupt number 10)
• RF_CMD_ACK (interrupt number 11)

23.2.2.1 RF Command and Packet Engine Interrupts
The two system-level interrupts RF_CPE0 and RF_CPE1 can be produced from a number of low-level
interrupts produced by the CPE. Each of these low-level interrupts can be mapped to RF_CPE0 or
RF_CPE1 using the RFCPEISL register. In addition, interrupt generation at system level may be switched
on and off using the RFCPEIEN register.

www.ti.com Radio Doorbell

1589SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

In case of an event that triggers a low-level interrupt, the corresponding bit in the RFCPEIFG register is
set to 1. Whenever a bit in RFCPEIFG and the corresponding bit in RFCPEIEN are both 1, the system-
level interrupt selected in RFCPEISL is raised. This means that the interrupt service routine (ISR) must
clear the bits in RFCPEIFG that correspond to low-level interrupts that have been processed.

A list of the available interrupts is found in the register description for RFCPEIFG in Section 23.8.2.5.

Clearing bits in RFCPEIFG is done by writing 0 to those bits, while any bits written to 1 remain
unchanged.

NOTE: When clearing bits in the RFCPEIFG register, interrupts may be lost if a read-modify-write
operation is done because interrupt flags that became active between the read and write
operation might be lost. Thus, clearing an interrupt flag should be done as follows:
HWREG(RFC_DBELL_BASE + RFC_DBELL_O_RFCPEIFG) = ~(1 << irq_no);

and not as:
HWREG(RFC_DBELL_BASE + RFC_DBELL_O_RFCPEIFG) &= ~(1 <<
irq_no); // wrong

23.2.2.2 RF Core Hardware Interrupts
The system-level interrupt RF_HW can be produced from a number of low-level interrupts produced by RF
core hardware. Interrupt generation at the system level may be switched on and off for each source by
using the RFHWEN register.

In the case of an event that triggers a low-level interrupt, the corresponding bit in the RFHWIFG register is
set to 1. Whenever a bit in RFHWIFG and the corresponding bit in RFHWIEN are both 1, the RF_HW
interrupt is raised. This means that the ISR should clear the bits in RFHWIFG that correspond to low-level
interrupts that have been processed.

A list of the available interrupts is found in the register description for RFHWIFG in Section 23.8.2.3. In
general, TI does not recommend servicing these interrupts in the main CPU, but the available radio timer
channel interrupts may be served this way.

Clearing bits in RFHWIFG is done by writing 0 to those bits, while any bits written to 1 remain unchanged.

NOTE: When clearing bits in RFHWIFG, interrupts may be lost if a read-modify-write operation is
done. Therefore, the same rule applies for the RFHWIFG register as for RFCPEIFG (see
Section 23.2.2.1).

23.2.2.3 RF Core Command Acknowledge Interrupt
The system-level interrupt RF_CMD_ACK is produced when an RF core command is acknowledged (that
is, when the status becomes available in CMDSTA [see Section 23.8.2.2]). When the status becomes
available, the RFACKIFG.ACKFLAG register bit is set to 1. Whenever this bit is 1, the RF_CMD_ACK
interrupt is raised, which means that the ISR must clear RFACKIFG.ACKFLAG when processing the
RF_CMD_ACK interrupt.

23.2.3 Radio Timer
The radio has its own dedicated timer, the radio timer (RAT) module. The RAT is a 32-bit free-running
timer running on 4 MHz. The RAT has 8 channels with compare and capture functionality. Five of these
channels are reserved for the radio CPU, while the remaining three channels are available for use by the
ARM Cortex-M3. The available channels are numbered 5, 6, and 7.

Radio Doorbell www.ti.com

1590 SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

The RAT can only run while the RF core is powered up. The RAT must be started by the command
CMD_START_RAT or CMD_SYNC_START_RAT. The RAT must be running to execute a radio operation
command with delayed start or any radio operation command that runs the receiver or transmitter.

When the RAT is running, the current value of the timer can be read from the RATCNT register (see
Section 23.8.1.1).

23.2.3.1 Compare and Capture Events
The available channels may be set up in compare mode or capture mode.

Compare mode can be set up using the CMD_SET_RAT_CMP command (see Section 23.3.3.2.10). In
this case, the timer generates an interrupt when the counter reaches the value given by compareTime.
The interrupt is mapped to RFHWIFG (see Section 23.2.2.2 and Section 23.8.2.3). For the available RAT
channels, the interrupt flags in use are RATCH5, RATCH6, and RATCH7. Optionally, it is also possible to
control an I/O pin when the counter reaches the value given by compareTime (see Section 23.2.3.2).
When the CMD_SET_RAT_CMP command has been sent, the value of compareTime is stored in the
radio channel value register (RATCHnVAL) corresponding to the selected channel (see Table 23-154).

Capture mode can be used to capture a transition on an input pin and record the value of the RAT counter
at the time when the transition occurred. Compare mode can be set up using the CMD_SET_RAT_CPT
command (see Section 23.3.3.2.11). When the transition occurs, the current value of the RAT is stored in
the RATCHnVAL register corresponding to the selected channel (see Table 23-154), and the timer
generates an interrupt. As for compare mode, the interrupt is mapped to RFHWIFG. For the available RAT
channels, the interrupt flags in use are RATCH5, RATCH6, and RATCH7. If single-capture mode is
configured in CMD_SET_CPT, only the first transition is captured, unless the channel is armed again, as
explained in the following paragraph. If repeated mode is configured, every transition is captured.

NOTE: In this case, the captured value in the RATCHnVAL register may be overwritten at any time if
a new transition occurs.

A channel set up in compare mode or single capture mode may be armed or disarmed. When
CMD_SET_RAT_CMP or CMD_SET_RAT_CPT is sent, the channel is armed automatically, and when the
capture or compare event occurs, the channel is disarmed automatically. A disarmed channel does not
produce any interrupt or cause any timer value to be captured. In addition, a channel may be armed or
disarmed using CMD_ARM_RAT_CH or CMD_DISARM_RAT_CH (see Section 23.3.3.2.14 to
Section 23.3.3.2.15). While disarmed, the channel keeps its configuration. To disable a channel that is not
going to be re-armed with the same configuration, the CMD_DISABLE_RAT_CH command may be used
(see Section 23.3.3.2.12).

23.2.3.2 Radio Timer Outputs
The RAT module has four controllable outputs, RAT_GPO0 to RAT_GPO3. These signals may be
controlled by one of the RAT channels and mapped to signals available for the IOC using the
SYSGPOCTL register (see Section 23.8.2.9). RAT_GPO0 is reserved for starting the transmitter and is
controlled internally by the radio CPU (see Section 23.3.2.8). The other three signals may be configured
using the CMD_SET_RAT_OUTPUT command (see Section 23.3.3.2.11). The different output modes
decide the transition of the output when an interrupt occurs on the chosen RAT channel except for the
always-0 and always-1 configurations, which take effect immediately and may be used for initialization.

23.2.3.3 Synchronization With Real-Time Clock
When the radio is powered down, the RAT module is not counting. To keep a consistent time base over
time for synchronized protocols, it is possible to synchronize the RAT with the real-time clock (RTC) (see
Chapter 14).

To allow synchronization after power up, the CMD_SYNC_STOP_RAT command (see
Section 23.3.3.1.10) must be sent before the RF core is powered down. This command (until the next
RTC tick) stops the RAT and returns a parameter rat0, and should be stored and provided when the RAT
is restarted.

Pointer to Command Structure (Bits 31-2)

31
MSB

24 16 8 0
LSB

2

0 0

www.ti.com RF Core HAL

1591SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

The next time the RF core is powered up and the RAT is started, this synchronization must be done using
CMD_SYNC_START_RAT (see Section 23.3.3.1.11), where the rat0 parameter obtained from
CMD_SYNC_STOP_RAT must be provided. This command starts the RAT, waits for an RTC tick, and
adjusts the RAT. Depending on the application, it may not be necessary to run the
CMD_SYNC_STOP_RAT command every time the radio is powered down; a previous value of rat0 may
be reused. In some cases, however, this may cause issues if the radio has been powered for a long time
and the low-frequency and high-frequency crystal oscillators have a significant error relative to each other.

To get accurate synchronization, it is important that the system is running on the high-frequency crystal
oscillator starting before the CMD_SYNC_START_RAT command is run and extending beyond
completion of the CMD_SYNC_STOP_RAT command.

NOTE: For the CMD_SYNC_START_RAT and CMD_SYNC_STOP_RAT commands, the
AON_RTC:CTL RTC_UPD_EN register bit must be set to 1 (see Section 14.4.1.1). It is
never necessary to reset this bit to 0; it may be set permanently to 1 when the RTC is
started.

23.3 RF Core HAL
The RF core hides the complexity of the radio operations by providing a unified HAL to the system CPU.

NOTE: To ensure optimum radio performance always use the latest radio patches provided by TI.
See the product pages on www.ti.com for the latest patches.

23.3.1 Hardware Support
The radio HAL is supported by hardware, by means of the radio doorbell module in the RF core area and
command descriptors in the system RAM.

23.3.2 Firmware Support
The RF core accepts a set of high-level primitives. The following sections describe the desired
functionality at a high level.

23.3.2.1 Commands
The radio CPU lets the user run a set of high-level primitives or commands from the system CPU. After a
command has been issued through the CMDR register, the radio CPU examines it and decides a course
of action.

Three classes of commands are issued:
• Radio operation command
• Immediate command
• Direct command

For the first two classes of commands, CMDR contains a pointer to a command structure. This pointer
must be a valid pointer with 32-bit word alignment, so the 2 least significant bits (LSBs) must be 0 0, as
shown in Figure 23-3. A direct command is signaled by setting the 2 LSBs to 01 and placing the command
ID number in bits 16 to 31 of CMDR. Bits 8 through 15, or alternatively 2 through 15, may be used as an
optional byte parameter. Figure 23-4 shows the format for a direct command.

Figure 23-3. CMDR Register for Radio Operation Commands and Immediate Commands

Command ID (16 Bits)

31
MSB

24 16 8 0
LSB

2

0 1
Optional Parameter

Extension
Optional Parameter

RF Core HAL www.ti.com

1592 SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

Figure 23-4. CMDR Register for Direct Commands

The data structure pointed to by the CMDR register for radio operation and immediate commands may be
in the system RAM or the radio RAM. The system CPU must ensure that the memory area in use is free
for access, in particular when using the radio RAM, where a part of the memory is reserved for use by the
radio CPU. This information may be obtained with the CMD_GET_FW_INFO command (see
Section 23.3.3.2.6). The format of the command follows the structure given in Section 23.3.2.6 and its
subsection, and are defined in more detail specifically for each command.

When deciding in which memory area to place data, consider which modules may be powered down:
• The radio RAM is accessible for the radio CPU at any time, but does not have retention when the radio

is powered down. Data that must be retained must therefore be copied into or out of the radio RAM
whenever the radio is powered up or down, respectively.

• The system RAM has retention in most low-power modes. If the system side is powered down, the
radio CPU requests that it is powered up again to access the RAM. The active current consumption
from the radio CPU accessing the system RAM is higher than the current consumption from accessing
the radio RAM, especially if the system side could otherwise have been powered down.

• The flash always has retention, and can only store parameters that are not written by the radio CPU.
As with accessing the system RAM, the radio CPU must ensure that the system side is powered up to
access the flash. The power consumption from the radio CPU accessing the flash is higher than the
current consumption from accessing the system RAM, but in most cases the difference is negligible
due to few accesses.

• The lowest peak-power consumption is obtained by putting all data structures in the radio RAM and
powering down the system side while the radio CPU is running. In some cases, the average power
consumption may be lower by putting data structures in the system RAM, because less copying is then
needed, and the system side can still be powered down for long periods (for instance, while the
receiver is in sync search).

A radio operation command causes the radio hardware to be accessed. Radio operation commands can
do operations such as transmitting or receiving a packet, setting up radio hardware registers, or doing
more complex, protocol-dependent operations. A radio operation command can normally be issued only
while the radio is idle.

An immediate command is a command to change or request status of the radio, or to manipulate TX or
RX data queues. An intermediate command can monitor status such as received signal strength. An
immediate command can be issued at any time, but the response is, in many cases, only of interest while
a radio operation is ongoing.

A direct command is an immediate command with no parameters, or in some cases, a direct command
has 1- or 2-byte parameters. A direct command is issued by sending a value to the CMDR register with
the format of Figure 23-4. The 16 most significant bits (MSBs) contain the command ID of the immediate
command to run. Bits 8 through 15 or 2 through 15 may contain an optional parameter if specified for the
command.

23.3.2.2 Command Status
After a command is issued, the CMDSTA register is updated by the radio CPU, causing an RFCMDACK
interrupt to be sent back to the system CPU. This update occurs after the command finishes for immediate
and direct commands and after the command is scheduled for radio operation commands. No new
command may be issued until this interrupt is received. The CMDSTA register consists of 32 bits; the 8
LSBs give the result, while the upper 24 bits may be used for specific signaling in each command.
Figure 23-5 shows this format.

31
MSB

24 16 8 0
LSB

Return Byte 3 Return Byte 2 Return Byte 1 Result

www.ti.com RF Core HAL

1593SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

Figure 23-5. Format of CMDSTA Register

In the result byte, bit 7 indicates whether an error occurred or not. The result byte of 0x00, meaning
pending, is produced automatically by the radio doorbell hardware when a command is issued, and the
other bits in the CMDSTA register also become 0, which is the value of CMDSTA before the
RF_CMD_ACK interrupt is raised.

Table 23-1 lists the values of the result byte in the CMDSTA register.

Table 23-1. Values of the Result Byte in the CMDSTA Register

Value Name Description
No Error
0x00 Pending The command has not been parsed.

0x01 Done
Immediate command: The command finished successfully.
Radio operation command: The command was successfully submitted
for execution.

Error
0x81 IllegalPointer The pointer signaled in CMDR is not valid.
0x82 UnknownCommand The command ID number in the command structure is unknown.

0x83 UnknownDirCommand The command number for a direct command is unknown, or the
command is not a direct command.

0x85 ContextError An immediate or direct command was issued in a context where it is
not supported.

0x86 SchedulingError

A radio operation command was attempted to be scheduled while
another operation was already running in the RF core. The new
command is rejected, while the command already running is not
impacted.

0x87 ParError

There were errors in the command parameters that are parsed on
submission. For radio operation commands, errors in parameters
parsed after start of the command are signaled by the command
ending, and an error is indicated in the status field of that command
structure.

0x88 QueueError An operation on a data entry queue was attempted, but the operation
was not supported by the queue in its current state.

0x89 QueueBusy An operation on a data entry was attempted while that entry was busy.

In addition to the command status register, each radio operation command contains a status field (see
Table 23-8). This field may have values in the following categories.
• Idle: The command has not started.
• Pending: The command has been parsed, but the start trigger has not occurred.
• Active: The command is running.
• Suspended: The command has been active, and may become active again. The command is

supported only by certain IEEE 802.15.4 commands.
• Finished: The command is finished, and the system CPU is free to modify the command structure or

free memory.
• Skipped: The command was skipped and never executed.

RF Core HAL www.ti.com

1594 SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

For common commands and when parsing any command before starting, refer to the status codes listed
in Table 23-2.

Table 23-2. Common Radio Operation Status Codes

Number Name Description
Operation Not Finished
0x0000 IDLE Operation has not started.
0x0001 PENDING Waiting for a start trigger.
0x0002 ACTIVE Running an operation.
0x0003 SKIPPED Operation skipped due to condition in another command.
Operation Finished Normally
0x0400 DONE_OK Operation ended normally.
0x0401 DONE_COUNTDOWN Counter reached zero.
0x0402 DONE_RXERR Operation ended with CRC error.
0x0403 DONE_TIMEOUT Operation ended with time-out.
0x0404 DONE_STOPPED Operation stopped after CMD_STOP command.
0x0405 DONE_ABORT Operation aborted by CMD_ABORT command.
Operation Finished With Error
0x0800 ERROR_PAST_START The start trigger occurred in the past.
0x0801 ERROR_START_TRIG Illegal start trigger parameter
0x0802 ERROR_CONDITION Illegal condition for next operation
0x0803 ERROR_PAR Error in a command specific parameter
0x0804 ERROR_POINTER Invalid pointer to next operation

0x0805 ERROR_CMDID The next operation has a command ID that is undefined or not a radio
operation command.

0x0807 ERROR_NO_SETUP Operation using RX, TX, or synthesizer attempted without
CMD_RADIO_SETUP.

0x0808 ERROR_NO_FS Operation using RX or TX attempted without the synthesizer being
programmed or powered on.

0x0809 ERROR_SYNTH_PROG Synthesizer programming failed.
0x080A ERROR_TXUNF Modem TX underflow observed.
0x080B ERROR_RXOVF Modem RX overflow observed.
0x080C ERROR_NO_RX Data requested from last RX when no such data exists.

When the system CPU prepares a command structure, the CPU should initialize the status field to Idle.
Commands may be set up in a loop. If so, the system CPU must not modify command structures until the
radio CPU becomes idle (the system CPU receives a LAST_COMMAND_DONE interrupt, even if the
status is finished or skipped [see Section 23.8.2.5]).

23.3.2.3 Interrupts
The radio CPU has 32 software interrupt sources that generate the RFCPE0 and RFCPE1 interrupts in
the system CPU. An interrupt flag register can indicate which software interrupt has been raised, and the
interrupts are enabled individually. In addition, the RFCMDACK interrupt is raised automatically when
CMDSTA is updated.

Some software-defined interrupts have a common meaning across all commands; the details of each of
the other interrupts are defined for each protocol that uses a particular interrupt. Some interrupts are used
in only one protocol, while others are used in several protocols. The interrupts are listed in the description
of the RFCPEIFG register (see Table 23-171).

www.ti.com RF Core HAL

1595SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

23.3.2.4 Passing Data
There are two basic ways to pass data transmitted or received over the air: directly or through a queue.

The most straight-forward way to pass data is to append it as part of the command parameters (directly or
through a pointer). The exact format depends on the command being run; normally there is a length field
and a data buffer for TX and a maximum length, received length (if variable length), and receive buffer for
RX.

For some operations, the number of packets received or transmitted (or which packet out of a few that will
actually be transmitted) cannot be known in advance. For such operations, use a concept of queues. An
operation can use one or more queues, for instance one RX and one TX queue for a combined RX/TX
operation, or several queues depending on information in the received packets. Any operation using
queues uses a common system for maintaining them, as explained in Section 23.3.2.7.

A radio operation command declares which data method is used.

23.3.2.5 Command Scheduling
The system CPU is responsible for scheduling the commands as required. When using low-power modes,
the system CPU must wake up a short time before the start of the next operation, using the RTC.

A radio operation command can be scheduled with a delayed start (see Section 23.3.2.5.1). If a command
is started with a delay, the radio CPU goes to idle mode until the command starts. The radio operation
command is considered to be running during this delay, and no other radio operation command can be
scheduled unless the pending command is first aborted or stopped.

The system CPU can schedule back-to-back radio operation commands by using the next operation
pointer in any radio operation command. This pointer can point to the next command to perform in the
chain, and by this method, complex operations can be made. Under some conditions (such as an error or
the expiration of a timer), the next command is not started. Instead, the operation ends or a number of
commands may be skipped (see Section 23.3.2.5.2). If a new command is scheduled while another
command is running, the system CPU must wait for the previous command or chain of commands to
finish. The IEEE 802.15.4 commands have exceptions for this rule.

When a radio operation command is finished, the radio CPU raises a COMMAND_DONE interrupt to the
system CPU. If a number of commands are chained as explained previously, the COMMAND_DONE
interrupt is raised after each command, while the LAST_COMMAND_DONE interrupt is raised after the
last command in the chain. For one, nonchained command, the LAST_COMMAND_DONE interrupt is also
raised after the command. When LAST_COMMAND_DONE is raised, COMMAND_DONE is always
raised at the same time. Before raising the COMMAND_DONE interrupt, the radio CPU updates the status
field of the command structure to a status that indicates that the command is finished. The radio CPU
does not access the command structure after raising the COMMAND_DONE interrupt.

RF Core HAL www.ti.com

1596 SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

23.3.2.5.1 Triggers
Triggers can be used to set up a start time, or for other specific purposes in specific radio operation
commands. A common trigger byte definition exists, as defined in Table 23-3.

Table 23-3. Format of Trigger Definition Byte

Bit Index Field Description
0–3 triggerType The type of trigger

4 bEnaCmd 0: No alternative trigger command.
1: CMD_TRIGGER can be used as an alternative trigger.

5–6 triggerNo The trigger number of the CMD_TRIGGER command that triggers this action.

7 pastTrig 0: A trigger in the past is never triggered, or for start of commands, gives an error.
1: A trigger in the past is triggered as soon as possible.

Table 23-4 lists possible values for the triggerType field. Other values are reserved.

Table 23-4. Supported Trigger Types

Number Name Description
0 TRIG_NOW Now (not applicable to end triggers)
1 TRIG_NEVER Never (except possibly by CMD_TRIGGER if bEnaCmd = 1)
2 TRIG_ABSTIME At absolute time, given by timer parameter
3 TRIG_REL_SUBMIT At a time relative to the time the command was submitted
4 TRIG_REL_START At a time relative to start of this command (not allowed for start triggers)
5 TRIG_REL_PREVSTART At a time relative to the start of the previous command
6 TRIG_REL_FIRSTSTART At a time relative to the start of the first command of the chain
7 TRIG_REL_PREVEND At a time relative to the end of the previous command
8 TRIG_REL_EVT1 At a time relative to event 1 of the previous command
9 TRIG_REL_EVT2 At a time relative to event 2 of the previous command
10 TRIG_EXTERNAL On an external trigger input to the RAT

A 32-bit time parameter is used together with all triggers except for TRIG_NOW and TRIG_NEVER.
Absolute timing uses the value of the 32-bit RAT. Relative timing uses the number of RAT ticks. The
external trigger uses an identifier of source and edge, as defined in Table 23-5.

Table 23-5. Fields of Time Parameter
for External Event Trigger

Bit Index Field Description
0–1 Reserved

2–3 inputMode

Input mode:
00: Rising edge
01: Falling edge
10: Both edges
11: Reserved

4–7 Reserved

8–12 source
22: RFC_GPI0
23: RFC_GPI1
Others: Reserved

13–31 Reserved

www.ti.com RF Core HAL

1597SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

Relative timing can be relative to the time of submitting the command chain, the start of the command, the
start of the previous or first command, or to certain observed events inside the command, to be defined for
each command. The following rules apply:
• For the first command in a chain, if the start trigger is any of the types 5 to 9, the start is immediate. If

another trigger referenced in the first command in a chain is any of the types 5 to 9, the trigger time is
relative to the time the command was submitted.

• If the start trigger of a command is TRIG_REL_START, an error is produced.
• If the start trigger of a command is TRIG_NEVER and bEnaCmd is 0, an error is produced.
• Some radio operation commands define events 1 and 2. These are context-dependent events that can

be observed by the radio CPU. See the description of each command for a definition in that context. If
undefined, these events are the time of the start of the command.

If bEnaCmd is 1, the action may also be triggered with a command (CMD_TRIGGER command, see
Section 23.3.3.2.5). The triggerNo parameter identifies the trigger number of this command.

If a trigger occurs in the past when evaluated, the behavior depends on the pastTrig bit. If this bit is 0, the
trigger does not occur, or for start triggers, an error is produced. If the pastTrig bit is 1, the trigger occurs
as soon as possible. If the pastTrig bit is 1 for start triggers, timing relative to the start of the command is
relative to the programmed start time, not the actual start time.

For an external trigger, the radio CPU sets the RAT to use the selected input event as a one-capture
trigger; the CPU then uses this capture interrupt to trigger the action. If the event occurs before the setup
occurs, the event is not captured, and the pastTrig bit is ignored.

23.3.2.5.2 Conditional Execution
The execution of a command may be conditional on the result of the previous command. For each
command, three results are possible:
• TRUE
• FALSE
• ABORT

The criteria are defined for each command. If not defined, the result is TRUE unless the command ended
with an error, in which case the result is ABORT.

Each command structure contains a condition for running the next command. The format of the condition
byte is given in Table 23-6. If the rule is COND_SKIP_ON_FALSE or COND_SKIP_ON_TRUE, the
number of commands to skip is signaled in the nSkip field. If the number of skips is zero, rerun the same
command. If the number of skips is one, run the next command in the chain. If the number of skips is two,
run the command after the next, and so forth. If the rule is COND_NEVER and no previous commands
use skipping, the next command pointer is ignored and may be NULL.

Table 23-6. Format of Condition Byte

Bit Index Field Name Description
0–3 rule Rule for how to proceed, as defined in Table 23-7

4–7 nSkip Number of skips + 1 if the rule involves skipping
0: Same, 1: next, 2: skip next, ...

RF Core HAL www.ti.com

1598 SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

Table 23-7. Condition Rules

Number Name Description
0 COND_ALWAYS Always run next command (except in case of ABORT).

1 COND_NEVER Never run next command (next command pointer can still be used for
skip).

2 COND_STOP_ON_FALSE Run next command if this command returned TRUE, stop if it returned
FALSE.

3 COND_STOP_ON_TRUE Stop if this command returned TRUE, run next command if it returned
FALSE.

4 COND_SKIP_ON_FALSE Run next command if this command returned TRUE, skip a number of
commands if it returned FALSE.

5 COND_SKIP_ON_TRUE Skip a number of commands if this command returned TRUE, run next
command if it returned FALSE.

If execution is stopped, the radio CPU goes back to idle and no further commands are run until a new
command is entered through the CMDR register. The LAST_COMMAND_DONE interrupt is raised.

If a command ends with the ABORT result, the execution ends regardless of the condition. The
LAST_COMMAND_DONE interrupt is raised. An example of criterion for the ABORT result is that a
CMD_ABORT command is issued.

23.3.2.5.3 Handling Before Start of Command
For all radio operation commands, the start trigger and condition code are checked before parsing the rest
of the command. If the start trigger has an illegal trigger type (including TRIG_REL_START, which is not
allowed for start triggers, and TRIG_NEVER in combination with no command trigger), the radio CPU sets
the status field to ERROR_START_TRIG. If the condition field has an illegal value, the radio CPU sets the
status field to ERROR_CONDITION. If the start trigger occurs in the past and startTrigger.pastTrig is 0,
the radio CPU sets the status field to ERROR_PAST_START.

23.3.2.6 Command Data Structures
The data structures are listed in tables throughout this chapter. The Byte Index is the offset from the
pointer to that structure. Multibyte fields are little-endian, and 16-bit halfword or 32-bit word alignment as
given by the field size is required. For bit numbering, 0 is the LSB. The R/W column is used as follows:

R: The system CPU can read a result back; the radio CPU does not read the field.
W: The system CPU writes a value, the radio CPU reads it and does not modify it.
R/W: The system CPU writes an initial value, the radio CPU may modify it.

For data structures that are a specialization of another data structure, the fields from the parent structure
are not repeated, but the Byte Index column reflects their presence.

The only mandatory field for all commands is the command ID number, which is a 16-bit number sent as
the first 2 bytes of the command structure.

Some immediate commands have additional fields, which are defined for each command. The radio
operation commands have additional mandatory fields as defined in Table 23-8.

All command fields marked as “Reserved” should be written to 0.

www.ti.com RF Core HAL

1599SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

23.3.2.6.1 Radio Operation Command Structure
Table 23-8 shows the command structure for radio operation commands. Some commands have
additional fields appended after this.

Table 23-8. Radio Operation Command Format

Byte Index Field Name Bits Bit Field
Name Type Description

0–1 commandNo W The command ID number

2–3 status R/W

An integer telling the status of the command. This
value is updated by the radio CPU during
operation and may be read by the system CPU at
any time.

4–7 pNextOp W Pointer to the next operation to run after this
operation is done

8–11 startTime W Absolute or relative start time (depending on the
value of the startTrigger field)

12 startTrigger Identification of the trigger that starts the
operation

13 condition W Condition for running the next operation

23.3.2.7 Data Entry Structures
A data entry must belong to a queue. The queues are set up as part of the command structure of a radio
operation command.

Operations on queues available as commands are described in Section 23.3.4.

23.3.2.7.1 Data Entry Queue
Any command that uses a queue contains a pointer to a data entry queue structure, as given in
Table 23-9. The system CPU allocates and initializes this queue structure.

Table 23-9. Data Entry Queue Structure

Byte Index Field Name Bits Bit Field
Name Type Description

0–3 pCurrEntry R/W

Pointer to the data entry currently in use by the
radio CPU (or next in line to be used if the radio is
not using the queue). NULL means that no buffer
is currently in the queue.

4–7 pLastEntry R/W
Pointer to the last entry entered in this queue. If
pCurrEntry is nonNULL and pLastEntry is NULL,
additional entries may not be appended.

RF Core HAL www.ti.com

1600 SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

23.3.2.7.2 Data Entry
A data entry queue contains data entries of the type shown in Table 23-10. These entries are organized in
a linked list. The first entry of the queue is pointed to by the pCurrEntry field of the queue structure (see
Table 23-9). Each pNextEntry field points to the next entry. The pLastEntry field of the queue structure
points to the last entry in the queue.

Table 23-10. General Data Entry Structure

Byte Index Field Name Bits Bit Field
Name Type Description

0–3 pNextEntry R/W Pointer to the next entry in the queue, NULL if this
is the last entry

4 status R/W Indicates status of entry, including whether it is
free to receive a write from the system CPU

5 config

0–1 type W

Type of data entry structure:
0: General data entry
1: Multielement RX entry
2: Pointer entry

2–3 lenSz W

Size of length word in start of each RX entry
element:
0: No length indicator
1: 1-byte length indicator
2: 2-byte length indicator
3: Reserved

4–7 irqIntv W
For partial read RX entry only: The number of
bytes between interrupt generated by the radio
CPU (0000: 16 bytes)

6–7 length W

Length of data field, or for pointer entries, of the
data buffer. For TX entries, this corresponds to
one entry element (packet). For RX entries, this
gives the total available storage space.

8–(7+n) data R/W Array of data to be received or transmitted
(n = length)

The status field may take the following values:
• 0: Pending: The entry is not yet in use by the radio CPU. This is the status to write by the system CPU

before submitting the entry.
• 1: Active: The entry is the entry in the queue currently open for writing (RX) or reading (TX) by the

radio CPU.
• 2: Busy: An ongoing radio operation is writing or reading an unfinished packet. Certain operations are

not allowed while an entry is in this state (see Section 23.3.4).
• 3: Finished: The radio CPU is finished writing data into this entry, and is free for the system CPU to

reuse or free memory (if dynamically allocated).

For data entries, the system CPU sets up the required data structure, either in system RAM or in the
available part of the radio RAM. If the data structure is dynamically allocated, the system CPU frees the
memory after use.

In an entry is being used for received data, the radio CPU may start the entry element with a length
indicator. If config.lenSz is 00, no such indicator is written. This option must be used only if the length of
the received packet can be determined by other means. If config.lenSz is 01, 1 byte indicates the number
of bytes following the length byte. This option may be used only if no element of more than 255 bytes is
written to the entry. If config.lenSz is 10, a 16-bit word indicates the number of bytes following the length
word.

www.ti.com RF Core HAL

1601SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

23.3.2.7.3 Pointer Entry
A pointer entry is an entry where the data are not contained in the entry itself, but the entry holds a pointer
to the buffer. Such an entry is indicated by setting config.type to 2. The pointer replaces the data field, as
shown in Table 23-11.

Table 23-11. Pointer Field in Pointer Entry Structure

Byte Index Field Name Bits Bit Field Name Type Description

8–11 pData W Pointer to data buffer of size length
bytes

The data is read from or stored in the buffer given by pData. The size of this buffer is given by length, just
as is the size of the data field in a general data entry.

23.3.2.7.4 Partial Read RX Entry
Proprietary mode supports an RX entry where the data can be read before the entire packet is received
over the air, which can be used for the following purposes:
• When data must be read before the entire packet is received
• When the length of the packet is not known in the beginning of the packet
• When the length of the packet is too long for the entire payload to be kept in memory simultaneously

To support this, a special variant of the structure in Table 23-10 is used. As for the multielement entry,
several entry elements may be contained in the same entry. Each entry element corresponds to one
packet received over the air, or part of it. The element may also contain additional fields. This type is
selected by setting config.type to 3. In the multielement entry, the data field is composed as shown in
Table 23-12 (the indexes are relative to the entire entry structure).

Table 23-12. Fields in a Partial Read RX Entry

Byte Index Byte Field Name Bits Bit Field Name Type Description

8–9 pktStatus

0–12 numElements R Number of entry elements
committed in the entry

13 bEntryOpen R The entry contains an element that
is still open for appending data.

14 bFirstCont R
The first element is a continuation
of the last packet from the previous
entry.

15 bLastCont R The packet in the last element
continues in the next entry.

10–11 nextIndex R
Index to the byte after the last byte
of the last entry element committed
by the radio CPU

12–(7+n) rxData R

Data received. Exact format
depends on operation being run.
Each entry element may start with
a length byte or word.

The entry is updated as follows:
• The nextIndex field is updated as new bytes are written to the buffer.
• While a packet is being received, the radio CPU sets pktStatus.bEntryOpen to 1.

When an entry element is finished, either because the packet ended or because the element reached the
end of the entry, pktStatus.bEntryOpen is set to 0 by the radio CPU, and pktStatus.numElements is
incremented. If the packet continues in the next entry, the radio CPU sets pktStatus.bLastCont to 1. In this
case, the pktStatus.bFirstCont bit of the next entry is also set to 1 by the radio CPU. If no next entry is
available, the status is set to Unfinished, otherwise it is set to Finished.

RF Core HAL www.ti.com

1602 SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

The length field specified in the beginning of an entry element (depending on config.lenSz) gives the
length of that entry element within the entry, not the entire packet. If the length is not known when the
entry is opened, the length field is written to the remaining length of the entry and updated by the radio
CPU before the entry is finished.

For a partial read RX entry, the radio CPU generates an Rx_Data_Written interrupt to the system CPU
whenever 1 or more bytes are written to the entry. In addition, the radio CPU generates an
Rx_N_Data_Written interrupt when k bytes have been written since the last interrupt or the start of the
entry element, where k is given by config.irqIntv.

www.ti.com RF Core HAL

1603SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

23.3.2.8 External Signaling
The radio CPU controls four CPEGPOx signals that can be used for external signalling, for example for
controlling external PAs and LNAs or debugging. CPEGPO0 is high when the internal LNA is enabled,
CPEGPO1 is high when the internal PA is enabled and CPEGPO2 is high when synthesizer calibration is
ongoing.

Two of the output signals from the RAT have automatic configuration that may be used for observation.
The signal RATGPO0 goes high when transmission of a packet is initiated and low when transmission is
done. RATGPO0 may be observed for accurate timing of packet transmission, because the same signal is
used internally. RATGPO0 is very similar to CPEGPO1, but it goes high some microseconds earlier, and
the timing is more accurate compared to the first transmitted symbol out of the modem.

By default, the radio CPU maps CPEGPO0 to the signal RFC_GPO0, CPEGPO1 to the signal
RFC_GPO1, CPEGPO2 to the signal RFC_GPO2, and RATGPO0 to the signal RFC_GPO3 at boot time.
This mapping can be modified by writing to the RFC_DBELL:SYSGPOCTL register.

The RFC_GPOx signals can be mapped to output pins using the system I/O controller. Refer to
Chapter 11 for details.

NOTE: On the CC2640R2F device, the CPEGPO1 signal does not deassert when the internal PA is
disabled. To control external PAs RATGPO0 must be used instead.

RF Core HAL www.ti.com

1604 SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

23.3.3 Command Definitions
There is a set of commands independent of the current RF protocol. These commands are related to the
low-level operations of the radio.

23.3.3.1 Protocol-Independent Radio Operation Commands
For radio operation commands listed here, the operation ends due to one of the causes listed in
Table 23-13, or by additional statuses listed for each command. After the operation has ended, the status
field of the command structure (2 status bytes listed in Table 23-8) indicates why the operation ended. In
each case, it is indicated if the result is TRUE, FALSE, or ABORT (see Section 23.3.2.5.2). This result
indicates whether to start the next command (if any) indicated in pNextOp, or to return to an IDLE state.

Table 23-13. End of Radio Operation Commands

Condition Status Code Result
Finished operation DONE_OK TRUE
Received CMD_STOP while waiting for start trigger DONE_STOPPED FALSE
Received CMD_ABORT DONE_ABORT ABORT
The start trigger occurred in the past with startTrigger.pastTrig = 0 ERROR_PAST_START ABORT
Illegal start trigger parameter ERROR_START_TRIG ABORT
Illegal condition for next operation ERROR_CONDITION ABORT
Observed illegal parameter ERROR_PAR ABORT
Invalid pointer to next operation ERROR_POINTER ABORT
Next operation has a command ID that is undefined or not a radio
operation command ERROR_CMDID ABORT

Operation using RX, TX, or synthesizer attempted without
CMD_RADIO_SETUP ERROR_NO_SETUP ABORT

Operation using RX or TX attempted without the synthesizer being
programmed ERROR_NO_FS ABORT

www.ti.com RF Core HAL

1605SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

23.3.3.1.1 CMD_NOP: No Operation Command
Command ID number: 0x0801
CMD_NOP is a radio operation command that only takes the mandatory arguments listed in Table 23-8.
The command only waits for the start trigger, and then ends. The command can be used to test the
communication between the system CPU and the radio CPU or to insert a wait.

23.3.3.1.2 CMD_RADIO_SETUP: Set Up Radio Settings Command
Command ID number: 0x0802
CMD_RADIO_SETUP is a radio operation command. In addition to the parameters listed in Table 23-8,
the command structure contains the fields listed in Table 23-14.

Table 23-14. CMD_RADIO_SETUP Command Format

Byte Index Field Bit Index Bit Field name Type Description

14 mode W

This is the main mode to use.
0x00: Bluetooth low energy
0x01: IEEE 802.15.4
0x02: 2-Mbps GFSK
0x05: 5-Mbps coded 8-FSK
0xFF: Keep existing mode; update overrides
only.

15 loDivider W

CMD_PROP_RADIO_DIV_SETUP only:
Divider setting to use.
For the recommended settings per device and
band, refer to Smart RF Studio.

16–17 config

0–2 frontEndMode

0x00: Differential mode
0x01: Single-ended mode RFP
0x02: Single-ended mode RFN
0x05: Single-ended mode RFP with external
front-end control on RF pins (RFN and RXTX)
0x06: Single-ended mode RFN with external
front-end control on RF pins (RFP and RXTX)
Others: Reserved

3 biasMode W 0: Internal bias
1: External bias

4-9 analogCfgMode W

0x00: Write analog configuration. Required first
time after boot and when changing frequency
band or front-end configuration
0x2D: Keep analog configuration. May be used
after standby or when changing mode with the
same frequency band and front-end
configuration.
Others: Reserved

10 bNoFsPowerup W 0: Power up the frequency synthesizer.
1: Do not power up the frequency synthesizer.

11–15 Reserved

18–19 txPower W
Output power setting; use value from SmartRF
Studio. For more details, see
Section 23.3.3.2.16.

20–23 pRegOverride W
Pointer to a list of hardware and configuration
registers to override. If NULL, no override is
used.

RF Core HAL www.ti.com

1606 SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

On start, the radio CPU sets up parameters for the operational mode given by mode.radioMode, with the
modifications given in pRegOverride, a pointer to a structure containing override values for certain
hardware registers, radio configuration controlled by the radio CPU, and protocol-related variables. If
pRegOverride is NULL, no registers are overridden. The override value structure is a string of 32-bit
entries provided by TI or produced by SmartRF Studio.

Running CMD_RADIO_SETUP or another radio setup command is mandatory before using any command
that uses the receiver, transmitter, or frequency synthesizer. If the RF core is reset, CMD_RADIO_SETUP
must be rerun.

When CMD_RADIO_SETUP is executing, trim values are read from FCFG1 unless they have been
provided elsewhere. If these values are read from FCFG1, the following limitations apply while
CMD_RADIO_SETUP is executing:
• The VIMS module must be powered, allowing flash reads.
• A SCLK_HF source switch must not occur, as Flash read access is momentarily disabled while the

switch is ongoing.

If either of the preceding limitations is violated, the internal system bus might end up in a nonresponsive
state. A system reset is required to exit this state. To avoid reading FCFG1 while running
CMD_RADIO_SETUP, the values may be read in advance using CMD_READ_TRIM and provided to the
radio using CMD_SET_TRIM. This is handled automatically by the TI provided RF driver.

The txPower parameter is stored and applied every time transmission of a packet starts to set an output
power with temperature compensation. This setting can be changed later with the command
CMD_SET_TX_POWER (see Section 23.3.3.2.16).

Table 23-15. Format of a Hardware Register Override Entry

Bit Index Bit Field Name Description

0–1 entryType

00: Hardware register
01: Array initiator; see Table 23-16
10: ADI register; see Table 23-17, or MCE/RFE override
11: Firmware-defined parameter; see Table 23-18

2–15 hwAddr Bits 2–15 of the address to the hardware register. Bits 0–1 of the address are 0.
16–31 value The value to write to the register

Table 23-16. Format of Array Initiator

Bit Index Bit Field Name Description
0–1 entryType 01: Array initiator

2–15 startAddr

First address or index to write to:
Hardware registers: Bits 2–15 of the address (bits 0 and 1 are 0)
ADI registers: ADI bus address, half-byte indicator in bit 6, ADI selector in bit 7
Firmware-defined parameters: Byte Index

16–29 length Number of entries

30–31 arrayType

Type of array:
00: Hardware registers with 16-bit values
01: Hardware registers with 32-bit values
10: ADI registers
11: Firmware-defined parameters

www.ti.com RF Core HAL

1607SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

Table 23-17. Format of an ADI Register Override Entry

Bit Index Bit Field Name Description
0–1 entryType 10: ADI register
2–9 adiValue2 Optional second value to write
10–15 adiAddr2 Optional second ADI bus address
16–23 adiValue Value to write to register
24–29 adiAddr ADI bus address

30 bHalfSize 0: Use full-size writes
1: Use half-size writes, causing read-modify-write functionality

31 adiNo 0: Write to ADI 0 (RF)
1: Write to ADI 1 (synthesizer)

Table 23-18. Format of a Firmware-Defined Parameter Override Entry

Bit Index Bit Field Name Description
0–1 entryType 11: Firmware-defined parameter

2–3 entrySubType

00: Firmware-defined parameter
01: MCE/RFE override mode (must be in first entry); see Table 23-19
10: Reserved
11: End of override list

4–14 fwAddr Byte index into parameter structure

15 bByte 0: 16-bit value
1: 8-bit value

16–31 value The value to write to the parameter

RF Core HAL www.ti.com

1608 SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

Table 23-19. Format of an MCE/RFE Override Mode Entry

Bit Index Bit Field Name Description
0–1 entryType 11: Firmware-defined parameter
2–3 entrySubType 01: MCE/RFE override mode
4–7 Reserved

8 bMceUseRam 0: Run MCE from ROM
1: Run MCE from RAM

9–11 mceRomBank MCE ROM bank to run from

12 bRfeUseRam 0: Run RFE from ROM
1: Run RFE from RAM

13–15 rfeRomBank RFE ROM bank to run from
16–23 mceMode Mode to send to MCE
24–31 rfeMode Mode to send to RFE

Table 23-20. Format of a Center Frequency Entry

Bit Index Bit Field Name Description
0–1 entryType 11: Firmware-defined parameter
2–3 entrySubType 10: Special configuration
4–7 specialType 0001: Center frequency entry
8 Reserved
9 bAutoTxIf If 1, set TX IF to RX IF.
10 bApplyRx If 1, use invRfFreq to recalculate RX IF.
11 bApplyTx If 1, use invRfFreq to recalculate TX shape.

12–31 invRfFreq Value where fRFMHz is center frequency in MHz:
(12 × 24 × 220) / (fRFMHz × loDivider)

Table 23-21. Format of an End of List Entry

Bit Index Bit Field Name Description
0–1 entryType 11: Firmware-defined parameter
2–3 entrySubType 11: End of list segment

4–7 nextEntryRegion

0x0: End of list
0x1: SRAM. Base = 0x2000 0000
0x2: RF core RAM. Base = 0x2100 0000
0x3: Flash. Base = 0xA000 0000
0xF: End of list
Others: Reserved

8–31 addrOffset Address offset for next list part. Next address is:
Base + (addrOffset × 4)

www.ti.com RF Core HAL

1609SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

For hardware registers, bits 2–15 give the address of the hardware register to access, see Table 23-
15. The register is written with a 32-bit write operation, but the 16 MSBs are always written as 0, while
the 16 LSBs are as given by value. To write a full 32-bit hardware register, use an array operation of
length 1.
An array initiator signals that the next words must be written to consecutive addresses (see Table 23-
16). The type of accesses is decided by array type:

• 00 gives 32-bit writes to 16-bit hardware registers. The first register address is 0x4004 0000 +
(startAddr << 2). Then length addresses are written. Each value is taken from the next 16-bit halfword
of the override entry, and the register address is incremented by 4 each time a write occurs. If length is
odd, padding is assumed so that the first entry after the array is 32-bit word-aligned.

• 01 gives 32-bit writes to hardware registers. The first register address is
0x4004 0000 + (startAddr << 2). Then length addresses are written. Each 32-bit value is taken from
the next 32-bit word of the override entry, and the register address is incremented by 4 each time a
write occurs.

• 10 gives byte writes to ADI registers. The first ADI bus address is given by bits 0–5 of startAddr. If bit 6
is set to 1, half-byte writes are used, otherwise full-byte writes (the LSB is ignored by the ADI in this
case). Bit 7 selects to which ADI to write. Each value written on the ADI bus is taken from the next byte
of the override entry, and the ADI register address is incremented by 1 in case of half-byte writes or by
2 in case of full-byte writes each time a write occurs. If length is not divisible by 4, padding is assumed
so that the first entry after the array is 32-bit word-aligned.

• 11 gives writes to firmware-defined parameters. The first index into the configuration values is given by
startAddr/4, and length bytes are copied from the override entry. If length is not divisible by 4, padding
is assumed so that the first entry after the array is 32-bit word-aligned.
For ADI registers, adiValue gives the value to write and adiAddr gives the address on the ADI bus (see
Table 23-17). The ADI to write is selected through adiNo. If bHalfSize is 1, the write size bit on the ADI
interface is set, causing the value to be masked half size; otherwise, it is a full-size write, and the LSB
of the address is ignored. If adiAddr2 is nonzero, the value given by adiValue2 is written to the ADI bus
address given by adiAddr2; otherwise, these two fields are ignored (if ADI address 0 is to be written, it
must be done through adiAddr/adiValue). In this case, bHalfSize and adiNo apply to both writes.
For radio firmware-defined parameters (see Table 23-18), fwAddr gives a Byte Index into an array of
configuration values held in the radio. If bByte = 1, only the least significant byte (LSByte) of value is
written to the addressed byte. If bByte = 0, all 16 bits are written to the 16-bit halfword at the given
byte address, which must be even in this case. The selected value is set to the value specified in the
value part of the override entry.

The first entry in the override list may contain an override of the MCE and RFE modes, as given by
Table 23-19. If so, the MCE is set to run from RAM if bMceUseRam is 1 and bMceCopyRam is 0;
otherwise the MCE runs from the ROM bank given by mceRomBank. The value of MDMCMDPAR0 that is
set when the CPE runs the MCE configuration command is given by mceMode. Similarly, the RFE is set
to run from RAM if bRfeUseRam is 1 and bRfeCopyRam is 0; otherwise the RFE runs from the ROM bank
given by rfeRomBank. The value of RFECMDPAR0 set when the CPE runs the RFE configuration
command is given by rfeMode.

If the pointer in pRegOverride is invalid, any override entry is invalid. If the length of an array is too large
or zero, the operation ends with the status ERROR_PAR. If config.bNoFsPowerup = 0 and powering up
the synthesizer fails, the command ends with ERROR_SYNTH_PROG as the status.

If CMD_ABORT or CMD_STOP is received while waiting for the start trigger, the operation ends without
any setup. If CMD_STOP is received after the start trigger, setup proceeds until finished. If CMD_ABORT
is received after the start trigger, the setup process is aborted. This leaves the registers in an incomplete
state, so another CMD_RADIO_SETUP command must be issued before using the radio.

RF Core HAL www.ti.com

1610 SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

23.3.3.1.3 CMD_FS_POWERUP: Power Up Frequency Synthesizer
Command ID number: 0x080C
CMD_FS_POWERUP is a radio operation command. In addition to the parameters listed in Table 23-8,
the command structure contains the fields listed in Table 23-22.

On start, the radio CPU powers up the frequency synthesizer and applies the register modifications given
in pRegOverride. If pRegOverride is NULL, no registers are overridden. The format of the override
structure is the same as the format for CMD_RADIO_SETUP (see Section 23.3.3.1.2). Only overrides
applicable to the synthesizer hardware are applied.

Running CMD_FS_POWERUP is mandatory before using any command that uses the frequency
synthesizer (and thus, the transmitter or receiver), unless the synthesizer has been powered up as part of
the radio setup. The radio must be set up using CMD_RADIO_SETUP or another setup command before
CMD_FS_POWERUP.

If the pointer in pRegOverride is invalid, the address or index is invalid, the length of an array is zero or is
too large. If another parameter in an entry is not permitted, the operation ends with the status
ERROR_PAR. If powering up the synthesizer fails, the command ends with ERROR_SYNTH_PROG as
the status. When otherwise finished, the command ends with DONE_OK as the status.

Table 23-22. CMD_FS_POWERUP Command Format

Byte Index Field Name Bit Index Bit Field
Name Type Description

14–15 Reserved

16–19 pRegOverride W
Pointer to a list of hardware and
configuration registers to override. If NULL,
no override is used.

23.3.3.1.4 CMD_FS_POWERDOWN: Power Down Frequency Synthesizer
Command ID number: 0x080D
CMD_FS_POWERDOWN is a radio operation command that only takes the mandatory arguments listed
in Table 23-8. The command waits for the start trigger and then powers down the synthesizer. The act of
powering down not only stops the synthesizer, as is done with CMD_FS_OFF (see Section 23.3.3.1.6) or
at the end of certain other radio operation commands, but it also switches off analog modules.

After running CMD_FS_POWERDOWN, the synthesizer must be powered up again using
CMD_FS_POWERUP, or another command that powers up the synthesizer before it is used.

CMD_FS_POWERDOWN must always be run before the radio is powered down (for instance, when the
device is going into low-power modes).

When finished, the CMD_FS_POWERDOWN command ends with a DONE_OK status.

www.ti.com RF Core HAL

1611SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

23.3.3.1.5 CMD_FS: Frequency Synthesizer Controls Command
Command ID number: 0x0803
CMD_FS is a radio operation command. In addition to the parameters listed in Table 23-8, the command
structure contains the fields listed in Table 23-23, and can program the synthesizer to a specific
frequency.

The frequency to use is given by frequency and fractFreq, and must be as close as possible to
(frequency + fractFreq / 65536) MHz.

The synthesizer is set up in RX mode or TX mode, depending on synthConf.bTxMode. This mode may be
changed by radio operation commands when setting up RX or TX. If synthConf.refFreq is nonzero, a
reference frequency of 24 MHz / synthConf.refFreq is used instead of the default frequency.

If the synthesizer is programmed and reports loss of lock after having been in lock, the radio CPU raises
the Synth_No_Lock interrupt. The synthesizer keeps running, but the system CPU may use this
information to stop and restart the radio. The Synth_No_Lock interrupt is not raised more than once for
each time the synthesizer is programmed. The interrupt may also occur for commands with implicit-
frequency programming.

If the CMD_FS command is called with an illegal frequency or divider setting, the command ends with
ERROR_PAR as the status. If the command is called without the radio being configured, it ends with
ERROR_NO_SETUP as the status. If the command is called without the synthesizer being powered up, it
ends with ERROR_NO_FS as status.

Table 23-23. CMD_FS Command Format

Byte Index Field Name Bit Index Bit Field Name Type Description

14–15 frequency W The frequency in MHz to which the synthesizer
should be tuned

16–17 fractFreq W Fractional part of the frequency to which the
synthesizer should be tuned

18 synthConf

0 bTxMode W 0: Start synthesizer in RX mode.
1: Start synthesizer in TX mode.

1–6 refFreq W

CC13x0:
0: Use default reference frequency.
Others: Use reference frequency 24 MHz/refFreq.
CC26x0:
Reserved

7 Reserved W Reserved
19–23 Reserved W Reserved

23.3.3.1.6 CMD_FS_OFF: Turn Off Frequency Synthesizer
Command ID number: 0x0804
CMD_FS_OFF is a radio operation command that only takes the mandatory arguments listed in
Table 23-8, and turns off the frequency synthesizer if it has been started by CMD_FS or left on by a radio
operation command that does not turn off the synthesizer.

When the command is started, the synthesizer outputs are disabled and the state machine is reset. The
analog parts are still powered; CMD_FS_POWERDOWN (see Section 23.3.3.1.4) can power down the
synthesizer to further reduce the current consumption.

RF Core HAL www.ti.com

1612 SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

23.3.3.1.7 CMD_RX_TEST: Receiver Test Command
Command ID number: 0x0807
CMD_RX_TEST is a radio operation command used to set the receiver in infinite RX mode for test
purposes.

The sync word programmed in the receiver is given in the LSBs of syncWord. If config.bNoSync is 1, the
correlation thresholds for sync search are set to the maximum value to avoid getting sync. The thresholds
are restored after the command ends.

If pktConfig.bFsOff is 1, the synthesizer is turned off (corresponding to CMD_FS_OFF; see
Section 23.3.3.1.6) after the operation is done; otherwise the synthesizer is left on.

A trigger to end the operation is set up by endTrigger and endTime (see Section 23.3.2.5.1). If the trigger
that is defined by this parameter occurs, the radio operation ends.

The operation ends by one of the causes listed in Table 23-13.

The command structure for CMD_RX_TEST contains the fields listed in Table 23-24.

Table 23-24. CMD_RX_TEST Command Format

Byte
Index

Byte Field
Name Bits Bit Field Name Type Description

14 config

0 Reserved W Set to 0

1 bFsOff W 0: Keep frequency synthesizer on after command.
1: Turn frequency synthesizer off after command.

2 bNoSync W
0: Run sync search as normal for the configured mode.
1: Write correlation thresholds to the maximum value to
avoid getting sync.

15 endTrigger W Trigger classifier for ending the operation
16–19 syncWord W Sync word to use for receiver
20–23 endTime W Time to end the operation

www.ti.com RF Core HAL

1613SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

23.3.3.1.8 CMD_TX_TEST: Transmitter Test Command
Command ID number: 0x0808
CMD_TX_TEST is a radio operation command used to set the receiver in infinite TX mode and transmit
either a CW or modulated data for test purposes.

When the command starts, the radio CPU starts the transmitter. The radio must be configured with the
CMD_RADIO_SETUP command and the radio synthesizer must be started and in TX mode with the
CMD_FS radio command before CMD_TX_TEST is issued. The radio transmits a preamble and a sync
word of the size given by the current radio configuration, specified using CMD_RADIO_SETUP. The sync
word is given in the LSBs of syncWord. The payload after the sync word consists of the 16-bit word
txWord, repeated indefinitely. This word may be run through whitening, with the options given in
config.whitenMode, which can take the following values:
• 0: No whitening is used. This is useful for testing with a repeated pattern, but gives spurs if used for

spectral measurements.
• 1: Default whitening. This means that the whitening is as configured for the mode in use (potentially

with overrides). If the mode does not use whitening, no whitening is applied.
• 2: PRBS-15: The polynomial x15 + x14 + 1 is used. This gives a pseudo-noise sequence with length

32767.
• 3: PRBS-31: The polynomial x32 + x22 + x2 + x + 1 is used. This gives a pseudo-noise sequence with

length 4294967295.

When config.whitenMode = 2 or 3, initialization is done by the radio CPU writing 0xAAAA 0000 to the
PRBS value register before transmission starts. When config.whitenMode is 1, the default initialization is
used.

The transmitter runs until the trigger set up by endTrigger and endTime (see Section 23.3.2.5.1) occurs, or
until an abort command is issued.

If pktConfig.bFsOn is 1, the synthesizer is turned off (corresponding to CMD_FS_OFF; see
Section 23.3.3.1.6) after the operation is done; otherwise it is left on.

The operation ends by one of the causes listed in Table 23-13.

The command structure for CMD_TX_TEST contains the fields listed in Table 23-25.

Table 23-25. CMD_TX_TEST Command Format

Byte Index Field Name Bits Bit Field Name Type Description

14 config

0 bUseCw W 0: Send modulated signal.
1: Send continuous wave.

1 bFsOff W

0: Keep frequency synthesizer on after
command.
1: Turn frequency synthesizer off after
command.

2–3 whitenMode W

0: No whitening
1: Default whitening
2: PRBS-15
3: PRBS-32

15 Reserved

16–17 txWord W Value to send to the modem before
whitening

18 Reserved
19 endTrigger W Trigger classifier for ending the operation
20–23 syncWord W Sync word to use for transmitter
24–27 endTime W Time to end the operation

RF Core HAL www.ti.com

1614 SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

23.3.3.1.9 CMD_SYNC_STOP_RAT: Synchronize and Stop Radio Timer Command
Command ID number: 0x0809
CMD_SYNC_STOP_RAT is a radio operation command. In addition to the parameters listed in
Table 23-8, the command structure contains the fields listed in Table 23-26.

For more details, see Chapter 14.

AON_RTC:CTL.RTC_UPD_EN must be 1.

Table 23-26. CMD_SYNC_STOP_RAT Command Format

Byte Index Field Name Bits Bit Field Name Type Description
14–15 Unused

16–19 rat0 R
The returned RAT value corresponding
to the value the RAT would have had
when the RTC was zero.

When the command starts, the radio CPU sets up capture of an RTC tick and waits for this tick, then
stops the RAT and calculates the value rat0. This value must be stored for use when the RAT restarts.

23.3.3.1.10 CMD_SYNC_START_RAT: Synchronously Start Radio Timer Command
Command ID number: 0x080A
CMD_SYNC_START_RAT is a radio operation command. In addition to the parameters listed in
Table 23-8, the command structure contains the fields listed in Table 23-27.

For more details, see Chapter 14. TOP:AON_RTC:CTL.RTC_UPD_EN must be 1.

Table 23-27. CMD_SYNC_START_RAT Command Format

Byte Index Field Name Bits Bit Field Name Type Description
14–15 Unused

16–19 rat0 W

The desired RAT value corresponding to
the value the RAT would have had when
the RTC was zero. This parameter is
returned by CMD_SYNC_STOP_RAT.

When the command starts, the radio CPU starts the RAT and sets up capture of an RTC tick and waits for
this tick, then calculates the necessary timer adjustment based on the input parameter rat0 and performs
this adjustment. The input parameter rat0 is the value previously returned by CMD_SYNC_STOP_RAT.

Because the RAT is normally not running when this command is issued, the start trigger must be
TRIG_NOW (see Section 23.3.2.5.1).

The first time the RAT is started after system boot, the command CMD_START_RAT must be used (see
Section 23.3.3.2.7). As an alternative, CMD_SYNC_START_RAT may be issued with a fixed parameter
such as 0; however, this gives an arbitrary start value for the RAT. Before powering down the radio, the
system CPU must run the CMD_SYNC_STOP_RAT command. After powering up the radio again, the
system CPU must run the CMD_SYNC_START_RAT command with the same parameter as the one
received when CMD_SYNC_STOP_RAT was issued.

www.ti.com RF Core HAL

1615SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

23.3.3.1.11 CMD_COUNT: Counter Command
Command ID number: 0x080B
CMD_COUNT is a radio operation command. In addition to the parameters listed in Table 23-8, the
command structure contains the fields listed in Table 23-28.

Table 23-28. CMD_COUNT Command Format

Byte Index Field Name Bits Bit Field Name Type Description

14–15 counter R/W

Counter. When starting, the radio CPU
decrements the value, and the end
status of the operation differs if the
result is zero.

When the command starts, the radio CPU decrements the counter field by 1 and writes the result back to
this field. If the result of the decrement is 0, the operation ends with the status DONE_COUNTDOWN and
the result FALSE. Otherwise, the operation ends with the status DONE_OK and the result TRUE, which
can be used in conditional execution to create a loop.

If the operation is started with counter equal to 0, this is an illegal parameter, so the operation ends with
the status ERROR_PAR.

The operation ends by one of the causes listed in Table 23-2 or Table 23-29.

Table 23-29. Additional End Causes for CMD_COUNT

Condition Status Code Result
Finished operation with counter > 0 DONE_OK TRUE
Finished operation with counter = 0 DONE_COUNTDOWN FALSE

23.3.3.1.12 CMD_SCH_IMM: Run Immediate Command as Radio Operation
Command ID number: 0x0810
CMD_SCH_IMM is a radio operation command. In addition to the parameters listed in Table 23-8, the
command structure contains the fields listed in Table 23-30.

Table 23-30. CMD_SCH_IMM Command Format

Byte Index Field Name Bits Bit Field Name Type Description
14–15 Reserved
16–19 cmdrVal W Value as would be written to CMDR
20–23 cmdstaVal R Value as would be returned in CMDSTA

When the command starts, the radio CPU takes the value in cmdrVal and processes it as if it had been
written to the CMDR register. This command may be a pointer to an immediate command, or it may form
a direct command as shown in Figure 23-4. A pointer to a radio operation command causes a scheduling
error. The value that would normally have been returned in CMDSTA is written to cmdstaVal. This means
that no command RF_CMD_ACK interrupt is raised. Instead, a COMMAND_DONE interrupt is raised, as
for any other radio operation command.

Depending on the result of the immediate or direct command, the status and result of the radio operation
command is as shown in Table 23-31.

CMD_SCH_IMM may run immediate commands as part of a chain of radio operation commands, or to
schedule them in the future. If an immediate or direct command received in the CMDR register is being
processed at the same time that a scheduled CMD_SCH_IMM command starts, the processing of the
scheduled command starts after the other command has finished.

RF Core HAL www.ti.com

1616 SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

Table 23-31. End Statuses for CMD_SCH_IMM

Condition Status Code Result
Immediate command ended with the result DONE DONE_OK TRUE
There was an error in the execution of the command, giving a CMDSTA result not listed in
the following table row. DONE_FAILED FALSE

There was an error in the command, giving one of the following results:
• SchedulingError
• UnknownCommand
• UnknownDirCommand
• IllegalPointer
• ParError

ERROR_PAR ABORT

23.3.3.1.13 CMD_COUNT_BRANCH: Counter Command With Branch of Command Chain
Command ID number: 0x0812
CMD_COUNT_BRANCH is a radio operation command. In addition to the parameters listed in Table 23-8,
the command structure contains the fields listed in Table 23-32.

Table 23-32. CMD_COUNT_BRANCH Command Format

Byte Index Field Name Bits Bit Field Name Type Description

14–15 counter R/W

Counter
When starting, the radio CPU decrements
the value, and the end status of the
operation differs if the result is zero.

16–19 pNextOpIfOk W Pointer to next operation if counter did not
expire

When the command starts, the radio CPU decrements the counter field by 1, unless it was already 0, and
writes the result back to this field. If the result of the decrement is 0, the operation ends with the status
DONE_COUNTDOWN and the result FALSE. Otherwise, the operation ends with the status DONE_OK
and the result TRUE. In this case, the next radio operation command to run is given by pNextOpIfOk
instead of pNextOp (see Table 23-8), which can be used in conditional execution to create a loop.

If the operation is started with the counter equal to 0, the operation ends with the status DONE_OK and
the next operation is taken from pNextOpIfOk. This operation can be used if the previous command is set
up to skip optionally, as skipping from a previous command in the chain follows pNextOp.

The operation ends by one of the causes listed in Table 23-13 or Table 23-33.

Table 23-33. Additional End Causes for CMD_COUNT_BRANCH

Condition Status Code Result
Finished operation with counter = 0 when being started DONE_OK TRUE
Finished operation with counter > 0 after decrementing DONE_OK TRUE
Finished operation with counter = 0 after decrementing DONE_COUNTDOWN FALSE

www.ti.com RF Core HAL

1617SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

23.3.3.1.14 CMD_PATTERN_CHECK: Check a Value in Memory Against a Pattern
Command ID number: 0x0813
CMD_PATTERN_CHECK is a radio operation command. In addition to the parameters listed in
Table 23-8, the command structure contains the fields listed in Table 23-34.

Table 23-34. CMD_PATTERN_CHECK Command Format

Byte
Index Field Name Bits Bit Field Name Type Description

14–15 patternOpt

0–1 operation W

Operation to perform:
0: TRUE if value == compareVal
1: TRUE if value < compareVal
2: TRUE if value > compareVal
3: Reserved

2 bByteRev W If 1, interchange the 4 bytes of the value, so that they
are read the MSB first.

3 bBitRev W If 1, perform bit reversal of the value.

4–8 signExtend W

0: Treat value and compareVal as unsigned.
1–31: Treat value and compareVal as signed, where
the value gives the number of the MSB in the signed
number.

9 bRxVal W
0: Use pValue as a pointer.
1: Use pValue as a signed offset to the start of the last
committed RX entry element.

16–19 pNextOpIfOk W Pointer to next operation if comparison result was true

20–23 pValue W Pointer from which to read, or offset from last RX entry
if patternOpt.bRxVal == 1

24–27 mask W Bit mask to apply before comparison
28–31 compareVal W Value to which to compare

When the command starts, the radio CPU reads a 4-byte value from the location pointed to by pValue if
patternOpt.bRxVal == 0. If patternOpt.bRxVal == 1, the location to read from is found by taking the pointer
to the start of the last committed RX entry element and adding the signed number found in pValue as a
byte offset. In either case, this pointer does not need to be 4-byte-aligned. If the pointer is not byte-
aligned, the value is read byte by byte.

The value is then subject to the following operations in this order:
1. If patternOpt.bByteRev == 1, interchange byte 3 with byte 0, and byte 1 with byte 2, as if the bytes had

been read MSB first.
2. If patternOpt.bBitRev == 1, reverse the bit order of the entire 32-bit word.
3. Perform a bitwise ‘AND’ operation between the value and mask.
4. If patternOpt.signExtend > 0, copy the value of bit number patternOpt.signExtend (where bit 0 is the

LSB) into all the more significant bits.
5. Perform a compare operation between the resulting value and compareVal, depending on

patternOpt.operation (see Table 23-34). The compare operation is unsigned if
patternOpt.signExtend == 0; otherwise it is signed.

If patternOpt.operation or pValue have illegal values, the operation ends with a status of ERROR_PAR.
Otherwise, the operation ends by one of the causes listed in Table 23-13 or Table 23-35, depending on
the result of the comparison in Step 5 in the previous list. If the comparison result was TRUE, the next
radio operation command to run is given by pNextOpIfOk instead of pNextOp.

Table 23-35. Additional End Causes for CMD_PATTERN_CHECK

Condition Status Code Result
Comparison result was TRUE. DONE_OK TRUE
Comparison result was FALSE. DONE_FAILED FALSE
Command run with patternOpt.bRxVal when no RX data is fully received ERROR_NO_RX ABORT

RF Core HAL www.ti.com

1618 SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

23.3.3.2 Protocol-Independent Direct and Immediate Commands
This section contains immediate commands that can be used across protocols. Commands for
manipulating data queues are described in Section 23.3.4.

23.3.3.2.1 CMD_ABORT: Abort Command
Command ID number: 0x0401
CMD_ABORT is a direct command.

On reception, the radio CPU ends ongoing radio operation commands as soon as possible. Analog
circuitry for RX and TX is safely turned off, and data structures are updated so they are not left in an
unfinished state.

If a radio operation command is running when the CMD_ABORT command is issued, the radio CPU
produces a COMMAND_DONE and LAST_COMMAND_DONE interrupt when the radio operation
command finishes. The status of the command structure of that radio operation command reflects that the
command was aborted.

If no radio operation command is running, no action is taken. The result signaled in the CMDSTA register
is DONE in all cases. If a radio operation command is running, CMDSTA may be updated before the radio
operation ends.

23.3.3.2.2 CMD_STOP: Stop Command
Command ID number: 0x0402
CMD_STOP is a direct command.

On reception, the radio CPU informs the radio operation command currently running that it has been
requested to stop. The CMD_STOP command is more graceful than the CMD_ABORT command, but
might take more time to finish. Normally, a packet being received or transmitted is handled to completion.
The exact behavior on reception of CMD_STOP is described for each radio operation command. Some
commands always end in a known time and do not respond to CMD_STOP.

If no radio operation command is running, no action is taken. The result signaled in the CMDSTA register
is DONE in all cases. If a radio operation command is running, CMDSTA may be updated before the radio
operation ends.

www.ti.com RF Core HAL

1619SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

23.3.3.2.3 CMD_GET_RSSI: Read RSSI Command
Command ID number: 0x0403
CMD_GET_RSSI is an immediate command that takes no parameters, and therefore, can be used as a
direct command.

On reception, the radio CPU reads the RSSI from an underlying receiver. The RSSI is returned in result
byte 2 (bit 23–16) of CMDSTA (see Figure 23-5). The RSSI is given on signed form in dBm. If no RSSI is
available, this is signaled with a special value of the RSSI (−128, or 0x80).

If no radio operation command is running, the radio CPU returns the result ContextError in CMDSTA.
Otherwise, the radio CPU returns a result of DONE along with the RSSI value.

23.3.3.2.4 CMD_UPDATE_RADIO_SETUP: Update Radio Settings Command
Command ID number: 0x0001
CMD_UPDATE_RADIO_SETUP is an immediate command that takes the parameters listed in
Table 23-36.

Table 23-36. CMD_UPDATE_RADIO_SETUP Command Format

Byte Index Field Name Bits Bit Field Name Type Description
0–1 commandNo W The command ID number
2–3 Reserved

4–7 pRegOverride W Pointer to a list of hardware and
configuration registers to override

On reception, the radio CPU updates the registers given in pRegOverride. This is a pointer to a structure
containing an override value for certain hardware registers, a radio configuration controlled by the radio
CPU, and protocol-related variables. The format is as for CMD_RADIO_SETUP (see Section 23.3.3.1). If
done while the radio is running, the update must primarily be done on the radio and protocol configuration,
as modifications to hardware registers may cause undesired behavior.

23.3.3.2.5 CMD_TRIGGER: Generate Command Trigger
Command ID number: 0x0404
CMD_TRIGGER is an immediate command that takes the parameters listed in Table 23-37.

Table 23-37. CMD_TRIGGER Command Format

Byte Index Field Name Bits Bit Field Name Type Description
0–1 commandNo W The command ID number
2 triggerNo W Command trigger number

On reception, the radio CPU generates the command trigger specified with triggerNo, so that running
radio operation commands respond accordingly (see Section 23.3.2.5.1).

If the trigger number is outside the valid range 0–3, the radio CPU returns the result ParError in CMDSTA.
If no radio operation command running is pending on the trigger number sent, the radio CPU returns the
result ContextError in CMDSTA. Otherwise, the radio CPU returns a result of DONE, which may be
returned before the running radio operation command responds to the trigger.

CMD_TRIGGER may be sent as a direct command. If so, the trigger number is given by the parameter in
bits 8–15 of CMDR.

RF Core HAL www.ti.com

1620 SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

23.3.3.2.6 CMD_GET_FW_INFO: Request Information on the Firmware Being Run
Command ID number: 0x0002
CMD_GET_FW_INFO is an immediate command that takes the parameters listed in Table 23-38.

Table 23-38. CMD_GET_FW_INFO Command Format

Byte Index Field Name Bits Bit Field Name Type Description
0–1 commandNo W The command ID number
2–3 versionNo R Firmware version number
4–5 startOffset R The start of free RAM
6–7 freeRamSz R The size of free RAM
8–9 availRatCh R Bitmap of available RAT channels

On reception, the radio CPU reports information on the running radio firmware. A version number is
returned in versionNo. The startOffset and freeRamSz fields contain information on the area in the radio
RAM that is not used by the radio CPU for data (including stack and heap). This area is free to use by the
system CPU for data exchange, radio CPU patching, or other purposes. The start and end address of the
free RAM is given as offset from the start of the radio RAM.

NOTE: Some of this free RAM is used for patches provided by TI.

The availRatCh field is a bitmap where bit position n indicates whether RAT channel n may be used by the
system CPU. A bit value of 1 indicates that the corresponding channel may be used by the system CPU,
while a bit value of 0 means that the channel is reserved for the radio CPU or is nonexistent.

23.3.3.2.7 CMD_START_RAT: Asynchronously Start Radio Timer Command
Command ID number: 0x0405
CMD_ START_RAT is a direct command.

On reception, the radio CPU starts the RAT if it has not already started.

If the RAT is already running, the radio CPU returns the result ContextError in CMDSTA. Otherwise, the
radio CPU returns a result of DONE.

23.3.3.2.8 CMD_PING: Respond With Interrupt
Command ID number: 0x0406
CMD_PING is a direct command.

On reception, the radio CPU returns a result of DONE in CMDSTA. This command can test the
communication between the two CPUs, or check when the radio CPU is ready after boot.

www.ti.com RF Core HAL

1621SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

23.3.3.2.9 CMD_READ_RFREG: Read RF Core Register
Command ID number: 0x0601
CMD_READ_RFREG is an immediate command that takes the parameters listed in Table 23-39.

Table 23-39. CMD_READ_RFREG Command Format

Byte Index Field Name Bits Bit Field Name Type Description
0–1 commandNo W The command ID number

2–3 address W The offset from the start of the RF core hardware
register bank (0x4004 0000)

4–7 value R Returned value of the register

On reception, the radio CPU reads the RF core register with address 0x4004 0000 + address. The result
is written to value. If the address is not divisible by 4, the radio CPU returns ParError in CMDSTA.

CMD_READ_RFREG may be sent as a direct command. If so, the address is given by bits 2–15 of
CMDR, with the 2 LSBs of the address set to 00.

When reading has been performed, the result is returned in value. The 24 LSBs of the result are returned
in CMDSTA bits 8–31. The result returned in CMDSTA is DONE.

23.3.3.2.10 CMD_SET_RAT_CMP: Set RAT Channel to Compare Mode
Command ID number: 0x000A
CMD_SET_RAT_CMP is an immediate command that takes the parameters listed in Table 23-40.

Table 23-40. CMD_SET_RAT_CMP Command Format

Byte
Index Field Name Bits Bit Field Name Type Description

0–1 commandNo W The command ID number
2 ratCh W The radio timer channel number
3 Reserved
4–7 compareTime W The time at which the compare occurs

On reception, the radio CPU sets the RAT channel given by ratCh in compare mode, and sets the channel
compare time to compareTime, which also arms the channel. A channel event occurs at the given time,
and this can be enabled as an RF hardware interrupt to the system CPU through the RFC_DBELL
module.

The channel number must indicate a channel that is not reserved for use by the radio CPU. Otherwise, the
radio CPU returns ParError in CMDSTA. If the compare time is in the past when the command is
evaluated, the radio CPU returns ContextError in CMDSTA and disables the RAT channel. If the compare
event is successfully set up, the radio CPU returns a result of DONE in CMDSTA.

RF Core HAL www.ti.com

1622 SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

23.3.3.2.11 CMD_SET_RAT_CPT: Set RAT Channel to Capture Mode
Command ID number: 0x0603
CMD_SET_RAT_CPT is an immediate command that takes the parameters listed in Table 23-41.

Table 23-41. CMD_SET_RAT_CPT Command Format

Byte Index Field Name Bits Bit Field Name Type Description
0–1 commandNo W The command ID number

2–3 config

0–2 Reserved

3–7 inputSrc W

Input source indicator:
22: RFC_GPI0
23: RFC_GPI1
Others: Reserved

8–11 ratCh W The radio timer channel number

12 bRepeated W 0: Single capture mode
1: Repeated capture mode

13–14 inputMode W

Input mode:
00: Rising edge
01: Falling edge
10: Both edges
11: Reserved

On reception, the radio CPU sets the RAT channel given by config.ratCh in capture mode. If
config.bRepeated is 0, the channel is set to single capture mode; otherwise, the channel is set to repeated
capture mode. The radio CPU sets the input source to config.inputSrc and the input mode to
config.inputMode. If the channel is set in single capture mode, it is also armed. This causes a channel
event to occur when capture occurs, and can be enabled as an RF hardware interrupt to the system CPU
through the RFC_DBELL module.

CMD_SET_RAT_CMP may be sent as a direct command. If so, bits 2–15 of the config word are given by
bits 2–15 of CMDR (bits 0–1 of config are not used).

The channel number must indicate a channel that is not reserved for use by the radio CPU. Otherwise, the
radio CPU returns ParError in CMDSTA. If the channel is successfully set up, the radio CPU returns a
result of DONE in CMDSTA.

23.3.3.2.12 CMD_DISABLE_RAT_CH: Disable RAT Channel
Command ID number: 0x0408
CMD_DISABLE_RAT_CH is an immediate command that takes the parameters listed in Table 23-42.

Table 23-42. CMD_DISABLE_RAT_CH Command Format

Byte Index Field Name Bits Bit Field Name Type Description
0–1 commandNo W The command ID number
2 ratCh W The RAT channel number

On reception, the radio CPU disables the RAT channel given by ratCh. This disables previous
configurations of that channel done by the CMD_SET_RAT_CMP or CMD_SET_RAT_CPT command.

CMD_DISABLE_RAT_CH may be sent as a direct command. If so, ratCh is given by the parameter in bits
8–15 of CMDR.

The channel number must indicate a channel that is not reserved for use by the radio CPU. Otherwise, the
radio CPU returns ParError in CMDSTA. If the channel number is valid, the CPU returns a result of DONE
in CMDSTA after the channel has been disabled.

www.ti.com RF Core HAL

1623SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

23.3.3.2.13 CMD_SET_RAT_OUTPUT: Set RAT Output to a Specified Mode
Command ID number: 0x0604
CMD_SET_RAT_OUTPUT is an immediate command that takes the parameters listed in Table 23-43.

Table 23-43. CMD_SET_RAT_OUTPUT Command Format

Byte Index Field Name Bits Bit Field Name Type Description
0–1 commandNo W The command ID number

2–3 config

0–1 Reserved

2–4 outputSel W

Output event indicator:
1: RAT_GPO1
2: RAT_GPO2
3: RAT_GPO3
Others: Reserved

5–7 outputMode W

Output mode:
000: Pulse
001: Set
010: Clear
011: Toggle
100: Always 0
101: Always 1
Others: Reserved

8–11 ratCh W The RAT channel number

On reception, the radio CPU sets the RAT output event given by config.outputSel in the mode given by
config.outputMode, and to be controlled by the RAT channel given by config.ratCh. This command must
be combined with setting this channel in compare mode, using the CMD_SET_RAT_CMP command.

CMD_SET_RAT_OUTPUT may be sent as a direct command. If so, bits 2–15 of the config word are given
by bits 2–15 of CMDR (bits 0–1 of config are not used).

The channel number, config.ratCh, must indicate a channel that is not reserved for use by the radio CPU,
and the output number, config.outputSel, must not be an output used by the radio CPU. Otherwise, the
radio CPU returns ParError in CMDSTA. If the output event is successfully set up, the radio CPU returns a
result of DONE in CMDSTA.

23.3.3.2.14 CMD_ARM_RAT_CH: Arm RAT Channel
Command ID number: 0x0409
CMD_ARM_RAT_CH is an immediate command that takes the parameters listed in Table 23-44.

Table 23-44. CMD_ARM_RAT_CH Command Format

Byte Index Field Name Bits Bit Field Name Type Description
0–1 commandNo W The command ID number
2 ratCh W The RAT channel number

On reception, the radio CPU arms the RAT channel given by ratCh.

The CMD_DISABLE_RAT_CH command may be sent as a direct command. If so, ratCh is given by the
parameter in bits 8–15 of CMDR.

The channel number must indicate a channel not reserved for use by the radio CPU. Otherwise, the radio
CPU returns ParError in CMDSTA. If the channel number is valid, the CPU returns a result of DONE in
CMDSTA after the channel is armed.

25 C

(Temperature[C] 25) tempCoeff
IB IB

512q

q � u
 �

RF Core HAL www.ti.com

1624 SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

23.3.3.2.15 CMD_DISARM_RAT_CH: Disarm RAT Channel
Command ID number: 0x040A
CMD_DISARM_RAT_CH is an immediate command that takes the parameters listed in Table 23-45.

Table 23-45. CMD_DISARM_RAT_CH Command Format

Byte Index Field Name Bits Bit Field Name Type Description
0–1 commandNo W The command ID number
2 ratCh W The RAT channel number

On reception, the radio CPU disarms the RAT channel given by ratCh.

CMD_DISABLE_RAT_CH may be sent as a direct command. If so, ratCh is given by the parameter in bits
8–15 of CMDR.

The channel number must indicate a channel not reserved for use by the radio CPU. Otherwise, the radio
CPU returns ParError in CMDSTA. If the channel number is valid, the CPU returns a result of DONE in
CMDSTA after the channel is armed.

23.3.3.2.16 CMD_SET_TX_POWER: Set Transmit Power
Command ID number: 0x0010
CMD_SET_TX_POWER is an immediate command that takes the parameters listed in Table 23-46
(CC26x0) and Table 23-47 (CC13x0).

Table 23-46. CMD_SET_TX_POWER Command Format (CC26x0)

Byte Index Field Name Bits Bit Field Name Type Description
0–1 commandNo W The command ID number

2–3 txPower W

New TX power setting. It is
recommended to use values from
SmartRF Studio.
Bits 0-5: IB
Value to write to the PA power
control field at 25°C.
See Equation 14 for details.
Bits 6-7: GC
Value to write to the gain control of
the first stage of the PA.
Bits 8-15: tempCoeff
Temperature coefficient for IB.
0: No temperature compensation.

(14)

25 C

(Temperature[C] 25) tempCoeff
IB IB

256q

q � u
 �

www.ti.com RF Core HAL

1625SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

Table 23-47. CMD_SET_TX_POWER Command Format (CC13x0)

Byte Index Field Name Bits Bit Field Name Type Description
0–1 commandNo W The command ID number

2–3 txPower W

New TX power setting. It is
recommended to use values from
SmartRF Studio.
Bits 0-5: IB
Value to write to the PA power
control field at 25°C.
See Equation 15 for details.
Bits 6-7: GC
Value to write to the gain control of
the first stage of the PA.
Bit 8: boost
Driver strength into the PA.
0: Low driver strength
1: High driver strength
Bits 9-15: tempCoeff
Temperature coefficient for IB.
0: No temperature compensation.

(15)

On reception, the radio CPU sets the transmit power for use the next time transmission begins. If a packet
is being transmitted, the transmit power is not updated until transmission begins for the next packet.

Each time transmission of a packet begins, temperature compensation of the transmit power is done.

On completion, the radio CPU returns a result of DONE in CMDSTA.

23.3.3.2.17 CMD_UPDATE_FS: Set New Synthesizer Frequency Without Recalibration
Command ID number: 0x0011
CMD_UPDATE_FS is an immediate command that takes the parameters listed in Table 23-48.

Table 23-48. CMD_UPDATE_FS Command Format

Byte Index Field Name Bits Bit Field Name Type Description
0–1 commandNo W The command ID number
2–13 Reserved
14–15 frequency W The frequency in MHz to tune to

16–17 fractFreq W Fractional part of the frequency to
tune to

On reception, the radio CPU programs a new frequency in the synthesizer without restarting calibration.
This must be a small change compared to the frequency used under calibration, otherwise the synthesizer
is most likely unable to relock. Extra distortion may occur if the command is done during RX or TX.

This command is supported only in the 2.4-GHz frequency band.

NOTE: This command is not characterized. Limits for frequency changes are unknown.

The frequency to use is given by frequency and fractFreq, and the frequency must be as close as possible
to (frequency + fractFreq / 65536) MHz.

If the synthesizer is not running and the calibration is done, the radio CPU returns ContextError in
CMDSTA. If frequency is invalid, the radio CPU returns ParError in CMDSTA. Otherwise, the radio CPU
returns a result of DONE in CMDSTA when the update is finished.

RF Core HAL www.ti.com

1626 SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

23.3.3.2.18 CMD_MODIFY_FS: Set New Synth Frequency Without Recalibration
Command ID number: 0x0013
CMD_MODIFY_FS is an immediate command that takes the parameters listed in Table 23-49.

Table 23-49. CMD_MODIFY_FS Command Format

Byte Index Field Name Bits Bit Field Name Type Description
0–1 commandNo W The command ID number
2–3 frequency W The frequency in MHz to which to tune

4–5 fractFreq W Fractional part of the frequency to which
to tune

On reception, the radio CPU will program a new frequency in the synthesizer without restarting calibration.
This has to be a small change compared to the frequency used under calibration, otherwise the
synthesizer will most likely be unable to relock. Extra distortion may occur if the command is done during
RX or TX.

The frequency to use is given by frequency and fractFreq, and the frequency will be as close as possible
to (frequency + fractFreq / 65536) MHz.

If the synthesizer is not running and the calibration done, the radio CPU will return ContextError in
CMDSTA. If frequency is invalid, the radio CPU will return ParError in CMDSTA. Otherwise, the radio CPU
will return DONE in CMDSTA when the update is complete.

www.ti.com RF Core HAL

1627SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

23.3.3.2.19 CMD_BUS_REQUEST: Request System BUS Available for RF Core
Command ID number: 0x040E
CMD_BUS_REQUEST is an immediate command that takes the parameters listed in Table 23-50.

Table 23-50. CMD_BUS_REQUEST Command Format

Byte Index Field Name Bits Bit Field Name Type Description
0–1 commandNo W The command ID number

2 bSysBusNeeded W 0: System bus may sleep
1: System bus access needed

On reception, the radio CPU sets the bus request bit toward the PRCM to 1 if bSysBusNeeded is nonzero,
or to 0 if bSysBusNeeded is zero. If bSysBusNeeded is nonzero, this indicates that the system bus stays
awake even if the system goes to deep sleep, which must be done for the RF core to run and access the
system side for one of the following reasons:
• Any command structure, data structure, and so on, pointed to by a pointer sent to the RF core is

placed in system RAM or flash.
• The RF core must read the temperature because the TX power has a nonzero temperature coefficient.
• The RF core must read the RTC to synchronize with the RAT during CMD_SYNC_STOP_RAT or

CMD_SYNC_START_RAT.

CMD_BUS_REQUEST may be sent as a direct command. If so, bSysBusNeeded is given by the
parameter in bits 8–15 of CMDR.

The radio CPU returns a result of DONE in CMDSTA when the update finishes.

23.3.4 Immediate Commands for Data Queue Manipulation
The following commands are immediate commands used for data queue manipulation for all radio
operations that use data queues.

23.3.4.1 CMD_ADD_DATA_ENTRY: Add Data Entry to Queue
Command ID number: 0x0005
CMD_ADD_DATA_ENTRY is an immediate command that takes the parameters listed in Table 23-51.

Table 23-51. CMD_ADD_DATA_ENTRY Command Format

Byte Index Field Name Bits Bit Field Name Type Description
0–1 commandNo W The command ID number
2–3 Reserved

4–7 pQueue W Pointer to the queue structure to which the
entry is added

8–11 pEntry W Pointer to the entry

On reception, the radio CPU appends the provided data entry to the queue indicated. The radio CPU
performs the following operations:
Set pQueue-> pLastEntry-> pNextEntry = pEntry
Set pQueue-> pLastEntry = pEntry

If either of the pointers pQueue or pEntry are invalid (that is, in an address range that is not memory or
without 32-bit word alignment), the command fails, and the radio CPU sets the result byte of CMDSTA to
ParError. If the queue specified in pQueue is set up not to allow entries to be appended (see
Section 23.3.2.7.1), the command fails, and the radio CPU sets the result byte of CMDSTA to QueueError.

RF Core HAL www.ti.com

1628 SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

23.3.4.2 CMD_REMOVE_DATA_ENTRY: Remove First Data Entry From Queue
Command ID number: 0x0006
CMD_REMOVE_DATA_ENTRY is an immediate command that takes the parameters listed in
Table 23-52.

Table 23-52. CMD_REMOVE_DATA_ENTRY Command Format

Byte Index Field Name Bits Bit Field Name Type Description
0–1 commandNo W The command ID number
2–3 Reserved

4–7 pQueue W Pointer to the queue structure from which the
entry is removed

8–11 pEntry R Pointer to the entry that was removed

On reception, the radio CPU removes the first data entry from the queue indicated. The command returns
a pointer to the entry that was removed. The radio CPU performs the following operations:
Set pEntry = pQueue->pCurrEntry
Set pQueue->pCurrEntry = pEntry->pNextEntry
Set pEntry->status = Finished

If the pointer pQueue is invalid, the command fails, and the radio CPU sets the result byte of CMDSTA to
ParError. If the queue specified in pQueue is empty, the command fails, and the radio CPU sets the result
byte of CMDSTA to QueueError. If the entry to be removed is in the BUSY state, the command fails, and
the radio CPU sets the result byte of CMDSTA to QueueBusy.

23.3.4.3 CMD_FLUSH_QUEUE: Flush Queue
Command ID number: 0x0007
CMD_FLUSH_QUEUE is an immediate command that takes the parameters listed in Table 23-53.

Table 23-53. CMD_FLUSH_QUEUE Command Format

Byte Index Field Name Bits Bit Field Name Type Description
0–1 commandNo W The command ID number
2–3 Reserved
4–7 pQueue W Pointer to the queue structure to be flushed
8–11 pFirstEntry R Pointer to the first entry that was removed

On reception, the radio CPU flushes the queue indicated, and returns a pointer to the first entry that was
removed. The radio CPU performs the following operations:
Set pFirstEntry = pQueue->pCurrEntry
Set pQueue->pCurrEntry = NULL
Set pQueue->pLastEntry = NULL

If the pointer pQueue is invalid, the command fails, and the radio CPU sets the result byte of CMDSTA to
ParError. If the first entry to be removed is in the BUSY state, the command fails, and the radio CPU sets
the result byte of CMDSTA to QueueBusy. If the queue specified in pQueue is empty, the radio CPU does
not need to do any operation, but this is still viewed as a success. The returned pFirstEntry is NULL in this
case.

www.ti.com RF Core HAL

1629SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

23.3.4.4 CMD_CLEAR_RX: Clear All RX Queue Entries
Command ID number: 0x0008
CMD_CLEAR_RX is an immediate command that takes the parameters listed in Table 23-54.

Table 23-54. CMD_CLEAR_RX Command Format

Byte Index Field Name Bits Bit Field Name Type Description
0–1 commandNo W The command ID number
2–:3 Reserved
4–7 pQueue W Pointer to the queue structure to be cleared

On reception, the radio CPU makes all RX entries indicate that they are empty. The radio CPU performs
the following operations:
Set pTemp = pQueue->pCurrEntry
Loop: Set pTemp->status = Pending
If pTemp->type == 1 then:

Set pTemp->nextIndex = 0
Set pTemp->numElements = 0

Set pTemp = pTemp->nextIndex
If pTemp != NULL and pTemp != pQueue->pCurrEntry, repeat from Loop

If the pointer pQueue is invalid, the command fails, and the radio CPU sets the result byte of CMDSTA to
ParError. If the queue specified in pQueue is empty, the command fails, and the radio CPU sets the result
byte of CMDSTA to QueueError. If the first entry to be removed is in the BUSY state, the command fails,
and the radio CPU sets the result byte of CMDSTA to QueueBusy.

23.3.4.5 CMD_REMOVE_PENDING_ENTRIES: Remove Pending Entries From Queue
Command ID number: 0x0009
CMD_REMOVE_PENDING_ENTRIES is an immediate command that takes the parameters listed in
Table 23-55.

Table 23-55. CMD_REMOVE_PENDING_ENTRIES Command Format

Byte Index Field Name Bits Bit Field Name Type Description
0–1 commandNo W The command ID number
2–3 Reserved
4–7 pQueue W Pointer to the queue structure to be flushed
8–11 pFirstEntry R Pointer to the first entry that was removed

On reception, the radio CPU removes all entries that are in the Pending state from the queue indicated,
and returns a pointer to the first entry that was removed. The radio CPU performs the following operations:
If pQueue->pCurrEntry->status = Pending, then

Set pFirstEntry = pQueue->pCurrEntry
Set pQueue->pCurrEntry = NULL
Set pQueue->pLastEntry = NULL

else
Set pFirstEntry = pQueue->pCurrEntry->pNextEntry
Set pQueue->pCurrEntry->pNextEntry = NULL
Set pQueue->pLastEntry = pQueue->pCurrEntry

If the pointer pQueue is invalid, the command fails, and the radio CPU sets the result byte of CMDSTA to
ParError. If the queue specified in pQueue is empty, the radio CPU does not need to do any operation, but
this is still viewed as a success. The returned pFirstEntry is NULL in this case.

Data Queue Usage www.ti.com

1630 SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

23.4 Data Queue Usage
This section describes how the radio CPU uses data queues.

23.4.1 Operations on Data Queues Available Only for Internal Radio CPU Operations
Section 23.3.4 lists commands used for data queue manipulation. For internal radio CPU operations
described, additional operations are available. These operations are described in the following sections.

23.4.1.1 PROC_ALLOCATE_TX: Allocate TX Entry for Reading
The procedure takes the following input parameters:
• Pointer to queue, pQueue

The procedure returns the following:
• Pointer to allocated data entry, pEntry

The procedure returns with error if the specified queue is empty, or if the first entry of the queue is already
busy. Otherwise, the following is done:
Set pQueue->pCurrEntry->status = Busy
Set pEntry = pQueue->pCurrEntry

23.4.1.2 PROC_FREE_DATA_ENTRY: Free Allocated Data Entry
The procedure takes the following input parameters:
• Pointer to queue, pQueue

The procedure returns the following:
• Pointer to allocated data entry, pEntry

The procedure returns with error if the specified queue is empty. Otherwise, the following is done:
Set pQueue->pCurrEntry->status = Active

23.4.1.3 PROC_FINISH_DATA_ENTRY: Finish Use of First Data Entry From Queue
The procedure takes the following input parameters:
• Pointer to queue, pQueue

The procedure returns the following:
• Pointer to new entry, pEntry

The procedure returns with error if the specified queue is empty. Otherwise, the following is done:
Set pTemp = pQueue->pCurrEntry
Set pQueue->pCurrEntry = pTemp->pNextEntry
Set pTemp->status = Finished
Set pEntry = pQueue->pCurrEntry

www.ti.com Data Queue Usage

1631SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

23.4.1.4 PROC_ALLOCATE_RX: Allocate RX Buffer for Storing Data
The procedure takes the following input parameters:
• Pointer to queue, pQueue
• Size of entry element to store, size

The procedure returns the following:
• Pointer to data entry where data is stored, pEntry
• Pointer to a finished data entry, or NULL if not finished, pFinishedEntry

The procedure returns with error if the first entry of the queue is already busy. If there is not room for an
entry element of the specified size, including if the queue is empty, a “no space” error is returned. The
following procedure describes the operations:
Set pFinishedEntry == NULL
If pQueue->pCurrEntry == NULL then

Return with no space error
end if
If pQueue->pCurrEntry->type != 1 then

if pQueue->pCurrEntry->length < size then
Return with no space error

else
Set pQueue->pCurrEntry->status = Busy
Set pEntry = pQueue->pCurrEntry

end if
else

Set pTemp = pQueue->pCurrEntry
If pTemp->nextIndex + 2 + size > pTemp->length then

Set pQueue->pCurrEntry = pTemp->pNextEntry
Set pTemp->status = Finished
Set pFinishedEntry = pTemp
Set pTemp = pTemp->pNextEntry
If pTemp == NULL or pTemp->length < size + 2 then

Return with no space error
end if

end if
Set pTemp->status = Busy
Set pEntry = pTemp

end if

Data Queue Usage www.ti.com

1632 SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

23.4.1.5 PROC_FINISH_RX: Commit Received Data to RX Data Entry
The procedure takes the following input parameters:
• Pointer to queue, pQueue
• Size of entry element that has been stored, size

The procedure returns the following:
• Pointer to data entry where data is stored, pEntry
• Pointer to a finished data entry, or NULL if not finished, pFinishedEntry

The procedure returns with error if the queue is empty or if there is not room for an entry element of the
specified size. Otherwise, the following is done:
If pQueue->pCurrEntry->type != 1 then

Set pTemp = pQueue->pCurrEntry
Set pQueue->pCurrEntry = pTemp->pNextEntry
Set pTemp->status = Finished

else
Increase pQueue->pCurrEntry->nextIndex by size
Increment pQueue->pCurrEntry->numElements by 1
If pQueue->pCurrEntry->nextIndex + 2 == pQueue->pCurrEntry-

>length then
Set pTemp = pQueue->pCurrEntry
Set pQueue->pCurrEntry = pTemp->pNextEntry
Set pTemp->status = Finished
Set pFinishedEntry == pTemp

else
Set pQueue->pCurrEntry->status = Active
Set pFinishedEntry == NULL

end if
end if

This operation is done after doing PROC_ALLOCATE_RX and writing to the correct locations in the buffer;
the size must be the same as with PROC_ALLOCATE_RX.

www.ti.com Data Queue Usage

1633SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

23.4.2 Radio CPU Usage Model

23.4.2.1 Receive Queues
When the radio CPU receives a packet, it prepares a buffer for reading by calling PROC_ALLOCATE_RX.
If this is successful, the allocated buffer is used to store the incoming packet as defined for each protocol.
If a no space error occurs, the received data cannot be stored, and the handling is defined for each
protocol.

After a packet has been received, it may be kept or discarded depending on rules defined for each
protocol. To keep the packet, the radio CPU calls PROC_FINISH_RX. This makes the received data
available for the system CPU. To discard the packet, the radio CPU calls PROC_FREE_DATA_ENTRY,
meaning that the next packet may overwrite the data received in the last packet.

23.4.2.2 Transmit Queues
When the radio CPU is about to transmit a packet from a TX queue, it calls PROC_ALLOCATE_TX to get
a pointer to the data to transmit. When the packet transmits, the radio CPU calls
PROC_FINISH_DATA_ENTRY or PROC_FREE_DATA_ENTRY. If PROC_FINISH_DATA_ENTRY is
called, the system CPU is informed that the entry is finished and may be reused. This calling process
must be used if retransmission of the packet is not an option. If PROC_FREE_DATA_ENTRY is called,
the transmitted entry remains first in the queue so that it may be transmitted, which is used when an
acknowledgment is expected.

If an acknowledgment is received on a packet that was transmitted, followed by the radio CPU calling
PROC_FREE_DATA_ENTRY, the radio CPU calls PROC_ALLOCATE_TX followed by
PROC_FINISH_DATA_ENTRY (this is equivalent to CMD_REMOVE_DATA_ENTRY, see
Section 23.3.3.2). This calling process causes the next entry in the queue to be transmitted. If an
acknowledgment is not received, the last transmitted packet is retransmitted.

IEEE 802.15.4 www.ti.com

1634 SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

23.5 IEEE 802.15.4
This section describes IEEE 802.15.4-specific command structure, interrupts, data handling, radio
operation commands, and immediate commands.

23.5.1 IEEE 802.15.4 Commands
Table 23-56 and Table 23-57 define the IEEE 802.15.4-specific radio operation commands.

Table 23-56. IEEE 802.15.4 Radio Operation Commands on Background Level

ID Command Name Description
0x2801 CMD_IEEE_RX Run receiver
0x2802 CMD_IEEE_ED_SCAN Run energy detect scan

Table 23-57. IEEE 802.15.4 Radio Operation Commands on Foreground Level

ID Command Name Description
0x2C01 CMD_IEEE_TX Transmit packet
0x2C02 CMD_IEEE_CSMA Perform CSMA-CA
0x2C03 CMD_IEEE_RX_ACK Receive acknowledgment
0x2C04 CMD_IEEE_ABORT_BG ABORT background level operation

In addition, Table 23-58 defines immediate commands.

Table 23-58. IEEE 802.15.4 Immediate Commands

ID Command Name Description

0x2001 CMD_IEEE_MOD_CCA Modify CCA parameters for running
receiver

0x2002 CMD_IEEE_MOD_FILT Modify frame filtering parameters for
running receiver

0x2003 CMD_IEEE_MOD_SRC_MATCH Modify source matching parameters for
running receiver

0x2401 CMD_IEEE_ABORT_FG ABORT foreground level operation
0x2402 CMD_IEEE_STOP_FG Stop foreground level operation
0x2403 CMD_IEEE_CCA_REQ Request CCA and RSSI information

www.ti.com IEEE 802.15.4

1635SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

23.5.1.1 IEEE 802.15.4 Radio Operation Command Structures
Table 23-8 defines the first 14 bytes for all radio operation commands. The CMD_IEEE_ABORT_BG
command does not have any additional fields to those 14 bytes. Table 23-59 lists the IEEE 802.15.4 RX
command structure for bytes 14–59.

Table 23-59. IEEE 802.15.4 RX Command Structure

Byte Index Field Name Type Description

14 channel W

Channel to tune to in the start of the operation:
0: Use existing channel
11–26: Use as IEEE 802.15.4 channel; that is, frequency is
[2405 + 5 × (channel − 11)] MHz
60–207: Frequency is (2300 + channel) MHz
Others: reserved

15 rxConfig W Configuration bits for the receive queue entries (see Table 23-69 for details)
16–19 pRxQ W Receive queue

20–23 pOutput W Pointer to result structure (see Table 23-68)
(NULL: Do not store results)

24–25 frameFiltOpt R/W Frame filtering options (see Table 23-71 for details)
26 frameTypes R/W Frame types to receive in frame filtering (see Table 23-72 for details)
27 ccaOpt R/W CCA options (see Table 23-70 for details)
28 ccaRssiThr R/W RSSI threshold for CCA
29 Reserved
30 numExtEntries W Number of extended address entries
31 numShortEntries W Number of short address entries
32–35 pExtEntryList W Pointer to list of extended address entries
36–39 pShortEntryList W Pointer to list of short address entries
40–47 localExtAddr W The extended address of the local device
48–49 localShortAddr W The short address of the local device
50–51 localPanID W The PAN ID of the local device
52–54 Reserved
55 endTrigger W Trigger that causes the device to end the RX operation
56–59 endTime W Time parameter for endTrigger

Table 23-60 lists the IEEE 802.15.4 energy detect scan command structure.

Table 23-60. IEEE 802.15.4 Energy Detect Scan Command Structure

Byte Index Field Name Type Description

14 channel W

Channel to tune to at the start of the operation:
0: Use existing channel
11–26: Use as IEEE 802.15.4 channel; that is,
frequency is [2405 + 5 × (channel – 11)] MHz
60–207: Frequency is (2300 + channel) MHz
Others: reserved

15 ccaOpt R/W CCA options (see Table 23-70 for details)
16 ccaRssiThr R/W RSSI threshold for CCA
17 Reserved
18 maxRssi R The maximum RSSI recorded during the ED scan

19 endTrigger W Trigger that causes the device to end the RX
operation

20–23 endTime W Time parameter for endTrigger

Table 23-61 lists the IEEE 802.15.4 CSMA-CA command structure.

IEEE 802.15.4 www.ti.com

1636 SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

Table 23-61. IEEE 802.15.4 CSMA-CA Command Structure

Byte Index Field Name Bits Bit Field Name Type Description
14–15 randomState R/W The state of the pseudo-random generator
16 macMaxBE W The IEEE 802.15.4 MAC parameter macMaxBE

17 macMaxCSMABackoffs W The IEEE 802.15.4 MAC parameter
macMaxCSMABackoffs

18 csmaConfig

0–4 initCW W The initialization value for the CW parameter
5 bSlotted W 0 for nonslotted CSMA, 1 for slotted CSMA

6–7 rxOffMode W

0: RX stays on during CSMA backoffs.
1: The CSMA-CA algorithm suspends the
receiver if no frame is being received.
2: The CSMA-CA algorithm suspends the
receiver if no frame is being received, or after
finishing it (including auto ACK) otherwise.
3: The CSMA-CA algorithm suspends the
receiver immediately during backoffs.

19 NB R/W The NB parameter from the IEEE 802.15.4
CSMA-CA algorithm

20 BE R/W The BE parameter from the IEEE 802.15.4
CSMA-CA algorithm

21 remainingPeriods R/W The number of remaining periods from a
paused backoff countdown

22 lastRssi R RSSI measured at the last CCA operation

23 endTrigger W Trigger that causes the device to end the
CSMA-CA operation

24–27 lastTimeStamp R Time of the last CCA operation
28–31 endTime W Time parameter for endTrigger

Table 23-62 lists the IEEE 802.15.4 TX command structure.

Table 23-62. IEEE 802.15.4 TX Command Structure

Byte Index Field Name Bits Bit Field Name Type Description

14 txOpt

0 bIncludePhyHdr W 0: Find PHY header automatically.
1: Insert PHY header from the buffer.

1 bIncludeCrc W 0: Append automatically calculated CRC.
1: Insert FCS (CRC) from the buffer.

2 Reserved

3–7 payloadLenMsb W
Most significant bits of payload length. Must only be
nonzero to create long nonstandard packets for test
purposes.

15 payloadLen W Number of bytes in the payload
16–19 pPayload W Pointer to payload buffer of size payloadLen
20–23 timeStamp R Timestamp of transmitted frame

www.ti.com IEEE 802.15.4

1637SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

Table 23-63 lists the IEEE 802.15.4 Receive ACK command structure.

Table 23-63. IEEE 802.15.4 Receive ACK Command Structure

Byte Index Field Name Type Description
14 seqNo W Sequence number to expect

15 endTrigger W Trigger that causes the device to give up
acknowledgment reception

16–19 endTime W Time parameter for endTrigger

23.5.1.2 IEEE 802.15.4 Immediate Command Structures
Table 23-64 lists the IEEE 802.15.4 Modify CCA immediate command structure.

Table 23-64. IEEE 802.15.4 Modify CCA Immediate Command Structure

Byte Index Field Name Type Description
0–1 commandNo W The command number

2 newCcaOpt W New value of ccaOpt for the running background
level operation (see Table 23-70 for details)

3 newCcaRssiThr W New value of ccaRssiThr for the running
background level operation

Table 23-65 lists the IEEE 802.15.4 modify frame filtering immediate command structure.

Table 23-65. IEEE 802.15.4 Modify Frame Filtering Immediate Command Structure

Byte Index Field Name Type Description
0–1 commandNo W The command number

2–3 newFrameFiltOpt W New value of frameFiltOpt for the running
background level operation

4 newFrameTypes W New value of frameTypes for the running
background level operation

Table 23-66 lists the IEEE 802.15.4 enable or disable source matching entry immediate command
structure.

Table 23-66. IEEE 802.15.4 Enable or Disable Source Matching Entry
Immediate Command Structure

Byte Index Field Name Bits Bit Field Name Type Description
0–1 commandNo W The command number

2 options

0 bEnable W 0: Disable entry
1: Enable entry

1 srcPend W New value of the pending bit for
the entry

2 entryType W 0: Extended address
1: Short address

3–7 Reserved

3 entryNo W Index of entry to enable or
disable

IEEE 802.15.4 www.ti.com

1638 SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

Table 23-67 lists the IEEE 802.15.4 Request CCA state immediate command structure.

Table 23-67. IEEE 802.15.4 Request CCA State Immediate Command Structure

Byte Index Field Name Bits Bit Field Name Type Description
0–1 commandNo W The command number

2 currentRssi R The RSSI currently observed on
the channel

3 maxRssi R
The maximum RSSI observed
on the channel because RX was
started

4 ccaInfo

0–1 ccaState R

Value of the current CCA state:
00: Idle
01: Busy
10: Invalid

2–3 ccaEnergy R

Value of the current energy
detect CCA :state.
00: Idle
01: Busy
10: Invalid

4–5 ccaCorr R

Value of the current correlator
based carrier sense CCA state:
00: Idle
01: Busy
10: Invalid

6 ccaSync R

Value of the current sync found
based carrier sense CCA state:
0: Idle
1: Busy

7 Reserved

23.5.1.3 Output Structures
Table 23-68 lists the RX commands.

Table 23-68. RX Command

Byte Index Field Name Type Description
0 nTxAck R/W Number of transmitted ACK frames
1 nRxBeacon R/W Number of received beacon frames
2 nRxData R/W Number of received data frames
3 nRxAck R/W Number of received acknowledgment frames
4 nRxMacCmd R/W Number of received MAC command frames
5 nRxReserved R/W Number of received frames with reserved frame type
6 nRxOk R/W Number of received frames with CRC error
7 nRxIgnored R/W Number of frames received that are to be ignored
8 nRxBufFull R/W Number of received frames discarded because the RX buffer was full
9 lastRssi R RSSI of last received frame
10 maxRssi R Highest RSSI observed in the operation
11 Reserved
12–15 beaconTimeStamp R Timestamp of last received beacon frame

www.ti.com IEEE 802.15.4

1639SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

23.5.1.4 Other Structures and Bit Fields
Table 23-69 lists the receive queue entry configuration bit fields.

Table 23-69. Receive Queue Entry Configuration Bit Field

Bits Bit Field Name Description
0 bAutoFlushCrc If 1, automatically remove packets with CRC error from RX queue.

1 bAutoFlushIgn If 1, automatically remove packets that can be ignored according to
frame filtering from RX queue.

2 bIncludePhyHdr If 1, include the received PHY header field in the stored packet;
otherwise discard it.

3 bIncludeCrc If 1, include the received CRC field in the stored packet; otherwise
discard it. This requires pktConf.bUseCrc to be 1.

4 bAppendRssi If 1, append an RSSI byte to the packet in the RX queue.

5 bAppendCorrCrc If 1, append a correlation value and CRC result byte to the packet in
the RX queue.

6 bAppendSrcInd If 1, append an index from the source matching algorithm.
7 bAppendTimestamp If 1, append a timestamp to the packet in the RX queue.

Table 23-70 lists the CCA configuration bit fields.

Table 23-70. CCA Configuration Bit Field

Bits Bit Field Name Description
0 ccaEnEnergy Enable energy scan as CCA source.
1 ccaEnCorr Enable correlator-based carrier sense as CCA source.
2 ccaEnSync Enable sync found-based carrier sense as CCA source.

3 ccaCorrOp
Operator to use between energy-based and correlator-based CCA:
0: Report busy channel if either ccaEnergy or ccaCorr are busy.
1: Report busy channel if both ccaEnergy and ccaCorr are busy.

4 ccaSyncOp
Operator to use between sync found based CCA and the others:
0: Always report busy channel if ccaSync is busy.
1: Always report idle channel if ccaSync is idle.

5–6 ccaCorrThr Threshold for number of correlation peaks in correlator-based carrier
sense.

7 Reserved

IEEE 802.15.4 www.ti.com

1640 SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

Table 23-71 lists the frame filtering configuration bit fields

Table 23-71. Frame Filtering Configuration Bit Field

Bits Bit Field Name Description

0 frameFiltEn 0: Disable frame filtering
1: Enable frame filtering

1 frameFiltStop
0: Receive all packets to the end
1: Stop receiving frame once frame filtering has caused the frame to be
rejected

2 autoAckEn 0: Disable auto ACK
1: Enable auto ACK

3 slottedAckEn 0: Nonslotted ACK
1: Slotted ACK

4 autoPendEn 0: Auto-pend disabled
1: Auto-pend enabled

5 defaultPend The value of the pending data bit in auto ACK packets that are not
subject to auto-pend.

6 bPendDataReqOnly 0: Use auto-pend for any packet
1: Use auto-pend for data request packets only

7 bPanCoord 0: Device is not PAN coordinator
1: Device is PAN coordinator

8–9 maxFrameVersion Reject frames where the frame version field in the FCF is greater than
this value.

10–12 fcfReservedMask Value to be ANDed with the reserved part of the FCF; frame rejected if
result is nonzero.

13–14 modifyFtFilter

Treatment of MSB of frame type field before frame-type filtering:
0: No modification
1: Invert MSB
2: Set MSB to 0
3: Set MSB to 1

15 bStrictLenFilter 0: Accept acknowledgment frames of any length ≥ 5
1: Accept only acknowledgment frames of length 5

www.ti.com IEEE 802.15.4

1641SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

Table 23-72 lists the frame type filtering bit fields.

Table 23-72. Frame Type Filtering Bit Field

Bits Bit Field Name Description

0 bAcceptFt0Beacon
Treatment of frames with frame type 000 (beacon):
0: Reject
1: Accept

1 bAcceptFt1Data
Treatment of frames with frame type 001 (data):
0: Reject
1: Accept

2 bAcceptFt2Ack
Treatment of frames with frame type 010 (ACK):
0: Reject, unless running ACK receive command
1: Always accept

3 bAcceptFt3MacCmd
Treatment of frames with frame type 011 (MAC command):
0: Reject
1: Accept

4 bAcceptFt4Reserved
Treatment of frames with frame type 100 (reserved):
0: Reject
1: Accept

5 bAcceptFt5Reserved
Treatment of frames with frame type 101 (reserved):
0: Reject
1: Accept

6 bAcceptFt6Reserved
Treatment of frames with frame type 110 (reserved):
0: Reject
1: Accept

7 bAcceptFt7Reserved
Treatment of frames with frame type 111 (reserved):
0: Reject
1: Accept

Table 23-73 lists the short address entry structures.

Table 23-73. Short Address Entry Structure

Byte Index Field Name Description
0–1 shortAddr Short address of the entry
2–3 panID PAN ID of the entry

IEEE 802.15.4 www.ti.com

1642 SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

Table 23-74 lists the extended address list structure.

Table 23-74. Extended Address List Structure

Byte Index Field Name Type Description

0–(4K − 1) srcMatchEn R/W

Words with enable bits for each extAddrEntry; LSB of first
word corresponds to entry 0. The array size K = ceil (N /
32), where N is the number of entries (given by
numExtEntries, see
Table 23-59) and ceil denotes rounding upward.

(4K)–(8K − 1) srcPendEn R/W Words with pending data bits for each extAddrEntry; LSB
of first word corresponds to entry 0.

(8K)–(8K + 7) extAddrEntry[0] W Extended address number 0
...
(8K + 8n)–(8K + 8n + 7) extAddrEntry[n] W Extended address number n
...
[8K + 8(N − 1)]–(8K + 8N + 7) extAddrEntry[N-1] W Extended address number N−1 (last entry)

Table 23-75 lists the short address list structure.

Table 23-75. Short Address List Structure

Byte Index Field Name Type Description

0–(4K − 1) srcMatchEn R/W

Words with enable bits for each shortAddrEntry; LSB of
first word corresponds to entry 0. The array size K = ceil (N
/ 32), where N is the number of entries (given by
numShortEntries, see Table 23-59) and ceil denotes
rounding upward.

(4K)–(8K − 1) srcPendEn R/W Words with pending data bits for each shortAddrEntry; LSB
of first word corresponds to entry 0.

(8K)–(8K + 3) shortAddrEntry[0] W Short address number 0; the entry is an address/PAN ID
pair as defined in Table 23-73.

...

(8K + 4n)–(8K + 4n + 3) shortAddrEntry[n] W Short address number n; the entry is an address/PAN ID
pair as defined in Table 23-73.

...

[8K + 4(N − 1)]–(8K + 4N + 3) shortAddrEntry[N-1] W Short address number N−1 (last entry); the entry is an
address/PAN ID pair as defined in Table 23-73.

Table 23-76 lists the receive correlation/CRC result bit fields.

Table 23-76. Receive Correlation/CRC Result Bit Field

Bits Bit Field Name Description
0–5 corr The correlation value
6 bIgnore 1 if the packet must be rejected by frame filtering; 0 otherwise
7 bCrcErr 1 if the packet was received with CRC error; 0 otherwise

www.ti.com IEEE 802.15.4

1643SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

23.5.2 Interrupts
The interrupts to be used by the IEEE 802.15.4 commands are listed in Table 23-77. Each interrupt may
be enabled individually in the system CPU. Details for when the interrupts are generated are given in
Section 23.5.4.

Table 23-77. Interrupt Definitions Applicable to IEEE 802.15.4

Interrupt Number Interrupt Name Description

0 COMMAND_DONE A background level radio operation command has
finished.

1 LAST_COMMAND_DONE The last background level radio operation command
in a chain of commands has finished.

2 FG_COMMAND_DONE A foreground radio operation command has finished

3 LAST_FG_COMMAND_DONE The last foreground radio operation command in a
chain of commands has finished.

4 TX_DONE Transmitted frame
5 TX_ACK Transmitted automatic ACK frame
16 RX_OK Frame received with CRC OK
17 RX_NOK Frame received with CRC error
18 RX_IGNORED Frame received with ignore flag set
22 RX_BUF_FULL Frame received that did not fit in the TX queue
23 RX_ENTRY_DONE TX queue data entry changing state to Finished

29 MODULES_UNLOCKED As part of the boot process, the Cortex-M0 has
opened access to RF core modules and memories.

30 BOOT_DONE The RF core CPU boot is finished.
31 INTERNAL_ERROR The radio CPU has observed an unexpected error.

23.5.3 Data Handling
For all the IEEE 802.15.4 commands, data received over the air is stored in a receive queue.

Data to be transmitted is fetched from a buffer given in the transmit command.

23.5.3.1 Receive Buffers
A frame being received is stored in the receive buffer. First, a length byte or word is stored, if configured in
the RX entry, by config.lenSz, and calculated from the length received over the air and the configuration of
appended status information.

The format of the entry elements in the receive queue pointed to by pRxQ is given by the configuration
rxConfig defined in Section 23.6.1.4.

Following the length field, the received PHY header byte is stored if rxConfig.bIncludePhyHdr is 1. If a
length field is present, this byte is redundant except for the reserved bit. The received MAC header and
MAC payload is stored as received over the air. The MAC footer containing the 16-bit frame check
sequence is stored if rxConfig.bIncludeCrc is 1.

If rxConfig.bAppendRssi is 1, a byte indicating the received RSSI value is appended. If
rxConfig.bAppendCorrCrc is 1, a status byte of the type defined in Table 23-76 is appended. If
rxConfig.bAppendSrcInd is 1, a byte giving the index of the first source matching entry that matches the
header of the received packet is appended, or 0xFF if no match. If rxConfig.bAppendTimeStamp is 1, a
timestamp indicating the start of the frame is appended. This timestamp is a 4-byte number from the radio
timer. Though the timestamp is multibyte, no word-address alignment is made, so the timestamp must be
written and read byte-wise. The timestamp is captured when SFD is found, but is adjusted to reflect the
start of the frame (assuming 8 preamble bytes as per the standard), defined so that it corresponds to the
time of the start trigger used on the transmit side. The adjustment is defined in the syncTimeAdjust
firmware-defined parameter, and may be overridden.

Element
length

MAC header
and payload

MAC footer
(FCS)

RSSI Status Timestamp

0±2 bytes 0±125 bytes 0 or 2 bytes 0 or 1 byte 0 or 1 byte 0 or 4 bytes
PHY

header

0 or 1 byte
Source
index

0 or 1 byte

IEEE 802.15.4 www.ti.com

1644 SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

Figure 23-6 shows the format of an entry element in the RX queues.

Figure 23-6. RX Queue Entry Element (Stapled Fields are Optional)

23.5.3.2 Transmit Buffers
In the transmit operation, a pointer to a buffer containing the payload is given by pPayload. The length of
this buffer is given separately by payloadLen. The contents of the transmit buffer is given by the txOpt
parameter. The transmit buffer always contains the MAC header and MAC payload. If
txOpt.bIncludePhyHdr is 1, the buffer also includes the byte to be transmitted as a PHY header as the first
byte in the buffer. If txOpt.bIncludeCrc is 1, the last 2 bytes of the buffer are transmitted as a CRC instead
of the CRC being calculated automatically.

23.5.4 Radio Operation Commands
Before running any radio operation command described in this document, the radio must be set up in
IEEE 802.15.4 mode using the command CMD_RADIO_SETUP. Otherwise, the operation ends with an
error.

In IEEE 802.15.4 mode, the radio CPU accepts two levels of radio operation commands. Operations can
run in the background level or in the foreground level. Each operation can run in only one of these levels.
Operations in the foreground level normally require a background-level operation running at the same
time.

The background-level operations are the receive and energy detect scan operations. Only one of these
operations can run at a time. The foreground-level operations are the CSMA-CA operation, the receive
ACK operation, the transmit operation, the abort background level operation, and the modify radio setup
operation. These can be entered as one command or a command chain, even if a background-level
operation is running. The CSMA-CA and receive ACK operations run simultaneously with the background-
level operation. The transmit operation causes suspension of the background level operation until the
transmission is done. Table 23-78 shows the allowed combinations of background and foreground-level
operations. Violation of these combinations causes an error when the foreground-level command is about
to start, signaled by the ERROR_WRONG_BG status in the status field of the foreground-level command
structure.

Table 23-78. Allowed Combinations of Foreground and Background Level Operations

Foreground Level Operation
Background Level Operation
None CMD_IEEE_RX CMD_IEEE_ED_SCAN

None Allowed Allowed Allowed
CMD_IEEE_TX Allowed1 Allowed Allowed
CMD_IEEE_CSMA Forbidden Allowed Allowed
CMD_IEEE_RX_ACK Forbidden Allowed Forbidden
CMD_IEEE_ABORT_BG Allowed2 Allowed Allowed

www.ti.com IEEE 802.15.4

1645SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

A non-15.4 radio operation may not be run simultaneously with a 15.4 radio operation; if a non-15.4 radio
operation is entered while a 15.4 operation is running on either level, a scheduling error occurs. Chains of
15.4 and non-15.4 operations can be created, however.

When a foreground-level operation finishes, an FG_COMMAND_DONE interrupt is raised. If the command
was the last one in a chain, a LAST_FG_COMMAND_DONE interrupt is raised as well (see
Table 23-77). Background-level operations use the common interrupts, COMMAND_DONE and
LAST_COMMAND_DONE (see Table 23-77).

The status field of the command structure is updated during the operation. When submitting the
command, the system CPU writes this field with a state of IDLE. During the operation, the radio CPU
updates the field to indicate the operation mode. When the operation is done, the radio CPU writes a
status indicating that the command has finished. Table 23-79 lists the status codes for IEEE 802.15.4
radio operation.

Table 23-79. IEEE 802.15.4 Radio Operation Status Codes

Number Name Description
Operation Not Finished
0x0000 IDLE Operation not started
0x0001 PENDING Waiting for start trigger
0x0002 ACTIVE Running operation
0x2001 IEEE_SUSPENDED Operation suspended
Normal Operation Ending
0x2400 IEEE_DONE_OK Operation ended normally
0x2401 IEEE_DONE_BUSY CSMA-CA operation ended with failure
0x2402 IEEE_DONE_STOPPED Operation stopped after stop command
0x2403 IEEE_DONE_ACK ACK packet received with pending data bit cleared
0x2404 IEEE_DONE_ACKPEND ACK packet received with pending data bit set
0x2405 IEEE_DONE_TIMEOUT Operation ended due to time-out
0x2406 IEEE_DONE_BGEND FG operation ended because necessary background level

operation ended
0x2407 IEEE_DONE_ABORT Operation aborted by command
Operation Ending With Error
0x0806 ERROR_WRONG_BG Foreground level operation is not compatible with running

background level operation
0x2800 IEEE_ERROR_PAR Illegal parameter
0x2801 IEEE_ERROR_NO_SETUP Radio was not set up in IEEE 802.15.4 mode
0x2802 IEEE_ERROR_NO_FS Synthesizer was not programmed when running RX or TX
0x2803 IEEE_ERROR_SYNTH_PROG Synthesizer programming failed
0x2804 IEEE_ERROR_RXOVF RX overflow observed during operation
0x2805 IEEE_ERROR_TXUNF TX underflow observed during operation

The conditions for giving each status are listed for each operation. Some of the error causes listed in
Table 23-79 are not repeated in these lists. In some cases, general error causes described in Section 23.3
may occur. In all of these cases, the result of the operation as defined in Section 23.3 is ABORT.

IEEE 802.15.4 www.ti.com

1646 SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

23.5.4.1 RX Operation
The receive radio operation is a background-level operation, started with the CMD_IEEE_RX command
and using the command structure given in Table 23-59.

At the start of an RX operation, the radio CPU waits for the start trigger, then programs the frequency
based on the channel parameter. If the channel is 0xFF, the operation keeps running on an already-
configured channel. This requires that the operation follows another receive operation or a synthesizer
programming operation. If the frequency synthesizer is not running, the operation ends with an error. After
programming the frequency, the radio CPU configures the receiver to receive IEEE 802.15.4 packets.

When the demodulator obtains sync on a frame, the PHY header is read first. The 7 LSBs of this byte give
the frame length. The further treatment depends on the setting of frameFiltOpt. If frameFiltOpt.frameFiltEn
is 1, further frame filtering is done as explained in the following subsections. If frameFiltOpt.frameFiltEn is
0, no frame filtering is done.

The number of bytes given by the received PHY header are received and stored in the receive queue
given by pRxQ. As explained in Section 23.6.3.1, the format depends on rxConfig. The last 2 bytes of the
PHY payload are the FCS, or CRC, for the packet. These bytes are checked according to the FCS
specification, and the further treatment depends on the CRC result.

If there is a CRC error and rxConfig.bAutoFlushCrc is 1, the packet is discarded from the RX buffer. If
there is no available RX buffer with enough available space to hold the received packet, the received data
is discarded. If frameFiltOpt.frameFiltStop is 1, the reception stops, otherwise the packet is received so
that the CRC can be checked.

23.5.4.1.1 Frame Filtering and Source Matching
If frameFiltOpt.frameFiltEn is 1, frame filtering and source matching are performed as described in this
section. The frame filtering may have several purposes:
• Distinction between different packet types
• Rejection of packets with a nonmatching destination address
• Rejection of packets with unknown version or illegal fields
• Automatic identification of source address
• Automatic acknowledgment transmission
• Automatic insertion of pending data bit based on source address

23.5.4.1.1.1 Frame Filtering
When frame filtering is enabled, the MAC header of the packet is investigated by the radio CPU. The
frame control field (FCF) is checked first. The frame type subfield is the first subfield of the FCF to be
checked, and determines the further processing. The MSB of the frame type is processed according to
frameFiltOpt.modifyFtFilter before the check is made. The result of this modification is used only when
checking, not when storing the FCF in the RX queue entry. For each of the eight possible values of the
frame type field (including four reserved fields), the frame can be set up to be accepted or rejected. This is
controlled by the bits of frameTypes. If the frame type is Acknowledgment (010b) and a CMD_RX_ACK
operation is running in the foreground, the packet is processed further even if frameTypes.bAcceptFt2Ack
is 0. In that case, Section 23.5.4.5 gives more details on the processing.

Filtering is performed on the Frame Version and Reserved subfields. If the frame version is greater than
frameFiltOpt.maxFrameVersion, the frame is rejected.

If the Reserved subfield ANDed with frameFiltOpt.fcfReservedMask is nonzero, the frame is rejected. The
addressing fields are checked to see if the frame must be accepted or not. This filtering follows the rules
for third-level filtering (refer to the IEEE 802.15.4 standard). When checking against the local address, the
localExtAddr or localShortAddr field is used, and when checking against the local PAN ID, the localPanID
field is used.

If frameFiltOpt.bStrictLenFilter is 1 and the frame type indicates that the frame is an acknowledgment
frame, the frame is rejected if the length of the PHY payload is not 5, which is the length of a correctly
formulated ACK frame.

www.ti.com IEEE 802.15.4

1647SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

If frameFiltOpt.frameFiltStop is 1 and the frame filtering gives the conclusion that the frame is to be
rejected, reception stops and the radio returns to sync search. Otherwise, the frame is received to the end.

The radio CPU checks the header to see if an acknowledgment is to be transmitted. This gives a
preliminary result; the actual transmission of the ACK depends on the status at the end of the frame. The
condition for transmitting an acknowledgment frame is given in Section 23.5.4.1.3.

23.5.4.1.1.2 Source Matching
Source matching is performed on frames accepted by the frame filtering with a source address present. If
the source address was an extended address, the received address is compared against the entries in the
list pExtEntryList. If the source address was a short address, the received address and source pan ID are
compared against the entries in the list pShortEntryList.

The number of entries that the lists can hold is given by numExtEntries and numShortEntries. If either of
these values is 0, no source matching is performed on addresses of the corresponding type, and the
corresponding pointer is NULL. The lists start with source mapping enable bits, srcMatchEn, and continue
with pending enable bits, srcPendEn, followed by the list entries, see Table 23-73 and Table 23-74. The
enable bits consist of the number of 32-bit words needed to hold an enable bit for each entry in the list.
For each entry where the corresponding srcMatchEn bit is 1, the entry is compared against the received
source address for extended addresses, or against the received source address and PAN ID for short
addresses. If a match is found, the index is stored, and reported back in the message footer if configured
(see Section 23.6.3.1). If no match is found, the index reported back is 0xFF.

The source matching procedure may also be used to find the pending data bit to be transmitted in an
auto-acknowledgment frame (see Section 23.5.4.1.3). If frameFiltOpt.autoPendEn is 1 and a source match
was found, the pending data bit is set to the value of the bit in srcPendEn corresponding to the index of
the match. If no match was found or if frameFiltOpt.autoPendEn is 0, the pending data bit is set equal to
frameFiltOpt.defaultPend. If frameFiltOpt.bPendDataReqOnly is 1, the radio CPU investigates the frame to
determine if it is a MAC command frame with the command frame identifier set to a Data Request. If not,
the pending data bit of an auto ACK is set to 0, regardless of the source matching result and the value of
frameFiltOpt.defaultPend.

23.5.4.1.2 Frame Reception
After frame filtering is done, the rest of the packet is received and stored in the receive queue. The last 2
bytes of the PHY packet are the MAC footer, or FCS, which is a checked CRC. The CRC is stored in the
queue only if rxConfig.bIncludeCrc is 1.

The status of the received frame depends on the frame filtering result and the CRC result. Two status bits,
bCrcErr and bIgnore, must be maintained. If configured, these 2 bits are present in the Status byte of the
RX queue entry. The bCrcErr bit is 1 if the frame had a CRC error, and 0 otherwise. The bIgnore bit is 1 if
frame filtering is enabled and the frame was rejected by frame filtering, and 0 otherwise.

NOTE: If frameFiltOpt.frameFiltStop is 1, frames with bIgnore equal to 1 are never observed,
because the reception is stopped and the received bytes are not stored in the queue. If
rxConfig.bAutoFlushCrc is 1, packets with bCrcErr equal to 1 are removed from the queue
after reception; if rxConfig.bAutoFlushIgn is 1, packets with bIgnore equal to 1 are removed
from the queue after reception.

After a packet has been received, an interrupt is raised and one of the counters in pOutput is incremented.
Table 23-80 lists these conditions.

Table 23-80. Conditions for Incrementing Counters and Raising Interrupts for RX Operation

Condition Counter Incremented Interrupt Generated
Frame received with CRC OK and frame filtering disabled nRxData RX_OK
Frame received with CRC error nRxNok RX_NOK
Frame received that did not fit in the RX queue nRxBufFull RX_BUF_FULL
Beacon frame received with CRC OK and bIgnore = 0 nRxBeacon RX_OK

IEEE 802.15.4 www.ti.com

1648 SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

Table 23-80. Conditions for Incrementing Counters and Raising Interrupts for RX
Operation (continued)

Condition Counter Incremented Interrupt Generated
ACK frame received with CRC OK and bIgnore = 0 nRxAck RX_OK
Data frame received with CRC OK and bIgnore = 0 nRxData RX_OK
MAC command frame received with CRC OK and bIgnore = 0 nRxMacCmd RX_OK
Frame with reserved frame type received with CRC OK and
bIgnore = 0 nRxReserved RX_OK

Frame received with CRC OK and bIgnore = 1 nRxIgnored RX_IGNORED
The first RX data entry in the RX queue changed state to finished — RX_ENTRY_DONE

When a frame has been received, the RSSI observed while receiving the frame is written to
pOutput->lastRssi. If the frame was a beacon frame accepted by the frame filtering and with CRC OK, the
timestamp at the beginning of the frame is written to pOutput->beaconTimeStamp. If the timestamp is
appended to the RX entry element (see Section 23.6.3.1), these two timestamps are the same for a
beacon frame.

After a packet has been received, the radio CPU either restarts sync search or sends an acknowledgment
frame. The conditions for the latter are as given in Section 23.5.4.1.3.

23.5.4.1.3 ACK Transmission
After a packet has been received, the radio CPU initiates transmission of an acknowledgment frame,
given that all of the following conditions are met:
• Auto ACK is enabled by frameFiltOpt.autoAckEn = 1.
• The frame is accepted by frame filtering (bIgnore = 0).
• The frame is a data frame or a MAC command frame.
• The destination address is not the broadcast address.
• The ACK request bit of the FCF is set.
• The CRC check is passed (bCrcErr = 0).
• The frame fits in the receive queue.

The transmit time of the ACK packet is timed by the radio CPU, depending on frameFiltOpt.slottedAckEn.
If this bit is 0, the ACK packet is transmitted 192 µs after the end of the received packet. Otherwise,
slotted ACK is used. Assume that the received packet started on a backoff-slot boundary. The ACK frame
then starts a whole number of backoff periods later than the start of the received frame, at the first backoff
boundary following at least one TurnaroundTime-symbol period after the end of the received frame.

The contents of the automatically transmitted ACK frame are as follows:
• The PHY header is 0x05.
• The PHY payload consists of a 3-byte MAC header and a 2-byte MAC footer.
• The MAC header starts with the 2-byte FCF with the following fields:

– The Frame Type subfield is 010b.
– The Frame Pending subfield is set as described in Section 23.5.4.1.1.2.
– The remaining subfields are set to all 0s.

• The next byte in the MAC header is the sequence number, which is set equal to the sequence number
of the received frame.

• The MAC footer is the FCS, which is calculated automatically.

After the ACK frame has been transmitted, a TX_ACK interrupt is raised. The radio CPU then enables the
receiver again.

www.ti.com IEEE 802.15.4

1649SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

23.5.4.1.4 End of Receive Operation
The receive operation can end as a result of the end trigger given by endTrigger and endTime, or by a
command. The commands that can end the receive operation are the immediate commands
CMD_ABORT and CMD_STOP, and the foreground-level radio operation command
CMD_IEEE_ABORT_BG. The end-trigger and the CMD_STOP command cause the receiver to keep
running until the end of the frame, or until the reception would otherwise be stopped if observed while a
packet was being received. The CMD_ABORT and CMD_IEEE_ABORT_BG commands cause the
receiver to stop as quickly as the implementation allows.

A receive operation ends through one of the causes listed in Table 23-81. The status field of the command
structure after the command has ended indicates the reason why the operation ended. In all cases, a
COMMAND_DONE interrupt is raised. In each case, the result is indicated as TRUE, FALSE, or ABORT.
This decides whether to start the next command (if any) indicated in pNextOp, or to return to an IDLE
state. Before the receive operation ends, the radio CPU writes the maximum observed RSSI during the
receive operation to pOutput->maxRssi.

If a transmit operation is started in the foreground, the receive operation is suspended. The receiver stops
as when aborted, but the synthesizer is left on to the extent possible when switching to transmit mode.
When the receiver has stopped, the status field of the command structure is set to IEEE_SUSPENDED.
When the transmit command is done, the receiver restarts and the status field of the command structure is
reset to RUNNING.

Table 23-81. End of Receive Operation

Condition Status Code Result
Observed end trigger and finished any ongoing reception IEEE_DONE_OK TRUE
Received CMD_STOP IEEE_DONE_STOPPED FALSE
Received CMD_ABORT or CMD_IEEE_ABORT_BG IEEE_DONE_ABORT ABORT
Observed illegal parameter IEEE_ERROR_PAR ABORT

23.5.4.1.5 CCA Monitoring
While the receiver is running, the radio CPU monitors some signals for use in clear-channel assessment.
This monitoring is controlled by ccaOpt. There are three sources for CCA: RSSI above level (ccaEnergy),
carrier sense based on the correlation value (ccaCorr), and carrier sense based on sync found (ccaSync).
Each of these may have the state BUSY, IDLE, or INVALID.

The RSSI above-level is maintained by monitoring the RSSI. If the RSSI is greater than or equal to
ccaRssiThr, ccaEnergy is busy. If the RSSI is smaller than ccaRssiThr, ccaEnergy is IDLE. When an RSSI
calculation has not yet been completed because the receiver started, ccaEnergy is INVALID.

The carrier-sense monitoring based on correlation value uses correlation peaks as defined for use in the
SFD search algorithm in the receiver. If the number of correlation peaks observed in the last 8-symbol
periods (32 µs) is greater than ccaOpt.corrThr, ccaCorr is BUSY; otherwise, ccaCorr is IDLE. The value of
ccaOpt.corrThr can be from 0 to 3. While the receiver is receiving a frame, ccaCorr is BUSY regardless of
the observed correlation peaks. If the time since the receiver started is less than 8 symbol periods and the
number of correlation peaks observed since the receiver started is less than or equal to ccaOpt.corrThr,
ccaCorr is INVALID.

The carrier-sense monitoring based on sync found is maintained by the radio CPU as follows. If sync is
obtained on the receiver, the radio CPU checks the PHY header to find the frame length. The radio CPU
considers the channel to be busy for the duration of this frame. This check is done even if reception of the
frame is stopped due to the frame filtering and sync search is restarted. If sync is found again while the
channel is viewed as BUSY, the channel is viewed as BUSY until both these frames have ended
according to the observed frame lengths. The INVALID state is not used for ccaSync.

If the radio is transmitting an ACK or is suspended for running a TX operation, ccaEnergy, ccaCorr, and
ccaSync are all BUSY.

IEEE 802.15.4 www.ti.com

1650 SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

The overall CCA state ccaState depends on the ccaEnEnergy, ccaEnCorr, and ccaEnSync bits of ccaOpt
together with the ccaCorrOp and ccaSyncOp bits. The following rules apply for finding the ccaState
(ccaTmp is a helper state in the description):
• If ccaEnEnergy = 0 and ccaEnCorr = 0 and ccaEnSync = 0, then ccaState = IDLE
• If ccaEnEnergy = 1 and ccaEnCorr = 0, then ccaTmp = ccaEnergy
• If ccaEnEnergy = 0 and ccaEnCorr = 1, then ccaTmp = ccaCorr
• If ccaEnEnergy = 1 and ccaEnCorr = 1 and ccaCorrOp = 0, then:

– If either ccaEnergy or ccaCorr is BUSY, then ccaTmp = BUSY
– Otherwise, if either ccaEnergy or ccaCorr is INVALID, then ccaTmp = INVALID
– Otherwise, ccaTmp = IDLE

• If ccaEnEnergy = 1 and ccaEnCorr = 1 and ccaCorrOp = 1, then:
– If either ccaEnergy or ccaCorr is IDLE, then ccaTmp = IDLE
– Otherwise, if either ccaEnergy or ccaCorr is Invalid, then ccaTmp = INVALID
– Otherwise, ccaTmp = BUSY

• If ccaEnEnergy = 0 and ccaEnCorr = 0 and ccaEnSync = 1, then ccaState = ccaSync
• Otherwise, if ccaEnSync = 1 and ccaSyncOp = 0, then:

– If either ccaTmp or ccaSync is BUSY, then ccaState = BUSY
– Otherwise, if ccaTmp is Invalid, then ccaState = INVALID
– Otherwise, ccaState = IDLE

• Otherwise, if ccaEnSync = 1 and ccaSyncOp = 1, then:
– If either ccaTmp or ccaSync is IDLE, then ccaState = IDLE
– Otherwise, if ccaTmp is INVALID, then ccaState = INVALID
– Otherwise, ccaState = BUSY

The ccaSync CCA state is required to be IDLE for the overall CCA state to be IDLE, according to the
IEEE 802.15.4 standard. Thus, to comply, ccaEnSync is 1 and cceSyncOp is 0.

CCA mode 1, as defined in the IEEE 802.15.4 standard, is implemented by setting ccaEnEnergy = 1 and
ccaEnCorr = 0. CCA mode 2 is implemented by setting ccaEnEnergy = 0 and ccaEnCorr = 1. CCA mode
3 is implemented by setting ccaEnEnergy = 1 and ccaEnCorr = 1. With CCA mode 3, ccaCorrOp is
allowed to be either 0 or 1; this distinguishes between the logical operator AND (1) and OR (0) as
described in the IEEE 802.15.4 standard.

The CCA states and the current RSSI can be read by the system CPU by issuing the immediate
command CMD_IEEE_CCA_REQ. If a CMD_IEEE_CSMA operation is running in the foreground, the
radio CPU also monitors the CCA autonomously.

www.ti.com IEEE 802.15.4

1651SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

23.5.4.2 Energy Detect Scan Operation
The energy detect scan radio operation is a background-level operation that starts with the
CMD_IEEE_ED_SCAN command and uses a command structure as given in Table 23-60.

At the start of an RX operation, the radio CPU waits for the start trigger, then programs the frequency
based on the channel parameter. If the channel is 0xFF, the operation keeps running on an already-
configured channel. This requires that the operation follows another receive operation or a synthesizer
programming operation. If the frequency synthesizer is not running, the operation ends with an error. After
programming the frequency, the radio CPU configures the receiver to receive IEEE 802.15.4 packets, but
it does not store any received data.

While the receiver is running, CCA is updated as described in Section 23.5.4.1.5. When the demodulator
obtains sync on a frame, the PHY header is read. This is used only to determine the carrier sense based
on sync found, and sync search restarts immediately afterwards.

The energy detect scan operation ends under the same conditions as the RX operation, as described in
Section 23.5.4.1.4. Before the operation ends, the radio CPU writes the maximum-observed RSSI during
the energy detect scan operation to maxRssi.

23.5.4.3 CSMA-CA Operation
The CSMA-CA operation is a foreground-level operation that runs on top of a receive or energy-detect
scan operation. If run on top of an energy-detect scan operation, this does not perform the energy-detect
scan procedure, but starts a receiver without having to receive packets. This operation starts with the
CMD_IEEE_CSMA command, and uses the command structure given in Table 23-61.

At the start of a CSMA-CA operation, the radio CPU waits for the start trigger.

The radio CPU maintains a variable CW, which initializes to csmaConfig.initCW.

If remainingPeriods is nonzero at the start of the command, the radio CPU delays for that number of
backoff periods (default 320 µs) measured from the start trigger before proceeding. Otherwise, the radio
CPU draws a pseudo-random number in the range 0 to 2(BE)–1, where BE is given by (Table 23-61). The
radio CPU then waits that number of backoff periods from the start trigger before proceeding.

After this wait time, the radio CPU checks the CCA state from the background-level operation, as
described in Section 23.5.4.1.5. If the CCA state was INVALID, the radio CPU waits before trying again. If
csmaConfig.bSlotted = 1, the wait is for one backoff period, otherwise it waits until an RSSI result is
available. If the CCA state was IDLE, the radio CPU decrements CW by 1, and if this results in a value of
0, the CSMA-CA operation is successful. If this results in a nonzero value, the radio CPU waits one
backoff period timed from the end of the wait time, and then checks the CCA state again as described
previously.

IEEE 802.15.4 www.ti.com

1652 SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

If the channel was BUSY when the CCA state was checked, the radio CPU updates the variables as
follows:

CW = csmaConfig.initCW; NB + = 1; BE + = min (BE + 1, macMaxBE);

If NB after this update is greater than macMaxCSMABackoffs, the CSMA-CA operation ends with failure.
Otherwise, the radio CPU draws a random number of backoff periods to wait as described previously, and
proceeds as before. If csmaConfig.bSlotted = 1, the wait is from the next backoff period after the end of
the previous wait time; otherwise, the wait is from a configurable time after the end of the previous wait
time.

Figure 23-7 shows the flow chart for the CSMA-CA operation.

In addition to the CSMA-CA operation ending with success or failure as previously described, the
operation can end as a result of the end trigger given by endTrigger and endTime, or by a command. The
commands that can end the CSMA-CA operation are the immediate commands CMD_ABORT,
CMD_STOP, CMD_IEEE_ABORT_FG, and CMD_IEEE_STOP_FG. When the CSMA-CA operation ends,
the radio CPU writes lastTimeStamp with the timer value at the end of the most recent wait period before
a CCA check was done, and lastRssi with the RSSI value at that time. If the operation ended because of a
time-out or stop command, the radio CPU writes remainingPeriods with the number of backoff periods
remaining of the wait time. Otherwise, the radio CPU writes remainingPeriods to 0.

The pseudo-random algorithm is based on a maximum-length 16-bit linear-feedback shift register (LFSR).
The seed is as provided in randomState. When the operation ends, the radio CPU writes the current state
back to this field. If randomState is 0, the radio CPU self-seeds by initializing the LFSR to the 16 LSBs of
the RAT. There is some randomness to this value, but this is limited, especially for slotted CSMA-CA, and
seeding with a true-random number (or a pseudo-random number based on a true-random seed) by the
system CPU is therefore recommended. If the 16 LSBs of the RAT are all 0, another fixed value is
substituted.

Depending on csmaConfig.rxOffMode, the underlying RX operation may be suspended during the backoff
before another CCA check, if there is enough time for it. The different values have the following meaning:
• rxOffMode = 0: The radio stays on during CSMA backoffs.
• rxOffMode = 1: If a frame is being received, an ACK being transmitted, or in the transition between

those, the radio stays on. Otherwise, the radio switches off until the end of the backoff period.
• rxOffMode = 2: If a frame is being received, an ACK is being transmitted, or is in the transition between

those, the radio stays on until the packet has been fully received and the ACK has been transmitted if
applicable. After that, the radio switches off until the end of the backoff period.

• rxOffMode = 3: The radio switches off immediately at the beginning of a backoff period. This aborts a
frame being received or an ACK being transmitted. The radio remains switched off until the end of the
backoff period.

If the radio switches off this way, the receiver restarts sufficiently early for the next CCA operation to be
done, and the radio only switches off it there is sufficient time. This feature can be used for power saving
in systems that do not always need to be in RX. All modes except mode 0 may cause frames to be lost, at
increasing probability.

CMD_IEEE_CSMA

Wait for start event

remainingPeriods = 0?

remainingPeriods =
random(2BE

í1)

Wait remainingPeriods
backoff periods

CCA state IDLE?

CW = initCW,
NB = NB+1,

BE = min(BE+1,
macMaxBE)

NB >
macMaxCSMABackoffs?

Failure

CW = CWí1

CW = 0?

Success

Check CCA state

Wait 1 backoff period

Y Y

Y

Y

N
N

CCA state INVALID?

N

Y

N

CW = initCW

N

Slotted?

Y

N

Wait for RSSI update

Slotted?

Wait for next backoff
period boundary

Y

N

www.ti.com IEEE 802.15.4

1653SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

Figure 23-7. Flow Chart for CSMA-CA Operation

IEEE 802.15.4 www.ti.com

1654 SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

For operation according to IEEE 802.15.4, the parameters must be initialized as follows before starting a
new CSMA-CA operation:
• randomState must be set to a random value.
• csmaConfig.initCW must be set to 2 for slotted CSMA-CA and 1 for unslotted CSMA-CA.
• csmaConfig.bSlotted must be set to 1 for slotted CSMA-CA and 0 for unslotted CSMA-CA.
• NB must be set to 0.
• BE must be set to macMinBE, except for slotted CSMA-CA with battery-life extension, where BE must

be set to min (2, macMinBE).
• remainingPeriods must be set to 0.
• macMaxBE and macMaxCSMABackoffs must be set to their corresponding MAC PIB attribute.

For slotted CSMA-CS, startTrigger must be set up to occur on a backoff-slot boundary. For slotted CSMA-
CA, the endTrigger must be set up to occur at the latest time that the transaction can be completed within
the superframe, as specified in the IEEE 802.15.4 standard. If the CSMA-CA ends due to time-out, the
CSMA can be restarted without modifying the parameters (except possibly the end time) at the next
superframe.

Table 23-82 lists the causes of a CSMA-CA operation end. After the command has ended, the status field
of the command structure (2 status bytes listed in Table 23-8) indicates why the operation ended. In all
cases, an FG_COMMAND_DONE interrupt is raised. In each case, it is indicated if the result is TRUE,
FALSE, or ABORT. This result indicates whether to start the next command (if any) in pNextOp, or to
return to an IDLE state.

Table 23-82. End of CSMA-CA Operation

Condition Status Code Result
CSMA-CA operation finished with success IEEE_DONE_OK TRUE
CSMA-CA operation finished with failure IEEE_DONE_BUSY FALSE
End trigger occurred IEEE_DONE_TIMEOUT FALSE
Received CMD_STOP or CMD_IEEE_STOP_FG IEEE_DONE_STOPPED FALSE
Received CMD_ABORT or CMD_IEEE_ABORT_FG IEEE_DONE_ABORT ABORT
Background operation ended IEEE_DONE_BGEND ABORT
Observed illegal parameter IEEE_ERROR_PAR ABORT

When the operation ends, the time of the last CCA check (that is, the time written into lastTimeStamp) is
defined as event 1, and may be used for timing subsequent chained operations.

23.5.4.4 Transmit Operation
The transmit operation is a foreground-level operation that transmits one packet. The operation is started
with the CMD_IEEE_TX command, and uses the command structure given in Table 23-62.

When the radio CPU receives the command, it waits for the start trigger. Any background-level operation
keeps running during this wait time. At the start trigger, the radio CPU suspends the receiver and
configures the transmitter. The synthesizer should be powered and calibrated. Therefore, if no
background-level operation is running, a calibrate synthesizer command must precede the TX operation. If
the frequency synthesizer is not running, the operation ends with an error.

The transmitter transmits the payload found in the buffer pointer to pPayload, which consists of
payloadLen bytes. If txOpt.payloadLenMsb is nonzero, this field is multiplied by 256 and added to
payloadLen to create (for test purposes) a long frame that is not compliant with IEEE 802.15.4. If
txOpt.bIncludePhyHdr is 0, the radio CPU inserts a PHY header automatically, calculated from the
payload length. Otherwise, no PHY header is inserted by the radio CPU, so for IEEE 802.15.4
compliance, the first byte in the payload buffer must be the PHY header. The payload is then transmitted
as found in the payload buffer. If txOpt.bIncludeCrc is 0, the radio CPU appends two CRC bytes,
calculated according to the IEEE 802.15.4 standard. Otherwise, no CRC is appended, so for IEEE
802.15.4 MAC compliance, the last 2 bytes in the payload buffer must be the MAC footer. The transmit
operation can be ended by one of the immediate commands CMD_ABORT, CMD_STOP,

www.ti.com IEEE 802.15.4

1655SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

CMD_IEEE_ABORT_FG, or CMD_IEEE_STOP_FG. If CMD_ABORT or CMD_IEEE_ABORT_FG is
received, the transmission ends as soon as possible in the middle of the packet. If CMD_STOP or
CMD_IEEE_STOP_BG is received while the radio CPU is waiting for the start trigger, the operation ends
without any transmission; otherwise, the transmission is finished, but the end status and result differ as
explained in the following.

When transmission of the packet starts, the trigger RAT time used for starting the modem is written to the
timeStamp field by the radio CPU. This timestamp is delayed by the firmware-defined parameter
startToTXRatOffset, compared to the configured start time of the CMD_IEEE_TX command. If the
transmitter and receiver have synchronized RAT timers, this timestamp is the same as the timestamp
appended to the RX entry element, as in Section 23.6.3.1, although with estimation uncertainty on the
receiver side.

When the operation ends, the end time of the transmitted frame is defined as event 1, and may be used
for timing subsequent chained operations.

Table 23-83 lists the causes of a transmit operation end. After the command has ended, the status field of
the command structure (2 status bytes listed in Table 23-8) indicates why the operation ended. In all
cases, an FG_COMMAND_DONE interrupt is raised. In each case, it is indicated if the result is TRUE,
FALSE, or ABORT. This indicates whether to start the next command (if any) in pNextOp, or to return to
an IDLE state.

Table 23-83. End of Transmit Operation

Condition Status Code Result
Packet transmitted IEEE_DONE_OK TRUE
Received CMD_STOP or CMD_IEEE_STOP_FG, then finished
transmitting if started IEEE_DONE_STOPPED FALSE

Received CMD_ABORT or CMD_IEEE_ABORT_FG IEEE_DONE_ABORT ABORT
Observed illegal parameter IEEE_ERROR_PAR ABORT

23.5.4.5 Receive Acknowledgment Operation
The receive-ACK operation is a foreground-level operation that runs on top of a receive operation. The
operation starts with the CMD_IEEE_RX_ACK command, and uses the command structure listed in
Table 23-63.

At the start of a receive-ACK operation, the radio CPU waits for the start trigger. If the receiver was
suspended due to a TX operation before the receive-ACK operation, the background-level RX operation is
not resumed until the start trigger occurs.

While the receive-ACK operation is running, the background-level RX operation runs normally. However,
in addition to looking for the packets, the operation looks for ACK packets with the sequence number
given in seqNo. The packet is stored in the receive queue only if configured in the background-level
receive operation (frameTypes.bAcceptFt2Ack = 1). If ACK packets are filtered out in the background RX
operation, for an ACK packet the sequence number is received, and if it matches, also the FCS.

If the ACK packet with the requested sequence number is received, the FCS is checked. If the CRC is
OK, the receive-ACK operation ends, otherwise it continues. If the ACK is received OK, the pending-data
bit of the header is checked.

In addition to the receive-ACK operation ending after receiving the ACK as described previously, the
operation can end as a result of the end trigger given by endTrigger and endTime, or by a command. The
commands that can end the receive-ACK operation are the immediate commands CMD_ABORT,
CMD_STOP, CMD_IEEE_ABORT_FG, and CMD_IEEE_STOP_FG.

A receive-ACK operation ends due to one of the causes listed in Table 23-84. After the command has
ended, the status field of the command structure (2 status bytes listed in Table 23-8) indicates why the
operation ended. In all cases, an FG_COMMAND_DONE interrupt is raised. In each case, it is indicated if
the result is TRUE, FALSE, or ABORT. This indicates whether to start the next command (if any) in
pNextOp, or to return to an IDLE state.

IEEE 802.15.4 www.ti.com

1656 SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

Table 23-84. End of Receive ACK Operation

Condition Status Code Result
Requested ACK successfully received with pending data bit
cleared IEEE_DONE_ACK FALSE

Requested ACK successfully received with pending data bit set IEEE_DONE_ACKPEND TRUE
End trigger occurred IEEE_DONE_TIMEOUT FALSE
Received CMD_STOP or CMD_IEEE_STOP_FG IEEE_DONE_STOPPED FALSE
Received CMD_ABORT or CMD_IEEE_ABORT_FG IEEE_DONE_ABORT ABORT
Background operation ended IEEE_DONE_BGEND ABORT
Observed illegal parameter IEEE_ERROR_PAR ABORT

23.5.4.6 Abort Background-Level Operation Command
The abort background-level operation command is a foreground-level command that stops the command
running in the background. The abort background-level operation command is defined as a foreground-
operation command so that it has a start time, and so that it can be chained with other foreground-
operation commands. The command is executed with the CMD_IEEE_ABORT_BG command and uses a
command structure with only the minimum set of parameters.

At the start of an abort background-level operation, the radio CPU waits for the start trigger, then aborts
the ongoing background-level receive or energy-detect scan operation.

The operation may be stopped by a command while waiting for the start trigger. The commands that can
stop the operation are CMD_ABORT, CMD_STOP, CMD_IEEE_ABORT_FG, and CMD_IEEE_STOP_FG.
The first two commands cause the background-level operation to stop regardless.

An abort background-level operation ends due to one of the causes listed in Table 23-85. After the
command has ended, the status field of the command structure (2 status bytes listed in Table 23-8)
indicates why the operation ended. In all cases, an FG_COMMAND_DONE interrupt is raised. In each
case, it is indicated if the result is TRUE, FALSE, or ABORT. This indicates whether to start the next
command (if any) in pNextOp, or to return to an IDLE state.

Table 23-85. End of ABORT Background-Level Operation

Condition Status Code Result
Background level aborted IEEE_DONE_OK TRUE
Received CMD_STOP or CMD_IEEE_STOP_FG IEEE_DONE_STOPPED FALSE
Received CMD_ABORT or CMD_IEEEE_ABORT_FG IEEE_DONE_ABORT ABORT

23.5.5 Immediate Commands

23.5.5.1 Modify CCA Parameter Command
The CMD_IEEE_MOD_CCA command takes a command structure as defined in Table 23-64.

CMD_IEEE_MOD_CCA must only be sent while an RX or energy-detect scan operation is running. On
reception, the radio CPU modifies the values of ccaRssiThr and ccaOpt for the running process into the
values given by newCcaRssiThr and newCcaOpt, respectively. The radio CPU updates the command
structure. The new settings are used for future CCA requests.

If the command is issued without an active or suspended background-level operation, the radio CPU
returns the result ContextError in CMDSTA. If any of the parameters entered are illegal, the radio CPU
returns the result ParError in CMDSTA. Otherwise, the radio CPU returns DONE.

www.ti.com IEEE 802.15.4

1657SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

23.5.5.2 Modify Frame-Filtering Parameter Command
The CMD_IEEE_MOD_FILT command takes a command structure as defined in Table 23-65.

CMD_IEEE_MOD_FILT must be sent only while an RX operation is running. On reception, the radio CPU
modifies the values of frameFiltOpt and frameTypes for the running process into the values given by
newFrameFiltOpt and newFrameTypes, respectively. The radio CPU updates the command structure.

The new values of the frame-filtering options are used from the next time frame filtering is started. If
autoAckEn or slottedAckEn are changed, the change applies from the next time reception of a packet
ends.

If the command is issued without an active or suspended background-level RX operation, the radio CPU
returns the result ContextError in CMDSTA. If any of the parameters entered are illegal, the radio CPU
returns the result ParError in CMDSTA. Otherwise, the radio CPU returns DONE.

23.5.5.3 Enable or Disable Source Matching Entry Command
The CMD_IEEE_MOD_SRC_MATCH command takes a command structure as defined in Table 23-65.

CMD_IEEE_MOD_SRC_MATCH must be sent only while an RX operation is running. On reception, the
radio CPU enables or disables the source-matching entry signaled in the command structure. If
options.entryType is 0, the entry is extended-address entry in the structure pointed to by pExtEntryList,
and if options.entryType is 1, the entry is short-address entry in the structure pointed to by
pShortEntryList. The index of the entry is signaled in entryNo. If options.bEnable is 0, the entry is disabled,
and if it is 1, the entry is enabled. The corresponding source pending bit is set to the value of
options.srcMatch.

The new values of the enable values are used from the next time source-matching is performed. The
system CPU may modify the address of a disabled entry, but not an enabled one.

If the command is issued without an active or suspended background-level RX operation, the radio CPU
returns the result ContextError in CMDSTA. If any of the parameters entered are illegal, for example,
pointing to a nonexistent entry, the radio CPU returns the result ParError in CMDSTA. Otherwise, the
radio CPU returns DONE.

23.5.5.4 Abort Foreground-Level Operation Command
CMD_IEEE_ABORT_FG is an immediate command that takes no parameters, and can thus be used as a
direct command.

The CMD_IEEE_ABORT_FG command aborts the foreground-level operation while the background-level
operation continues to run. For more detail, see the description of the foreground-level operations in
Table 23-57.

If no foreground-level radio operation command is running, no action is taken. The result signaled in
CMDSTA is DONE in all cases. If a foreground-level radio operation command was running, CMDSTA
may be updated before the radio operation has ended.

23.5.5.5 Stop Foreground-Level Operation Command
CMD_IEEE_STOP_FG is an immediate command that takes no parameters, and can thus be used as a
direct command.

The CMD_IEEE_STOP_FG command causes the foreground-level operation to stop gracefully, while the
background-level operation continues to run. For more detail, see the description of the foreground-level
operations in Table 23-57.

If no foreground-level radio operation command is running, no action is taken. The result signaled in
CMDSTA is DONE in all cases. If a foreground-level radio operation command was running, CMDSTA
may be updated before the radio operation has ended.

Bluetooth low energy www.ti.com

1658 SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

23.5.5.6 Request CCA and RSSI Information Command
The CMD_IEEE_CCA_REQ command takes a command structure as defined in Table 23-67.

CMD_IEEE_CCA_REQ must be sent only while an RX or energy-detect scan operation is running. On
reception, the radio CPU writes the following figures back into the command structure:
• currentRssi is set to the RSSI number currently available from the demodulator.
• maxRssi is set to the maximum RSSI observed because the background-level operation was started.
• ccaState is set to the CCA state according to the current CCA options (see Section 23.5.4.1.5).
• ccaEnergy is set to the energy-detect CCA state, according to Section 23.5.4.1.5.
• ccaCorr is set to the correlator-based carrier-sense CCA state, according to Section 23.5.4.1.5.
• ccaSync is set to the sync found-based carrier-sense CCA state, according to Section 23.5.4.1.5.

If no valid RSSI is found when the request is sent, the currentRssi and maxRssi returned indicate this by
using a special value (0x80).

If the command is issued without an active or suspended background-level RX operation, the radio CPU
returns the result ContextError in CMDSTA. Otherwise, the radio CPU returns DONE.

23.6 Bluetooth low energy
This section describes Bluetooth low-energy-specific command structure, data handling, radio operation
commands, and immediate commands.

23.6.1 Bluetooth low energy Commands
Table 23-86 defines the Bluetooth low-energy-specific radio operation commands.

Table 23-86. Bluetooth low energy Radio Operation Commands

ID Command Name Description
0x1801 CMD_BLE_SLAVE Start slave operation
0x1802 CMD_BLE_MASTER Start master operation
0x1803 CMD_BLE_ADV Start connectable undirected advertiser operation
0x1804 CMD_BLE_ADV_DIR Start connectable directed advertiser operation
0x1805 CMD_BLE_ADV_NC Start the not-connectable advertiser operation
0x1806 CMD_BLE_ADV_SCAN Start scannable undirected advertiser operation
0x1807 CMD_BLE_SCANNER Start scanner operation
0x1808 CMD_BLE_INITIATOR Start initiator operation
0x1809 CMD_BLE_GENERIC_RX Receive generic packets (used for PHY test or packet sniffing)
0x180A CMD_BLE_TX_TEST Transmit PHY test packets

Table 23-87 defines the Bluetooth low-energy-specific immediate command.

Table 23-87. Bluetooth low energy Immediate Command

ID Command Name Description
0x1001 CMD_BLE_ADV_PAYLOAD Modify payload used in advertiser operations

www.ti.com Bluetooth low energy

1659SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

23.6.1.1 Command Data Definitions
This section defines data types that describe the data structures used to communicate between the
system CPU and the radio CPU. The data structures are listed with tables. The Byte Index is the offset
from the pointer to that structure. Multibyte fields are little-endian, and halfword or word alignment is
required. For bit numbering, 0 is the LSB. The R/W column is used as follows:
• R: The system CPU can read a result back; the radio CPU does not read the field.
• W: The system CPU writes a value; the radio CPU reads it and does not modify the value.
• R/W: The system CPU writes an initial value; the radio CPU may modify the initial value.

23.6.1.1.1 Bluetooth low energy Command Structures

(1) This command structure is used for all the radio operation commands for Bluetooth low energy support. Table 23-8 defines the
first 14 bytes.

Table 23-88. Bluetooth low energy Radio Operation Command Structure (1)

Byte
Index Field Name Bits Bit Field Name Type Description

14 channel W

Channel to use:
0–39: Bluetooth low energy advertising/data channel
number
60–207: Custom frequency; (2300 + channel) MHz
255: Use existing frequency
Others: reserved

15 whitening

0–6 init W
If bOverride = 1 or custom frequency is used:
0: Do not use whitening
Other value: Initialization for 7-bit LFSR whitener

7 bOverride W
0: Use default whitening for Bluetooth low energy
advertising/data channels
1: Override whitening initialization with value of init

16–19 pParams W Pointer to command-specific parameter list

20–23 pOutput W Pointer to command-specific result (NULL: Do not store
results)

Table 23-89. Update Advertising Payload Command

Byte
Index Field Name Type Description

0–1 commandNo W The command number

2 payloadType W 0: Advertising data
1: Scan response data

3 newLen W Length of the new payload
4–7 pNewData W Pointer to the buffer containing the new data
8–11 pParams W Pointer to the parameter structure to update

Bluetooth low energy www.ti.com

1660 SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

23.6.1.2 Parameter Structures

Table 23-90. Slave Commands

Byte Index Field Name Type Description
0–3 pRxQ W Pointer to receive queue
4–7 pTxQ W Pointer to transmit queue

8 rxConfig W Configuration bits for the receive queue entries (see
Table 23-103 for details)

9 seqStat R/W Sequence number status (see Table 23-70 for details)

10 maxNack W Maximum number of NACKs received before operation
ends. 0: No limit

11 maxPkt W Maximum number of packets transmitted in the operation
before it ends. 0: No limit

12–15 accessAddress W Access address used on the connection
16–18 crcInit W CRC initialization value used on the connection
19 timeoutTrigger W Trigger that defines time-out of the first receive operation
20–23 timeoutTime W Time parameter for timeoutTrigger
24–26 Reserved

27 endTrigger W Trigger that causes the device to end the connection event
as soon as allowed

28–31 endTime W Time parameter for endTrigger

Table 23-91. Master Commands

Byte Index Field Name Type Description
0–3 pRxQ W Pointer to receive queue
4–7 pTxQ W Pointer to transmit queue

8 rxConfig W Configuration bits for the receive queue entries (see
Table 23-103 for details)

9 seqStat R/W Sequence number status (see Table 23-70 for details)

10 maxNack W Maximum number of NACKs received before operation
ends. 0: No limit

11 maxPkt W Maximum number of packets transmitted in the operation
before it ends. 0: No limit

12–15 accessAddress W Access address used on the connection
16–18 crcInit W CRC initialization value used on the connection

19 endTrigger W Trigger that causes the device to end the connection event
as soon as allowed

20–23 endTime W Time parameter for endTrigger

Table 23-92. Advertiser Commands

Byte Index Field Name Bits Bit Field Name Type Description
0–3 pRxQ W Pointer to receive queue

4 rxConfig W Configuration bits for the receive queue
entries (see Table 23-103 for details)

5 advConfig

0–1 advFilterPolicy W The advertiser filter policy

2 deviceAddrType W The type of the device address: public (0) or
random (1)

3 peerAddrType W Directed advertiser: The type of the peer
address: public (0) or random (1)

4 bStrictLenFilter W 1: Discard messages with illegal length
6 advLen W Size of advertiser data
7 scanRspLen W Size of scan response data

www.ti.com Bluetooth low energy

1661SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

Table 23-92. Advertiser Commands (continued)
Byte Index Field Name Bits Bit Field Name Type Description
8–11 pAdvData W Pointer to buffer containing ADV*_IND data
12–15 pScanRspData W Pointer to buffer containing SCAN_RSP data

16–19 pDeviceAddress W Pointer to device address used for this
device

20–23 pWhiteList W Pointer to white list or peer address
(directed advertiser)

24–26 Reserved

27 endTrigger W Trigger that causes the device to end the
advertiser event as soon as allowed

28–31 endTime W Time parameter for endTrigger

Table 23-93. Scanner Command

Byte Index Field Name Bits Bit Field Name Type Description
0–3 pRxQ W Pointer to receive queue

4 rxConfig W Configuration bits for the receive queue
entries (see Table 23-103 for details)

5 scanConfig

0 scanFilterPolicy W The scanner filter policy

1 bActiveScan W 0: Passive scan
1: Active scan

2 deviceAddrType W The type of the device address – public (0)
or random (1)

3 Reserved
4 bStrictLenFilter W 1: Discard messages with illegal length
5 bAutoWlIgnore W 1: Automatically set ignore bit in white list

6 bEndOnRpt W 1: End scanner operation after each reported
ADV*_IND and potentially SCAN_RSP

6–7 randomState R/W State for pseudo-random number generation
used in backoff procedure

8–9 backoffCount R/W Parameter backoffCount used in backoff
procedure

10 backoffPar

0–3 logUpperLimit R/W Binary logarithm of parameter upperLimit
used in scanner backoff procedure

4 bLastSucceeded R/W 1 if the last SCAN_RSP was successfully
received and upperLimit not changed

5 bLastFailed R/W 1 if reception of the last SCAN_RSP failed
and upperLimit was not changed

11 scanReqLen W Size of scan request data
12–15 pScanReqData W Pointer to buffer containing SCAN_REQ data

16–19 pDeviceAddress W Pointer to device address used for this
device

20–23 pWhiteList W Pointer to white list
24–25 Reserved

26 timeoutTrigger W Trigger that causes the device to stop
receiving as soon as allowed

27 endTrigger W Trigger that causes the device to stop
receiving as soon as allowed

28–31 timeoutTime W Time parameter for timeoutTrigger
32–35 endTime W Time parameter for endTrigger

Bluetooth low energy www.ti.com

1662 SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

Table 23-94. Initiator Command

Byte Index Field Name Bits Bit Field Name Type Description
0–3 pRxQ W Pointer to receive queue

4 rxConfig W Configuration bits for the receive queue
entries (see Table 23-103 for details)

5 initConfig

0 bUseWhiteList W
Initiator filter policy:
0: Use specific peer address.
1: Use white list

1 bDynamicWinOffset W 1: Use dynamic WinOffset insertion

2 deviceAddrType W The type of the device address – public (0)
or random (1)

3 peerAddrType W The type of the peer device address –
public (0) or random (1)

4 bStrictLenFilter W 1: Discard messages with illegal length
6 Reserved
7 connectReqLen W Size of connect request data

8–11 pConnectReqData W Pointer to buffer containing LLData to go in
the CONNECT_REQ

12–15 pDeviceAddress W Pointer to device address used for this
device

16–19 pWhiteList W Pointer to white list or peer address

20–23 connectTime R/W

Indication of timer value of the first possible
start time of the first connection event. Set
to the calculated value if a connection is
made and to the next possible connection
time (see Table 23-100) if not.

24–25 Reserved

26 timeoutTrigger W Trigger that causes the device to stop
receiving as soon as allowed

27 endTrigger W Trigger that causes the device to stop
receiving as soon as allowed

28–31 timeoutTime W Time parameter for timeoutTrigger
32–35 endTime W Time parameter for endTrigger

www.ti.com Bluetooth low energy

1663SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

Table 23-95. Generic RX Command

Byte Index Field Name Type Description

0–3 pRxQ W Pointer to receive queue. May be NULL; if so,
received packets are not stored

4 rxConfig W Configuration bits for the receive queue entries (see
Table 23-103 for details).

5 bRepeat W 0: End operation after receiving a packet.
1: Restart receiver after receiving a packet.

6–7 Reserved
8–11 accessAddress W Access address used on the connection
12–14 crcInit W CRC initialization value used on the connection

15 endTrigger W Trigger that causes the device to end the RX
operation

16–19 endTime W Time parameter for endTrigger

Table 23-96. TX Test Command

Byte Index Field Name Bits Bit Field Name Type Description

0–1 numPackets W
Number of packets to transmit
0: Transmit unlimited number of
packets

2 payloadLength W The number of payload bytes in each
packet

3 packetType W The packet type to be used

4–7 period W Number of radio timer cycles between
the start of each packet

8 config

0 bOverride W 0: Use default packet encoding
1: Override packet contents

1 bUsePrbs9 W If bOverride is 1:
1: Use PRBS9 encoding of packet

2 bUsePrbs15 W If bOverride is 1:
1: Use PRBS15 encoding of packet

9 byteVal W If config.bOverride is 1, value of each
byte to be sent

10 Reserved

11 endTrigger W Trigger that causes the device to end
the Test TX operation

12–15 endTime W Time parameter for endTrigger

Bluetooth low energy www.ti.com

1664 SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

23.6.1.3 Output Structures

Table 23-97. Master or Slave Commands

Byte Index Field Name Type Description

0 nTx R/W Number of packets (including automatic empty and
retransmissions) transmitted

1 nTxAck R/W Number of transmitted packets (including automatic empty) ACKed

2 nTxCtrl R/W Number of unique LL control packets from the TX queue
transmitted

3 nTxCtrlAck R/W Number of LL control packets from the TX queue finished (ACKed)

4 nTxCtrlAckAck R/W Number of LL control packets ACKed and where an ACK has been
sent in response

5 nTxRetrans R/W Number of retransmissions done
6 nTxEntryDone R/W Number of packets from the TX queue finished (ACKed)

7 nRxOk R/W Number of packets received with payload, CRC OK and not
ignored

8 nRxCtrl R/W Number of LL control packets received with CRC OK and not
ignored

9 nRxCtrlAck R/W Number of LL control packets received with CRC OK and not
ignored, and then ACKed

10 nRxNok R/W Number of packets received with CRC error

11 nRxIgnored R/W Number of packets received with CRC OK and ignored due to
repeated sequence number

12 nRxEmpty R/W Number of packets received with CRC OK and no payload

13 nRxBufFull R/W Number of packets received and discarded due to lack of buffer
space

14 lastRssi R RSSI of last received packet
15 pktStatus R/W Status of received packets; see Table 23-107
16–19 timeStamp R Slave operation: Timestamp of first received packet

Table 23-98. Advertiser Commands

Byte Index Field Name Type Description
0–1 nTxAdvInd R/W Number of ADV*_IND packets completely transmitted
2 nTxScanRsp R/W Number of SCAN_RSP packets transmitted
3 nRxScanReq R/W Number of SCAN_REQ packets received OK and not ignored
4 nRxConnectReq R/W Number of CONNECT_REQ packets received OK and not ignored
5 Reserved
6–7 nRxNok R/W Number of packets received with CRC error
8–9 nRxIgnored R/W Number of packets received with CRC OK, but ignored
10 nRxBufFull R/W Number of packets received that did not fit in RX queue
11 lastRssi R The RSSI of the last received packet
12–15 timeStamp R Timestamp of the last received packet

www.ti.com Bluetooth low energy

1665SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

Table 23-99. Scanner Command

Byte Index Field Name Type Description
0–1 nTxScanReq R/W Number of transmitted SCAN_REQ packets
2–3 nBackedOffScanReq R/W Number of SCAN_REQ packets not sent due to backoff procedure
4–5 nRxAdvOk R/W Number of ADV*_IND packets received with CRC OK and not ignored
6–7 nRxAdvIgnored R/W Number of ADV*_IND packets received with CRC OK, but ignored
8–9 nRxAdvNok R/W Number of ADV*_IND packets received with CRC error
10–11 nRxScanRspOk R/W Number of SCAN_RSP packets received with CRC OK and not ignored
12–13 nRxScanRspIgnored R/W Number of SCAN_RSP packets received with CRC OK, but ignored
14–15 nRxScanRspNok R/W Number of SCAN_RSP packets received with CRC error
16 nRxAdvBufFull R/W Number of ADV*_IND packets received that did not fit in RX queue
17 nRxScanRspBufFull R/W Number of SCAN_RSP packets received that did not fit in RX queue
18 lastRssi R The RSSI of the last received packet
19 Reserved

20–23 timeStamp R Timestamp of the last successfully received ADV*_IND packet that was
not ignored

Table 23-100. Initiator Command

Byte Index Field Name Type Description
0 nTxConnectReq R/W Number of transmitted CONNECT_REQ packets

1 nRxAdvOk R/W Number of ADV*_IND packets received with CRC OK and not
ignored

2–3 nRxAdvIgnored R/W Number of ADV*_IND packets received with CRC OK, but ignored
4–5 nRxAdvNok R/W Number of ADV*_IND packets received with CRC error

6 nRxAdvBufFull R/W Number of ADV*_IND packets received that did not fit in RX
queue

7 lastRssi R/W The RSSI of the last received packet

8–11 timeStamp R Timestamp of the received ADV*_IND packet that caused
transmission of CONNECT_REQ

Table 23-101. Generic RX Command

Byte
Index Field Name Type Description

0–1 nRxOk R/W Number of packets received with CRC OK
2–3 nRxNok R/W Number of packets received with CRC error

4–5 nRxBufFull R/W Number of packets that have been received and
discarded due to lack of buffer space

6 lastRssi R The RSSI of the last received packet
7 Reserved
8–11 timeStamp R Timestamp of the last received packet

Table 23-102. Test TX Command

Byte Index Field Name Type Description
0–1 nTx R/W Number of packets transmitted

Bluetooth low energy www.ti.com

1666 SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

23.6.1.4 Other Structures and Bit Fields

(1) This bit field is used for the rxConfig byte of the parameter structures.

Table 23-103. Receive Queue Entry Configuration Bit Field (1)

Bits Bit Field Name Description
0 bAutoFlushIgnored If 1, automatically remove ignored packets from RX queue.
1 bAutoFlushCrcErr If 1, automatically remove packets with CRC error from RX queue.
2 bAutoFlushEmpty If 1, automatically remove empty packets from RX queue.

3 bIncludeLenByte If 1, include the received length byte in the stored packet; otherwise discard
it.

4 bIncludeCrc If 1, include the received CRC field in the stored packet; otherwise discard
it. This requires pktConf.bUseCrc to be 1.

5 bAppendRssi If 1, append an RSSI byte to the packet in the RX queue.
6 bAppendStatus If 1, append a status byte to the packet in the RX queue.
7 bAppendTimestamp If 1, append a timestamp to the packet in the RX queue.

Table 23-104. Sequence Number Status Bit Field

Bits Bit Field Name Description
0 lastRxSn The SN bit of the header of the last packet received with CRC OK
1 lastTxSn The SN bit of the header of the last transmitted packet
2 nextTxSn The SN bit of the header of the next packet to transmit

3 bFirstPkt For slave: 0 if a packet has been transmitted on the connection, 1
otherwise

4 bAutoEmpty 1 if the last transmitted packet was an auto-empty packet
5 bLlCtrlTx 1 if the last transmitted packet was an LL control packet (LLID = 11)
6 bLlCtrlAckRx 1 if the last received packet was the ACK of an LL control packet

7 bLlCtrlAckPending 1 if the last successfully received packet was an LL control packet that has
not yet been ACKed

(1) The white list structure has the form of an array. Each element consists of 8 bytes. The first byte of the first element tells the
number of entries, and is reserved in the remaining entries. The second byte contains some configuration bits, and the remaining
6 bytes contain the address.

Table 23-105. White List Structure (1)

Byte Index Field Name Bits Bit Field Name Type Description

0–7 entry[0]

0–7 Size W Number of white list entries
8 bEnable W 1 if the entry is in use, 0 if the entry is not in use
9 addrType W The type address in the entry: public (0) or random (1)

10 bWlIgn R/W
1 if the entry is to be ignored by a scanner, 0 otherwise.
Used to mask out entries that have already been
scanned and reported.

11–15 Reserved
16–63 Address W The address contained in the entry

...

8×n–8×n+7 entry[n]

0–7 Reserved
8 bEnable W 1 if the entry is in use, 0 if the entry is not in use
9 addrType W The type address in the entry: public (0) or random (1)

10 bWlIgn R/W
1 if the entry is to be ignored by a scanner, 0 otherwise.
Used to mask out entries that have already been
scanned and reported.

11–15 Reserved
16–63 address W The address contained in the entry

www.ti.com Bluetooth low energy

1667SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

(1) A byte of this bit field is appended to the received entries if configured.

Table 23-106. Receive Status Byte Bit Field (1)

Bits Bit Field Name Description

0–5 channel The channel on which the packet was received, provided channel is in
the range 0–39; otherwise 0x3F

6 bIgnore 1 if the packet is marked as ignored, 0 otherwise
7 bCrcErr 1 if the packet was received with CRC error, 0 otherwise

The master and slave output structure field pktStatus follows the format described in Table 23-107. The
bTimeStampValid bit is set to 0 by the radio CPU at the start of the operation, and to 1 if a timestamp is
written to the output structure (this occurs for slave operation only). The bLastCrcErr bit is set according to
the CRC result when a packet is fully received; if no packet is received, this bit remains unaffected. The
remaining bits are set when a packet is received with CRC OK; if no packet is correctly received, these
bits remain unaffected.

Table 23-107. Master and Slave Packet Status Byte

Bits Bit Field Name Description
0 bTimeStampValid 1 if a valid timestamp has been written to timeStamp; 0 otherwise
1 bLastCrcErr 1 if the last received packet had CRC error; 0 otherwise
2 bLastIgnored 1 if the last received packet with CRC OK was ignored; 0 otherwise
3 bLastEmpty 1 if the last received packet with CRC OK was empty; 0 otherwise
4 bLastCtrl 1 if the last received packet with CRC OK was empty; 0 otherwise
5 bLastMd 1 if the last received packet with CRC OK had MD = 1; 0 otherwise

6 bLastAck 1 if the last received packet with CRC OK was an ACK of a transmitted
packet; 0 otherwise

7 Reserved

23.6.2 Interrupts
The radio CPU signals events back to the system CPU, using firmware-defined interrupts. Table 23-108
lists the interrupts used by the Bluetooth low energy commands. Each interrupt may be enabled
individually in the system CPU. Section 23.6.4 gives the details about when the interrupts are generated.

Table 23-108. Interrupt Definitions Applicable to Bluetooth low energy

Interrupt Number Interrupt Name Description
0 COMMAND_DONE A radio operation command has finished.

1 LAST_COMMAND_DONE The last radio operation command in a chain of
commands has finished.

4 TX_DONE A packet has been transmitted.
5 TX_ACK Acknowledgment received on a transmitted packet.
6 TX_CTRL Transmitted LL control packet

7 TX_CTRL_ACK Acknowledgment received on a transmitted LL control
packet.

8 TX_CTRL_ACK_ACK Acknowledgment received on a transmitted LL control
packet, and acknowledgment transmitted for that packet.

9 TX_RETRANS Packet has been retransmitted.
10 TX_ENTRY_DONE TX queue data entry state changed to Finished.

11 TX_BUFFER_CHANGED A buffer change is complete after
CMD_BLE_ADV_PAYLOAD.

16 RX_OK The packet is received with CRC OK, payload, and not to
be ignored.

17 RX_NOK The packet is received with CRC error.
18 RX_IGNORED The packet is received with CRC OK, but to be ignored.

Element
length

BLE
header

BLE payload
Received

CRC
RSSI Status Timestamp

0±2 bytes 1±2 bytes 0±37 bytes 0 or 3 bytes 0 or 1 byte 0 or 1 byte 0 or x bytes
Mandatory fields Optional fieldsOptional

Bluetooth low energy www.ti.com

1668 SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

Table 23-108. Interrupt Definitions Applicable to Bluetooth low energy (continued)
Interrupt Number Interrupt Name Description

19 RX_EMPTY The packet is received with CRC OK, not to be ignored,
no payload.

20 RX_CTRL LL control packet received with CRC OK, not to be
ignored.

21 RX_CTRL_ACK LL control packet received with CRC OK, not to be
ignored, then acknowledgment sent.

22 RX_BUF_FULL The packet is received that did not fit in the RX queue.
23 RX_ENTRY_DONE RX queue data entry changing state to Finished.

29 MODULES_UNLOCKED As part of the boot process, the Cortex-M0 has opened
access to RF core modules and memories.

30 BOOT_DONE The RF core CPU boot is finished.
31 INTERNAL_ERROR The radio CPU has observed an unexpected error.

23.6.3 Data Handling
For all the Bluetooth low energy commands, data received over the air is stored in a receive queue. Data
to be transmitted is fetched from a transmit queue for master and slave operation, while for the
nonconnected operations, the data is fetched from a specific buffer, or created entirely by the radio CPU
based on other available information.

23.6.3.1 Receive Buffers
A packet being received is stored in a receive buffer. First, a length byte or word is stored, if configured in
the RX entry, by config.lenSz. This word is calculated from the length received over the air and the
configuration of appended information.

Following the optional length field, the received header and payload is stored as received over the air. If
rxConfig.bIncludeLenByte is 1, the full 16-bit header, including the received length field, is stored, despite
the length field being redundant information if a length byte or word is present. If
rxConfig.bIncludeLenByte is 0, only the first byte of the header is stored, so that the second byte, which
only contains the redundant length field and some RFU bits, is discarded.

If rxConfig.bIncludeCrc is 1, the received CRC value is stored in the RX buffer. If rxConfig.bAppendRssi is
1, a byte indicating the received RSSI value is appended. If rxConfig.bAppendStatus is 1, a status byte of
the type RXStatus_t, as defined in Table 23-106, is appended. If rxConfig.bAppendTimeStamp is 1, a
timestamp indicating the start of the packet is appended. This timestamp corresponds to the ratmr_t data
type. Even though the timestamp is multibyte, no word-address alignment is made, so the timestamp must
be written and read byte-wise.

Figure 23-8 shows the format of an entry element in the RX queue.

Figure 23-8. Receive Buffer Entry Element

23.6.3.2 Transmit Buffers
For master and slave operations, transmit buffers are set up in a buffer queue. The length of the packet is
defined by the length field in the data entry. The first byte of the data entry gives the LLID that goes into
the data channel packet header. The NESN, SN, and MD bits are inserted automatically by the radio CPU,
the RFU bits are set to 0, and the length field is calculated from the length of the data entry.

www.ti.com Bluetooth low energy

1669SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

For advertising channel packets, the radio CPU automatically generates the header and the address fields
of the payload. The data that comes after the address fields for each message type is given by a pointer
to a data buffer. The number of bytes in this buffer is given in a separate parameter. If no data bytes are
to be transmitted, this can be indicated by setting the length to 0. In this case, the pointer is ignored, and
may be set to NULL. For Bluetooth low energy compliance, the ADV_DIRECT_IND and SCAN_REQ
messages have no payload, but for the possibility of overriding this, data buffers are still present. For
CONNECT_REQ messages, the data are required to have length 22 for Bluetooth low energy compliance,
but the implementation allows any length.

23.6.4 Radio Operation Command Descriptions
Before running any radio operation command described in this document, the radio must be set up in
Bluetooth low energy mode using the command CMD_RADIO_SETUP. Otherwise, the operation ends
with an error.

The operations start with a radio operation command from the system CPU. The actual start of the
operation is set up by the radio CPU according to startTrigger and startTime in the command structure. At
this time, the radio CPU starts configuring the transmitter or receiver, depending on the type of operation.
The system CPU must consider the setup time of the transmitter or receiver when calculating the start
time of the operation.

The radio CPU sets up the channel based on the channel parameter. If the channel is in the range from 0
to 39, it indicates a data channel index or advertising channel index. In this case, only the values 0 to 36
are allowed in master and slave commands, and only the values 37 to 39 are allowed in advertiser,
scanner, and initiator commands. If the channel is in the range from 60 to 207, it indicates an RF with an
offset of 2300 MHz. If the channel is 255, the radio CPU does not program any frequency word, but keeps
the frequency already programmed with CMD_FS. If the channel is 255 and the frequency synthesizer is
not running, the operation ends with an error.

The whitening parameter indicates the initialization of the 7-bit LFSR used for data whitening in Bluetooth
low energy. If whitening.bOverride is 0 and the channel is in the range from 0 to 39, the LFSR initializes
with (0x40 | channel). Otherwise, the LFSR initializes with whitening.init. If whitening.init is 0 in this case,
no whitening is used.

All packets transmitted using Bluetooth low energy radio operation commands have a Bluetooth low-
energy-compliant CRC appended. On all packets received using Bluetooth low-energy radio-operation
commands, a Bluetooth low-energy-compliant CRC-check is performed. The initialization of the CRC
register is defined for each command.

The radio CPU times transmissions immediately following receptions, to fulfill the requirements for T_IFS.
For reception immediately following transmissions, the radio CPU times the start of RX and time-out so
that it always receives a packet transmitted at a time within the limits set by the Bluetooth low energy
standard, but without excessive margins, to avoid false syncing on advertising channels. For the first
receive operation in a slave command, the radio CPU sets up a time-out as defined in pParams-
>timeoutTrigger and pParams->timeoutTime. The time of this trigger depends on the sleep-clock
uncertainty, both in the slave and the peer master.

When the receiver is running, the message is received into an RX entry as described in Section 23.6.3.1
and Section 23.3.2.7. The radio CPU has flags bCrcErr and bIgnore, which are written to the
corresponding fields of the status byte of the RX entry if present. If there is a CRC error on the received
packet, the bCrcErr flag is set. If the CRC is OK, the bIgnore flag may be set based on principles defined
for each role. This flag indicates that the system CPU may ignore the packet. After receiving a packet, the
radio CPU raises an interrupt to the system CPU.

If a packet is received with a length that is too great, the reception is stopped and treated as if sync had
not been obtained on the packet. By default, the maximum allowed payload length of advertising channel
packets is 37, and the maximum allowed length of data channel packets is 31 (which can never be
violated because the length field in this case is 5 bits). If either the bCrcErr or bIgnore flag is set or if the
packet was empty (as defined under each operation), the packet may be removed from the RX entry
before raising the interrupt, depending on the bAutoFlushIgnored, bAutoFlushCrc, and bAutoFlushEmpty
bits of pParams->rxConfig.

Bluetooth low energy www.ti.com

1670 SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

The status field of the command issued is updated during the operation. When submitting the command,
the system CPU writes this field with a state of IDLE (see Table 23-109). During the operation, the radio
CPU updates the field to indicate the operation mode. When the operation is done, the radio CPU writes a
status indicating that the operation is finished. Table 23-109 lists the status codes to be used by a
Bluetooth low energy radio operation.

Table 23-109. Bluetooth low energy Radio Operation Status Codes

Number Name Description
Operation Not Finished
0x0000 IDLE Operation not started
0x0001 PENDING Waiting for start trigger
0x0002 ACTIVE Running operation
Operation Finished Normally
0x1400 BLE_DONE_OK Operation ended normally

0x1401 BLE_DONE_RXTIMEOUT Time-out of first RX of slave operation or end
of scan window

0x1402 BLE_DONE_NOSYNC Time-out of subsequent RX

0x1403 BLE_DONE_RXERR Operation ended because of receive error
(CRC or other)

0x1404 BLE_DONE_CONNECT CONNECT_REQ received or transmitted
0x1405 BLE_DONE_MAXNACK Maximum number of retransmissions exceeded
0x1406 BLE_DONE_ENDED Operation stopped after end trigger
0x1407 BLE_DONE_ABORT Operation aborted by abort command
0x1408 BLE_DONE_STOPPED Operation stopped after stop command
Operation Finished With Error
0x1800 BLE_ERROR_PAR Illegal parameter

0x1801 BLE_ERROR_RXBUF No available RX buffer (advertiser, scanner,
initiator)

0x1802 BLE_ERROR_NO_SETUP Radio was not set up in Bluetooth low energy
mode

0x1803 BLE_ERROR_NO_FS Synthesizer was not programmed when
running RX or TX

0x1804 BLE_ERROR_SYNTH_PROG Synthesizer programming failed
0x1805 BLE_ERROR_RXOVF RX overflow observed during operation
0x1806 BLE_ERROR_TXUNF TX underflow observed during operation

The conditions for giving each status are listed for each operation. Some of the error causes listed in
Table 23-109 are not repeated in these lists. In some cases, general error causes may occur. In all of
these cases, the result of the operation is ABORT.

www.ti.com Bluetooth low energy

1671SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

23.6.4.1 Link Layer Connection
At the start of a slave or master operation, the radio CPU waits for the start trigger, then programs the
frequency based on the channel parameter of the command structure. The channel parameter is not
allowed to be 37, 38, or 39, because these are advertising channels. The radio CPU sets up the access
address defined in pParams->accessAddress, and uses the CRC initialization value defined in pParams-
>crcInit. The whitener is set up as defined in the whitening parameter. The radio CPU then configures the
receiver or transmitter. The operation continues with reception and transmission, until it is ended by one of
the end-of-command criteria.

When the demodulator obtains sync on a message, the message is received into the first available RX
buffer that can fit the packet. The flags bCrcErr and bIgnore are set according to Table 23-110 depending
on the CRC result, and whether the SN field of the header was the same as the SN field of the last
successfully received packet. A received packet that has a payload length of 0 is viewed as an empty
packet. This means that if pParams->rxConfig.bAutoflushEmpty is 1 and bCrcErr and bIgnore are both 0,
the packet is removed from the RX buffer.

Table 23-110. Actions on Received Packets

CRC Result SN Different than Previous bCrcErr bIgnore
OK Yes 0 0
OK No 0 1
NOK X 1 0

If there is no available RX buffer with enough available space to hold the received packet, the received
data are discarded. The packet is received, however, so that the CRC can be checked. When the packet
has been received, the radio CPU sets the sequence bits so that a retransmission of the lost packet is
requested (that is, NACK), unless the packet would have been discarded from the RX queue anyway due
to the setting of pParams->rxConfig.

If two subsequent packets are received with CRC error, the command ends, as required by the Bluetooth
low energy specification.

When a packet must be transmitted or retransmitted, it is read from the current data entry in the TX queue
unless the TX queue is empty or an automatic empty packet must be retransmitted. The radio CPU
creates the header as follows: the LLID bits are inserted from the first byte of the TX data entry. The SN
and NESN bits are set to values according to the Bluetooth low energy protocol. The MD bit is calculated
automatically. If the TX queue is empty, an empty packet (LLID = 0x1, Length = 0) is transmitted. This
empty packet is referred to as an automatic empty packet.

Bluetooth low energy www.ti.com

1672 SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

Interrupts can be raised on different conditions. The pOutput structure contains counters corresponding to
the interrupts. Table 23-111 lists the conditions for incrementing each counter or raising an interrupt. More
than one condition may be fulfilled after a packet is transmitted or received. In the list of conditions, the
term acknowledgment is used, which is defined as a successfully received packet with an NESN value in
the header different from the SN value of the last transmitted packet.

Table 23-111. Conditions for Incrementing Counters and Raising Interrupts
for Master and Slave Commands

Condition Counter Incremented Interrupt Generated
Packet transmitted nTx TX_DONE
Packet transmitted and acknowledgment received nTxAck TX_ACK
Packet with LLID = 11b transmitted nTxCtrl TX_CTRL
Packet with LLID = 11b transmitted and acknowledgment received nTxCtrlAck TX_CTRL_ACK
Packet with LLID = 11b transmitted, acknowledgment received, and
acknowledgment sent nTxCtrlAckAck TX_CTRL_ACK_ACK

Packet transmitted with same SN as previous transmitted packet nTxRetrans TX_RETRANS
Packet with payload transmitted and acknowledgment received nTxEntryDone TX_ENTRY_DONE
Packet received with bCrcErr = 0, bIgnore = 0, and payload length > 0 nRxOk RX_OK
Packet received with CRC error (bCrcErr = 1) nRxNok RX_NOK
Packet received with bCrcErr = 0 and bIgnore = 1 nRxIgnored RX_IGNORED
Packet received with bCrcErr = 0, bIgnore = 0, and payload length = 0 nRxEmpty RX_EMPTY
Packet received with LLID = 11b, bCrcErr = 0 and bIgnore = 0 nRxCtrl RX_CTRL
Packet received with LLID = 11b, bCrcErr = 0 and bIgnore = 0, and
acknowledgment sent nRxCtrlAck RX_CTRL_ACK

Packet received which did not fit in RX buffer and was not to be flushed nRxBufFull RX_BUF_FULL
The first RX data entry in the RX queue changed state to finished — RX_ENTRY_DONE

www.ti.com Bluetooth low energy

1673SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

The radio CPU maintains two counters: one packet counter nPkt, and one NACK counter nNack. These
two counters are both initialized to pParams->maxPkt and pParams->maxNack, respectively, at the start
of the master or slave radio operation. The packet counter nPkt is decremented each time a packet is
transmitted. The NACK counter nNack is decremented if a packet is received that does not contain an
acknowledgment of the last transmitted packet, and is reset to pParams->maxNack if an acknowledgment
is received. If either counter counts to 0, the operation ends. This occurs after a packet has been received
for master and a packet has been transmitted for slave. Setting pParams->maxPkt or pParams->maxNack
to 0 disables the corresponding counter functionality.

A trigger to end the operation is set up by pParams->endTrigger and pParams->endTime. If the trigger
defined by this parameter occurs, the radio operation ends as soon as possible. Any packet transmitted
after this has MD = 0, and the connection event ends after the next packet has been transmitted for a
slave or received for a master. If the immediate command CMD_STOP is received by the radio CPU, it
has the same meaning as the end trigger occurring, except that the status code after ending is
CMD_DONE_STOPPED.

The register pParams->seqStat contains bits that are updated by the radio CPU during operation, and are
used to get correct operation on SN and NESN and retransmissions. The rules for the radio CPU follow:
• Before the first operation on a connection, the bits in pParams->seqStat are set as follows by the

system CPU:
– lastRXSn = 1
– lastTXSn = 1
– nextTXSn = 0
– bFirstPkt = 1
– bAutoEmpty = 0
– bLlCtrlRX = 0
– bLlCtrlAckRX = 0
– bLlCtrlAckPending = 0

• When determining if the SN field of the header was the same as the SN field of the last successfully
received packet, the received SN bit is compared to pParams->seqStat.lastRXSn.

• If a packet is received with correct CRC and the packet fits in an RX buffer, the received SN is stored
in pParams->seqStat.lastRXSn. If the packet was an LL control packet (LLID = 11b) and the packet
was not to be ignored, pParams->seqStat.bLlCtrlAckPending is set to 1 and an RX_CTRL interrupt is
raised.

• If a packet is received with correct CRC and the received NESN bit is different from pParams-
>seqStat.lastTXSn, pParams->seqStat.nextTXSn is set to the value of the received NESN bit
(regardless of whether the packet fits in an RX buffer).

• If pParams->seqStat.bFirstPkt = 0:
– If pParams->seqStat.nextTXSn was updated and became different from pParams-

>seqStat.lastTXSn after reception of a packet, nNack is set to pParams->maxNack and a TX_ACK
interrupt is raised.

– Otherwise, nNack is decremented.
– If pParams->seqStat.nextTXSn was updated and became different from pParams-

>seqStat.lastTXSn after reception of a packet, and pParams->seqStat.bAutoEmpty = 0, the current
TX queue entry is finished and the next one is set as active, and a TX_ENTRY_DONE interrupt is
raised. If pParams->seqStat.bLlCtrlTX = 1, an TX_CTRL_ACK interrupt is raised and pParams-
>seqStat.bLlCtrlAckRX is set to 1.

– If pParams->seqStat.nextTXSn was updated and became different from pParams-
>seqStat.lastTXSn after reception of a packet, pParams->seqStat.bAutoEmpty is set to 0.

• If no buffer is available in the TX queue, or if pParams->seqStat.nextTXSn is equal to pParams-
>seqStat.lastTXSn and pParams->seqStat.bAutoEmpty = 1 when transmission of a packet is to occur,
an automatically empty packet is transmitted. Nothing is read from the TX queue. Otherwise, the
transmitted packet is read from the first entry of the TX queue.

• In the header of a transmitted packet, the SN bit is set to the value of pParams->seqStat.nextTXSn,
and the NESN bit is set to the inverse of pParams->seqStat.lastRXSn.

Bluetooth low energy www.ti.com

1674 SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

• After a packet has been transmitted:
– If pParams->seqStat.nextTXSn is equal to pParams->seqStat.lastTXSn, a TX_RETRANS interrupt

is raised.
– If pParams->seqStat.nextTXSn is different from pParams->seqStat.lastTXSn after a transmission

and the transmitted packet had LLID = 11b, a TX_Ctrl interrupt is raised.
– If pParams->seqStat.nextTXSn is different from pParams->seqStat.lastTXSn after a transmission

and pParams->seqStat.bLlCtrlAckPending = 1, an RX_CTRL_ACK interrupt is raised.
– If pParams->seqStat.nextTXSn is different from pParams->seqStat.lastTXSn after a transmission

and pParams->seqStat.bLlCtrlAckRX = 1, a TX_CTRL_ACK_ACK interrupt is raised.
– pParams->seqStat.lastTXSn is set to the value of pParams->seqStat.nextTXSn.
– pParams->seqStat.bAutoEmpty is set to 1 if the packet was not read from the TX queue, otherwise

to 0.
– pParams->seqStat.bLlCtrlTX is set to 1 if the transmitted packet had LLID = 11, otherwise to 0.
– pParams->seqStat.firstPkt, pParams ->seqStat.bLlCtrlAckPending, and pParams-

>seqStat.bLlCtrlAckRX is set to 0.
– A TX_DONE interrupt is raised.
– nPkt is decremented.

When an interrupt is raised as described previously, the corresponding counter given in Table 23-90 is
incremented.

In the header of a transmitted packet, the MD bit is set according to the following rules:
• If the transmit queue is empty or the packet being transmitted is the last packet of the transmit queue,

MD is 0.
• If the trigger described in pParams->endTrigger has occurred, MD is 0.
• If the counter nPkt is 1, MD is 0.
• Otherwise, MD is 1.

The pOutput structure contains counters that are updated by the radio CPU as explained previously and in
Table 23-90. The radio CPU does not initialize the fields, so this must be done by the system CPU when a
reset of the counters is desired. In addition to the counters, the radio CPU sets the following fields:
• If a packet is received, lastRssi is set to the RSSI of that packet.
• For slave commands, timeStamp is set to the timestamp of the start of the first received packet, if any

packet is received. bValidTimeStamp is set to 0 at the beginning of the operation and to 1 if a packet is
received so that timeStamp is written.

For correct operation, the value of pParams->seqStat is the same at the beginning of a command as at
the end of the previous operation of the same connection. The TX queue must also be unmodified
between commands operating on the same connection, except that packets may be appended to the
queue.

www.ti.com Bluetooth low energy

1675SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

23.6.4.2 Slave Command
A slave radio operation is started by a CMD_BLE_SLAVE command. In the command structure, it has a
pParams parameter of the type defined in Table 23-90, and a pOutput parameter of the type defined in
Table 23-97. The operation starts with reception. The parameters pParams->timeoutTrigger and
pParams->timeoutTime define the time to end the operation if no sync is found by the demodulator. The
startTrigger and pParams->timeoutTrigger together define the receive window for the slave.

The first received packet of a new LL connection on a slave is given special treatment, and is signaled by
the system CPU by setting pParams->seqStat.bFirstPkt to 1 when starting the first slave operation of a
new connection. When this flag is set, the received packet is not viewed as an ACK or NACK of a
previous transmitted packet. When a packet has been transmitted, the radio CPU clears pParams-
>seqStat.bFirstPkt.

The radio CPU writes a timestamp of the first received packet of the radio operation into pOutput-
>timeStamp. The captured time can be used by the system CPU as an anchor point to calculate the start
of future slave commands. This time is also defined as event 1, and may be used for timing subsequent
chained operations. If no anchor point is found, event 1 is the time of the start of the slave operation.

If a packet is received with CRC error, the radio CPU ends the radio operation if the previous packet in the
same radio operation was also received with CRC error (see Table 23-112). Otherwise, if a packet is
received, the radio CPU starts the transmitter and transmits from the TX queue, or transmits an
automatically empty packet if the TX queue is empty. The transmission may be a retransmission. Unless
the operation ends due to the criteria listed in Table 23-112, the receiver starts after the transmission is
done.

A slave operation ends due to one of the causes listed in Table 23-112. After the operation has ended, the
status field of the command structure (2 status bytes listed in Table 23-8) indicates why the operation
ended. In all cases, a COMMAND_DONE interrupt is raised. In each case, it is indicated if the result is
TRUE, FALSE, or ABORT, which decides the next action.

Table 23-112. End of Slave Operation

Condition Status Code Result
Transmitted packet with MD=0 after having successfully received packet
where MD bit of header is 0. BLE_DONE_OK TRUE

Transmitted packet with MD=0 after having received packet which did not fit
in RX queue. BLE_DONE_OK TRUE

Finished transmitting packet and nPkt counted to 0. BLE_DONE_OK TRUE
Trigger indicated by pParams->timeoutTrigger occurred before demodulator
sync is ever obtained after starting the command. BLE_DONE_RXTIMEOUT FALSE

No sync obtained on receive operation after transmit. BLE_DONE_NOSYNC TRUE
Two subsequent packets in the same operation were received with CRC
error. BLE_DONE_RXERR TRUE

Finished transmitting packet after the internal counter nNack had counted
down to 0. BLE_DONE_MAXNACK TRUE

Finished transmitting packet after having observed trigger indicated by
pParams->endTrigger. BLE_DONE_ENDED FALSE

Finished transmitting packet after having observed CMD_STOP. BLE_DONE_STOPPED FALSE
Received CMD_ABORT. BLE_DONE_ABORT ABORT
Illegal value of channel BLE_ERROR_PAR ABORT
TX data entry length field has illegal value. BLE_ERROR_PAR ABORT

Bluetooth low energy www.ti.com

1676 SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

23.6.4.3 Master Command
A master radio operation is started by a CMD_BLE_MASTER command. In the command structure, it has
a pParams parameter of the type defined in Table 23-91 and a pOutput parameter of the type defined in
Table 23-97. The operation starts with transmission. After each transmission, the receiver is started.

A master operation ends due to one of the causes listed in Table 23-113. After the operation has ended,
the status field of the command structure (2 status bytes listed in Table 23-8) indicates why the operation
ended. In all cases, a COMMAND_DONE interrupt is raised. In each case, it is indicated if the result is
TRUE, FALSE, or ABORT, which decides the next action.

Table 23-113. End of Master Operation

Condition Status Code Result
Successfully received packet with MD = 0 after having transmitted a
packet with MD = 0. BLE_DONE_OK TRUE

Received packet which did not fit in RX queue after having transmitted
a packet with MD = 0. BLE_DONE_OK TRUE

Received a packet after nPkt had counted to 0. BLE_DONE_OK TRUE
No sync obtained on receive operation after transmit. BLE_DONE_NOSYNC TRUE
Two subsequent packets in the same operation were received with
CRC error. BLE_DONE_RXERR TRUE

The internal counter nNack counted down to 0 after a packet was
received. BLE_DONE_MAXNACK TRUE

Received a packet after having observed trigger indicated by pParams
>endTrigger. BLE_DONE_ENDED FALSE

Received a packet after having observed CMD_STOP. BLE_DONE_STOPPED FALSE
Received CMD_ABORT. BLE_DONE_ABORT ABORT
Illegal value of channel BLE_ERROR_PAR ABORT
TX data entry length field has illegal value. BLE_ERROR_PAR ABORT

23.6.4.4 Advertiser
At the start of any advertiser operation, the radio CPU waits for the start trigger, then programs the
frequency based on the channel parameter of the command structure. The channel parameter is not
allowed to be in the range from 0 to 36, as these are data channels. The radio CPU sets up the
advertising channel access address and uses the CRC initialization value 0x55 5555. The whitener is set
up as defined in the whitening parameter. The radio CPU then configures the transmitter. Except for an
advertiser that is not connectable, the operation goes on with reception after transmission, and if a
SCAN_REQ is received, another transmission of a SCAN_RSP may occur.

In Bluetooth low energy mode, advertising is usually done over all three advertising channels. To set this
up, three command structures can be chained using the pNextOp parameter. Typically, the parameter and
output structures can be the same for all channels.

The first packet transmitted is always an ADV*_IND packet. This packet consists of a header, an
advertiser address, and advertising data, except for the ADV_DIRECT_IND packet used in directed
advertising. The radio CPU constructs these packets as follows (the ADV_DIRECT_IND packet is
described in Section 23.6.4.4.2). In the header, the PDU Type bits are as shown in Table 23-114. The
TXAdd bit is as shown in pParams->advConfig.deviceAddrType. The length is calculated from the size of
the advertising data, meaning that it is pParams->advLen + 6. The RXAdd bit is not used and is 0, along
with the RFU bits. The payload starts with the 6-byte device address, which is read from pParams-
>pDeviceAddress. The rest of the payload is read from the pParams->pAdvData buffer (if pParams-
>advLen is nonzero).

www.ti.com Bluetooth low energy

1677SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

Table 23-114. PDU Types for Different Advertiser Commands

Command Type of Advertising Packet Value of PDU Type Bits in Header
CMD_BLE_ADV ADV_IND 0000b
CMD_BLE_ADV_DIR ADV_DIRECT_IND 0001b
CMD_BLE_ADV_NC ADV_NONCONN_IND 0010b
CMD_BLE_ADV_SCAN ADV_SCAN_IND 0110b

Except when an advertiser is not connectable, the receiver starts after the ADV*_IND packet has been
transmitted. Depending on the type of advertiser operation, the receiver listens for a SCAN_REQ or a
CONNECT_REQ message. If the demodulator obtains sync, the header is checked once it is received,
and if it is not a SCAN_REQ or CONNECT_REQ message, the demodulator is stopped immediately.

A SCAN_REQ or CONNECT_REQ message is received into the RX queue given by pParams->pRxQ, as
described in Section 23.6.3.1. The bCrcErr and bIgnore bits are set according to the CRC result and the
received message. For connectable undirected or scannable advertising, the AdvA field in the message,
along with the TXAdd bit of the received header, is compared to the pParams->pDeviceAddress array and
the pParams->advConfig.deviceAddrType bit, respectively, to see if the message was addressed to this
advertiser. Then, depending on the advertising filter policy given by pParams->advConfig.advFilterPolicy,
the received ScanA or InitA field, along with the RXAdd bit of the received header, is checked against the
white list as described in Section 23.6.4.9, except for a directed advertiser, where the received header is
compared against the peer address as described in Section 23.6.4.4.2. Depending on this comparison, the
actions taken are as given in Table 23-115, where the definition of each action, including the value used
on the bCrcErr and bIgnore bits, is given in Table 23-116. If pParams->advConfig.bStrictLenFilter is 1,
only length fields that are compliant with the Bluetooth low energy specification are considered valid. For a
SCAN_REQ, that means a length field of 12, and for a CONNECT_REQ it means a length field of 34. If
pParams->advConfig.bStrictLenFilter is 0, all received packets with a length field less than or equal to the
maximum length of an advertiser packet (37, but can be overridden) are considered valid. If the length is
not valid, the receiver is stopped.

(1) C – connectable undirected; D – connectable directed; S – scannable; X – don't care; N/A – not applicable

Table 23-115. Actions to Take Based on Received Packets for Advertisers (1)

PDU Type CRC Result Advertiser
Type Valid Length

AdvA
Matches Own
Address

Filter Policy
ScanA or
InitA Present
in White List

Action
Number

SCAN_REQ OK C, S Yes No X X 1
SCAN_REQ OK C, S Yes Yes 1 or 3 No 1
SCAN_REQ OK C, S Yes Yes 1 or 3 Yes 2
SCAN_REQ OK C, S Yes Yes 0 or 2 X 2
SCAN_REQ NOK C, S Yes X X X 3
SCAN_REQ X C, S No X X X 5
SCAN_REQ X D X X X X 5
CONNECT_REQ OK C, D Yes No X X 1
CONNECT_REQ OK C, D Yes Yes 2 or 3 No 1
CONNECT_REQ OK C, D Yes Yes 2 or 3 Yes 4
CONNECT_REQ OK C, D Yes Yes 0 or 1 X 4
CONNECT_REQ NOK C, D Yes X X X 3
CONNECT_REQ X C, D No X X X 5
CONNECT_REQ X S X X X X 5
Other X X X N/A X N/A 5
No packet received N/A X N/A N/A X N/A 5

Bluetooth low energy www.ti.com

1678 SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

Table 23-116. Descriptions of the Actions to Take on Received Packets

Action Number bCrcErr bIgnore Description
1 0 1 End operation with BLE_DONE_OK status.
2 0 0 Transmit SCAN_RSP message.
3 1 0 End operation with BLE_DONE_RXERR status.
4 0 0 End operation with BLE_DONE_CONNECT status.

5 — — Stop receiver immediately and end operation with
BLE_DONE_NOSYNC status.

If a SCAN_REQ packet is received with a length of 12 (or less), it is viewed as an empty packet. This
means that if pParams->rxConfig.bAutoflushEmpty is 1 and the bCrcErr and bIgnore bits are both 0, the
packet is removed from the RX buffer. If a packet is flagged by bIgnore or bCrcErr, it may also be
removed, based on the bits in pParams->rxConfig.

If the packet received did not fit in the RX queue, the packet is received to the end, but the received bytes
are not stored. If the packet would normally not have been discarded from the RX queue based on the bits
in pParams->rxConfig, the command ends.

If, according to Table 23-115 and Table 23-116, the next action is to transmit a SCAN_RSP, the radio
CPU starts the transmitter to transmit this packet. It consists of a header, an advertiser address, and
advertising data. The radio CPU constructs these packets as follows. In the header, the PDU Type bits are
0100b. The TXAdd bit is as shown in pParams->advConfig.devicAddrType. The length is calculated from
the size of the scan response data, pParams->scanRspLen + 6. The RXAdd bit is not used and is 0, along
with the RFU bits. The payload starts with the 6-byte device address, which is read from
pParams->pDeviceAddress. The rest of the payload is read from the pParams->pScanRspData buffer.
After the SCAN_RSP has been transmitted, the command ends.

A trigger to end the operation is set up by pParams->endTrigger. If the trigger defined by this parameter
occurs, the radio operation continues to completion, but the status code after ending is
BLE_DONE_ENDED and the result is FALSE. This can, for instance, be used to stop execution instead of
proceeding with the next chained operation by use of the condition in the command structure. If the
immediate command CMD_STOP is received by the radio CPU, CMD_STOP has the same meaning as
the end trigger occurring, except that the status code after ending is CMD_DONE_STOPPED.

The output structure pOutput contains fields which give information on the command being run. The radio
CPU does not initialize the fields, so this must be done by the system CPU when a reset of the counters is
desired. The fields are updated by the radio CPU as described in the following list. The list also indicates
when interrupts are raised in the system CPU.
• When the ADV*_IND packet has been transmitted, nTXAdvInd is incremented and a TX_DONE

interrupt is raised.
• If a SCAN_RSP packet has been transmitted, nTxScanRsp is incremented afterward, and a TX_DONE

interrupt is raised.
• If a SCAN_REQ is received with CRC OK and the bIgnore is flag cleared, nRxScanReq is

incremented. If the payload length is 12 or less, an RX_EMPTY interrupt is raised. If the payload length
is greater than 12, an RX_OK interrupt is raised.

• If a CONNECT_REQ is received with CRC OK and the bIgnore flag is cleared, nRxConnectReq is
incremented and an RX_OK interrupt is raised.

• If a packet is received with CRC error, nRxNok is incremented and an RX_NOK interrupt is raised.
• If a packet is received and the bIgnore flag is set, nRxIgnored is incremented and an RX_IGNORED

interrupt is raised.
• If a packet is received that did not fit in the RX queue, nRxBufFull is incremented and an

RX_BUF_FULL interrupt is raised.
• If a packet is received, lastRssi is set to the RSSI of that packet.
• If a packet is received, timeStamp is set to a timestamp of the start of that packet. For a

CONNECT_REQ, this can be used to calculate the anchor point of the first packet.
• If the first RX data entry in the RX queue changed state to Finished after a packet was received, an

RX_ENTRY_DONE interrupt is raised.

www.ti.com Bluetooth low energy

1679SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

23.6.4.4.1 Connectable Undirected-Advertiser Command
A connectable undirected-advertiser operation is started by a CMD_BLE_ADV command. In the command
structure, it has a pParams parameter of the type defined in Table 23-92, and a pOutput parameter of the
type defined in Table 23-98. The operation starts with transmission and operates as described in
Section 23.6.4.4.

A connectable undirected-advertiser operation ends with one of the statuses listed in Table 23-117. After
the operation has ended, the status field of the command structure (2 status bytes listed in Table 23-8)
indicates why the operation ended. In all cases, a COMMAND_DONE interrupt is raised. In each case, it
is indicated if the result is TRUE, FALSE, or ABORT, which decides the next action.

Table 23-117. End of Connectable Undirected-Advertiser Operation

Condition Status Code Result
Performed Action Number 1 after running receiver. BLE_DONE_OK TRUE
Performed Action Number 2 and transmitted SCAN_RSP. BLE_DONE_OK TRUE
Performed Action Number 3 after running receiver. BLE_DONE_RXERR TRUE
Performed Action Number 4 after running receiver. BLE_DONE_CONNECT FALSE
Performed Action Number 5 after running receiver. BLE_DONE_NOSYNC TRUE
Observed trigger indicated by pParams->endTrigger, then performed
Action Number 1, 2, 3, or 5. BLE_DONE_ENDED FALSE

Observed CMD_STOP, then performed Action Number 1, 2, 3, or 5. BLE_DONE_STOPPED FALSE
Received CMD_ABORT. BLE_DONE_ABORT ABORT
No space in RX buffer to store received packet. BLE_ERROR_RXBUF FALSE
Illegal value of channel BLE_ERROR_PAR ABORT
Advertising data or scan response data length field has illegal value. BLE_ERROR_PAR ABORT

23.6.4.4.2 Connectable Directed-Advertiser Command
A connectable directed-advertiser operation is started by a CMD_BLE_ADV_DIR command. In the
command structure, it has a pParams parameter of the type defined in Table 23-92, and a pOutput
parameter of the type defined in Table 23-98. The operation starts with transmission and operates as
described in Section 23.6.4.4, with some modifications as described in the following paragraphs.

For the directed advertiser, pParams->pWhiteList points to a buffer containing only the device address of
the device to which to connect. The address type of the peer is given in pParams-
>advConfig.peerAddrType. The first transmit operation sends an ADV_DIRECT_IND packet. The radio
CPU constructs this packet as follows. In the header, the PDU Type bits are 0001b as shown in Table 23-
114. The TXAdd bit is as shown in pParams->advConfig.deviceAddrType. The RXAdd bit is as shown in
pParams->advConfig.peerAddrType.

The length is calculated from the size of the advertising data, pParams->advLen + 12. The RFU bits are 0.
The payload starts with the 6-byte device address, which are read from pParams->pDeviceAddress,
followed by the 6-byte peer address read from pParams->pWhiteList. By the Bluetooth low energy
specification, there is no more payload, but a noncompliant message may be constructed by setting
pParams->advLen to a nonzero value. If so, the rest of the payload is read from the pParams->pAdvData
buffer.

The receiver is started after the ADV_DIRECT_IND packet has been transmitted as described in
Section 23.6.4.4, and received packets are processed as described there. When checking the address
against the white list, check the received RXAdd bit against pParams->advConfig.peerAddrType, and
check the received InitA field against pParams->pWhiteList.

A directed-advertiser operation ends with one of the statuses listed in Table 23-118. After the operation
has ended, the status field of the command structure (2 status bytes listed in Table 23-8) indicates why
the operation ended. In all cases, a COMMAND_DONE interrupt is raised. In each case, it is indicated if
the result is TRUE, FALSE, or ABORT, which decides the next action.

Bluetooth low energy www.ti.com

1680 SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

Table 23-118. End of Directed-Advertiser Operation

Condition Status Code Result
Performed Action Number 1 after running receiver. BLE_DONE_OK TRUE
Performed Action Number 3 after running receiver. BLE_DONE_RXERR TRUE
Performed Action Number 4 after running receiver. BLE_DONE_CONNECT FALSE
Performed Action Number 5 after running receiver. BLE_DONE_NOSYNC TRUE
Observed trigger indicated by pParams->endTrigger, then performed
Action Number 1, 3, or 5. BLE_DONE_ENDED FALSE

Observed CMD_STOP, then performed Action Number 1, 3, or 5. BLE_DONE_STOPPED FALSE
Received CMD_ABORT. BLE_DONE_ABORT ABORT
No space in RX buffer to store received packet. BLE_ERROR_RXBUF FALSE
Illegal value of channel BLE_ERROR_PAR ABORT
Advertising data length field has illegal value. BLE_ERROR_PAR ABORT

23.6.4.4.3 Nonconnectable Advertiser Command
An advertiser operation that is not connectable is started by a CMD_BLE_ADV_NC command. In the
command structure, it has a pParams parameter of the type defined in Table 23-92, and a pOutput
parameter of the type defined in Table 23-98. The operation starts with transmission and operates as
described in Section 23.6.4.4. After transmission of an ADV_NONCONN_IND, the operation ends without
any receive operation.

An advertiser operation that is not connectable ends with one of the statuses listed in Table 23-119. After
the operation has ended, the status field of the command structure (2 status bytes listed in Table 23-8)
indicates why the operation ended. In all cases, a COMMAND_DONE interrupt is raised. In each case, it
is indicated if the result is TRUE, FALSE, or ABORT, which decides the next action.

Table 23-119. End of Nonconnectable Advertiser Operation

Condition Status Code Result
Transmitted ADV_NONCONN_IND. BLE_DONE_OK TRUE
Observed trigger indicated by pParams->endTrigger, then finished
transmitting ADV_NONCONN_IND. BLE_DONE_ENDED FALSE

Observed CMD_STOP, then finished transmitting
ADV_NONCONN_IND. BLE_DONE_STOPPED FALSE

Received CMD_ABORT. BLE_DONE_ABORT ABORT
Illegal value of channel BLE_ERROR_PAR ABORT
Advertising data length field has illegal value. BLE_ERROR_PAR ABORT

www.ti.com Bluetooth low energy

1681SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

23.6.4.4.4 Scannable Undirected-Advertiser Command
A scannable undirected-advertiser operation is started by a CMD_BLE_ADV_SCAN command. In the
command structure, it has a pParams parameter of the type defined in Table 23-92, and a pOutput
parameter of the type defined in Table 23-98. The operation starts with transmission and operates as
described in Section 23.6.4.4.

A scannable undirected-advertiser operation ends with one of the statuses listed in Table 23-120. After the
operation has ended, the status field of the command structure (2 status bytes listed in Table 23-8)
indicates why the operation ended. In all cases, a COMMAND_DONE interrupt is raised. In each case, it
is indicated if the result is TRUE, FALSE, or ABORT, which decides the next action.

Table 23-120. End of Scannable Undirected-Advertiser Operation

Condition Status Code Result
Performed Action Number 1 after running receiver. BLE_DONE_OK TRUE
Performed Action Number 2 and transmitted SCAN_RSP. BLE_DONE_OK TRUE
Performed Action Number 3 after running receiver. BLE_DONE_RXERR TRUE
Performed Action Number 5 after running receiver. BLE_DONE_NOSYNC TRUE
Observed trigger indicated by pParams->endTrigger, then performed
Action Number 1, 2, 3, or 5. BLE_DONE_ENDED FALSE

Observed CMD_STOP, then performed Action Number 1, 2, 3, or 5. BLE_DONE_STOPPED FALSE
Received CMD_ABORT. BLE_DONE_ABORT ABORT
No space in RX buffer to store received packet. BLE_ERROR_RXBUF FALSE
Illegal value of channel BLE_ERROR_PAR ABORT
Advertising data or scan response data length field has illegal value. BLE_ERROR_PAR ABORT

23.6.4.5 Scanner Command
A scanner operation is started by a CMD_BLE_SCANNER command. In the command structure, it has a
pParams parameter of the type defined in Table 23-93, and a pOutput parameter of the type defined in
Table 23-99. At the start of a scanner operation, the radio CPU waits for the start trigger, then programs
the frequency based on the channel parameter of the command structure. The channel parameter is not
allowed to be in the range from 0 to 36, because these are data channels. The radio CPU sets up the
advertising channel access address and uses the CRC initialization value 0x55 5555. The whitener is set
up as defined in the whitening parameter. The radio CPU then configures the receiver.

Tuned to the correct channel, the radio CPU starts listening for an advertising-channel packet. If sync is
obtained on the demodulator, the message is received into the RX queue. The header is checked, and if it
is not an advertising packet, reception stops and sync search restarted. The bCrcErr and bIgnore bits are
set according to the CRC result and the received message. Depending on the scanning filter policy, given
by pParams->scanConfig.scanFilterPolicy, the received AdvA field in the message, along with the TXAdd
bit of the received header is checked against white list as described in Section 23.6.4.9. For
ADV_DIRECT_IND messages, the received InitA field and RXAdd bit are checked against pParams-
>deviceAddr and pParams->scanConfig.deviceAddrType, respectively. Depending on this, and whether
the scan is active or passive as signaled in pParams->scanConfig.bActiveScan, the actions taken are as
shown in Table 23-121, where the definition of each action, including the value used on bCrcErr and
bIgnore, is given in Table 23-122. If pParams->scanConfig.bStrictLenFilter is 1, only length fields
compliant with the Bluetooth low energy specification are considered valid. For an ADV_DIRECT_IND,
valid means a length field of 12, and for other ADV*_IND messages valid means a length field in the range
from 6 to 37. If pParams->advConfig.bStrictLenFilter is 0, all received packets with a length field less than
or equal to the maximum length of an advertiser packet (37, but can be overridden) are considered valid.
If the length is not valid, the receiver stops.

Bluetooth low energy www.ti.com

1682 SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

(1) X = don't care.

Table 23-121. Actions on Received Packets by Scanner (1)

PDU Type CRC Result Filter
Policy

AdvA to be
Ignored

AdvA Present
in White List InitA Match Active

Scan
Action
Number

ADV_IND OK 1 No No N/A X 1
ADV_IND OK 1 No Yes N/A No 2
ADV_IND OK 1 No Yes N/A Yes 3
ADV_IND OK 0 No X N/A No 2
ADV_IND OK 0 No X N/A Yes 3
ADV_IND OK X Yes X N/A X 1
ADV_IND NOK X X X N/A X 4
ADV_SCAN_IND OK 1 No No N/A X 1
ADV_SCAN_IND OK 1 No Yes N/A No 2
ADV_SCAN_IND OK 1 No Yes N/A Yes 3
ADV_SCAN_IND OK 0 No X N/A No 2
ADV_SCAN_IND OK 0 No X N/A Yes 3
ADV_SCAN_IND OK X Yes X N/A X 1
ADV_SCAN_IND NOK X X X N/A X 4
ADV_NONCONN_IND OK 1 No No N/A X 1
ADV_NONCONN_IND OK 1 No Yes N/A X 2
ADV_NONCONN_IND OK 0 No X N/A X 2
ADV_NONCONN_IND OK X Yes X N/A X 1
ADV_NONCONN_IND NOK X X X N/A X 4
ADV_DIRECT_IND OK 1 No No X X 1
ADV_DIRECT_IND OK 1 No Yes No X 1
ADV_DIRECT_IND OK 1 No Yes Yes X 2
ADV_DIRECT_IND OK 0 No X No X 1
ADV_DIRECT_IND OK 0 No X Yes X 2
ADV_DIRECT_IND OK X Yes X X X 1
ADV_DIRECT_IND NOK X X X X X 4
ADV*_IND with invalid length X X X X X X 5
Other X X N/A N/A N/A X 5

Table 23-122. Descriptions of the Actions to Take on Packets Received by Scanner

Action Number bCrcErr bIgnore Description
1 0 1 Continue scanning.

2 0 0 Continue scanning or end operation with BLE_DONE_OK
status.

3 0 0
Perform backoff procedure and send SCAN_REQ and receive
SCAN_RSP if applicable. Then continue scanning or end
operation.

4 1 0 Continue scanning.
5 — — Stop receiving packet, then continue scanning.

www.ti.com Bluetooth low energy

1683SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

If the packet being received did not fit in the RX queue, the packet is received to the end, but the received
bytes are not stored. If the packet would normally not have been discarded from the RX buffer, the
operation ends.

If the action from the received packet is number 3, a SCAN_REQ is transmitted if allowed after a backoff
procedure. This procedure starts with decrementing pParams->backoffCount. If this variable is 0 after the
decrement, a SCAN_REQ is transmitted. If not, the operation ends. If the action from the received packet
is number 2 or number 3, the next action may be to continue scanning or end the operation. This is
configured with pParams->scanConfig.bEndOnRpt; if 1, the operation ends, otherwise scanning continues.

When transmitting a SCAN_REQ message, the radio CPU constructs this packet. In the header, the PDU
Type bits are 0011b. The TXAdd bit is as shown in pParams->scanConfig.deviceAddrType. The RXAdd
bit is as shown in the TXAdd field of the header of the received ADV_IND or ADV_SCAN_IND message.
The length is calculated from the size of the scan request data, pParams->scanReqLen + 12. The RFU
bits are 0. The payload starts with the 6-byte device address, which is read from pParams-
>pDeviceAddress, followed by the 6-byte peer address read from the AdvA field of the received message.
By the Bluetooth low energy specification, there is no more payload, but a noncompliant message may be
constructed by setting pParams->scanReqLen to a nonzero value. If so, the rest of the payload is read
from the
pParams->pScanData buffer.

After a SCAN_REQ message is transmitted, the radio CPU configures the receiver and looks for a
SCAN_RSP message from the advertiser to which the SCAN_REQ was sent. If sync is obtained on the
demodulator, the header is checked when it is received, and if it is not a SCAN_RSP message, the
demodulator is stopped immediately. If the header is a SCAN_RSP message, then it is received into the
RX queue. Depending on the received SCAN_RSP, the values of bCrcErr and bIgnore are as given in
Table 23-123. If pParams->scanConfig.bStrictLenFilter is 1, only length fields that are compliant with the
Bluetooth low energy specification are considered valid. For a SCAN_RSP, valid means a length field in
the range from 6 to 37. If pParams->scanConfig.bStrictLenFilter is 0, all received packets with a length
field less than or equal to the maximum length of an advertiser packet (37, but can be overridden) are
considered valid. If the length is not valid, the receiver is stopped.

(1) X = don't care.

Table 23-123. Actions on Packets Received by Scanner After Transmission of SCAN_REQ (1)

PDU Type CRC Result AdvA Same as in
Request bCrcErr bIgnore SCAN_RSP Result

SCAN_RSP OK No 0 1 Failure
SCAN_RSP OK Yes 0 0 Success
SCAN_RSP NOK X 1 0 Failure
SCAN_RSP with
invalid length X X – – Failure

Other X N/A – – Failure
No packet received N/A N/A – – Failure

Bluetooth low energy www.ti.com

1684 SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

After receiving or trying to receive a SCAN_RSP message, the backoff parameters are updated by the
radio CPU. The update depends on the result as given in the SCAN_RSP Result column of Table 23-123
and the old values of the backoff parameters. The backoff parameters given in pParams->backoffPar are
updated as shown in Table 23-124. After this update, the radio CPU sets pParams->backoffCount to a
pseudo-random number between 1 and 2pParams->backoffPar.logUpperLimit.

(1) X = don't care.

Table 23-124. Update of Backoff Parameters (1)

SCAN_RSP
Result

Old pParams->backoffPar New pParams->backoffPar
bLastSucceeded bLastFailed bLastSucceeded bLastFailed logUpperLimit

Failure X 0 0 1 logUpperLimit
Failure 0 1 0 0 min(logUpperLimit+1, 8)
Success 0 X 1 0 logUpperLimit
Success 1 0 0 0 max(logUpperLimit-1, 0)

If pParams->scanConfig.scanFilterPolicy and pParams->scanConfig.bAutoWlIgnore are both 1, the radio
CPU automatically sets the bWlIgn bit of the white-list entry corresponding to the address from which an
ADV*_IND message was received. This setting is done either after Action Number2 is performed, or after
Action Number3 is performed and a SCAN_RSP is received with the result Success. This prevents
reporting multiple advertising messages from the same device, and scanning the same device repeatedly.

The pseudo-random algorithm is based on a maximum-length 16-bit linear-feedback shift register (LFSR).
The seed is as provided in pParams->randomState. When the operation ends, the radio CPU writes the
current state back to this field. If pParams->randomState is 0, the radio CPU self-seeds by initializing the
LFSR to the 16 LSBs of the RAT. This is done only when the LFSR is first needed (that is, after receiving
an ADV*_IND), so there is some randomness to this value. If the 16 LSBs of the RAT are all 0, another
fixed value is substituted.

When the device enters the scanning state, the system CPU must initialize as follows:
• pParams->backoffCount to 1
• pParams->backoffPar.logUpperLimit to 0
• pParams->backoffPar.bLastSucceeded to 0
• pParams->backoffPar.bLastFailed to 0
• pParams->randomState to a true-random value (or a pseudo-random number based on a true-random

seed)

When starting new scanner operations while remaining in the scanning state, the system CPU must keep
pParams->randomState, pParams->backoffCount, and pParams->backoffPar at the values they had at the
end of the last scanner operation.

Two triggers to end the operation are set up by pParams->endTrigger/pParams->endTime and
pParams->timeoutTrigger/pParams->timeoutTime, respectively. If either of these triggers occurs, the radio
operation ends as soon as possible. If these triggers occur while waiting for sync on an ADV*_IND packet,
the operation ends immediately. If they occur at another time, the operation continues until the scan would
otherwise be resumed, and then ends. If the immediate command CMD_STOP is received by the radio
CPU, it has the same meaning as the end trigger occurring, except that the status code after ending is
CMD_DONE_STOPPED. The differences between the two triggers are the status and result at the end of
the operation. Typically, timeoutTrigger can be used at the end of a scan window, while endTrigger can be
used when scanning is to end entirely.

www.ti.com Bluetooth low energy

1685SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

The output structure pOutput contains fields that give information on the command being run. The radio
CPU does not initialize the fields, so this must be done by the system CPU when resetting the counters is
desired. The fields are updated by the radio CPU as described in the following list. The list also indicates
when interrupts are raised in the system CPU.
• If a SCAN_REQ packet has been transmitted, nTXScanReq is incremented and a TX_DONE interrupt

is raised.
• If a SCAN_REQ is not transmitted due to the backoff procedure, nBackedOffScanReq is incremented.
• If an ADV*_IND packet is received with CRC OK and the bIgnore flag cleared, nRxAdvOk is

incremented, an RX_OK interrupt is raised, and timeStamp is set to a timestamp of the start of the
packet.

• If an ADV*_IND packet is received with CRC OK and the bIgnore flag set, nRxAdvIgnored is
incremented and an RX_IGNORED interrupt is raised.

• If an ADV*_IND packet is received with CRC error, nRxAdvNok is incremented and an RX_NOK
interrupt is raised.

• If an ADV*_IND packet is received and did not fit in the RX queue, nRxAdvBufFull is incremented and
an RX_BUF_FULL interrupt is raised.

• If a SCAN_RSP packet is received with CRC OK and the bIgnore flag cleared, nRxScanRspOk is
incremented and an RX_OK interrupt is raised.

• If a SCAN_RSP packet is received with CRC OK and the bIgnore flag set, nRxScanRspIgnored is
incremented and an RX_IGNORED interrupt is raised.

• If a SCAN_RSP packet is received with CRC error, nRxScanRspNok is incremented and an RX_NOK
interrupt is raised.

• If a SCAN_RSP packet is received and did not fit in the RX queue, nRxScanRspBufFull is incremented
and an RX_BUF_FULL interrupt is raised.

• If a packet is received, lastRssi is set to the RSSI of that packet.
• If the first RX data entry in the RX queue changed state to Finished after a packet was received, an

RX_ENTRY_DONE interrupt is raised.

A scanner operation ends with one of the statuses listed in Table 23-125. After the operation has ended,
the status field of the command structure (2 status bytes listed in Table 23-8) indicates why the operation
ended. In all cases, a COMMAND_DONE interrupt is raised. In each case, it is indicated if the result is
TRUE, FALSE, or ABORT, which decides the next action.

Table 23-125. End of Scanner Operation

Condition Status Code Result
Performed Action Number2 with pParams->scanConfig.bEndOnRpt = 1. BLE_DONE_OK TRUE
Performed Action Number3 with pParams->scanConfig.bEndOnRpt = 1 and did not
send SCAN_REQ due to backoff. BLE_DONE_OK TRUE

Performed Action Number3 with pParams->scanConfig.bEndOnRpt = 1, sent
SCAN_REQ and received SCAN_RSP with bCrcErr = 0 and bIgnore = 0. BLE_DONE_OK TRUE

Performed Action Number3 with pParams->scanConfig.bEndOnRpt = 1, sent
SCAN_REQ and received SCAN_RSP with bCrcErr = 1 or bIgnore = 1. BLE_DONE_RXERR TRUE

Performed Action Number3 with pParams->scanConfig.bEndOnRpt = 1, sent
SCAN_REQ, but did not get sync or found wrong packet type or invalid length. BLE_DONE_NOSYNC TRUE

Observed trigger indicated by pParams->timeoutTrigger while waiting for sync on
ADV*_IND. BLE_DONE_RXTIMEOUT TRUE

Observed trigger indicated by pParams->timeoutTrigger, then performed Action
Number1, 2, 3, 4, or 5. BLE_DONE_RXTIMEOUT TRUE

Observed trigger indicated by pParams->endTrigger while waiting for sync on
ADV*_IND. BLE_DONE_ENDED FALSE

Observed trigger indicated by pParams->endTrigger, then performed Action Number1,
2, 3, 4, or 5. BLE_DONE_ENDED FALSE

Observed CMD_STOP while waiting for sync on ADV*_IND. BLE_DONE_STOPPED FALSE
Observed CMD_STOP, then performed Action Number1, 2, 3, 4, or 5. BLE_DONE_STOPPED FALSE
Received CMD_ABORT. BLE_DONE_ABORT ABORT

Bluetooth low energy www.ti.com

1686 SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

Table 23-125. End of Scanner Operation (continued)
Condition Status Code Result
No space in RX buffer to store received packet BLE_ERROR_RXBUF FALSE
Illegal value of channel BLE_ERROR_PAR ABORT
Scan request data length field has illegal value. BLE_ERROR_PAR ABORT

23.6.4.6 Initiator Command
An initiator operation is started by a CMD_BLE_INITIATOR command. In the command structure, it has a
pParams parameter of the type defined in Table 23-93 and a pOutput parameter of the type defined in
Table 23-99. At the start of an initiator operation, the radio CPU waits for the start trigger, then programs
the frequency based on the channel parameter of the command structure. The channel parameter is not
allowed to be in the range from 0 to 36, because these are data channels. The radio CPU sets up the
advertising channel access address and uses the CRC initialization value 0x55 5555. The whitener is set
up as defined in the whitening parameter. The radio CPU then configures the receiver.

After tuning to the correct channel, the radio CPU starts listening for an advertising channel packet. If sync
is obtained on the demodulator, the message is received into the RX queue. The header is checked, and
if it is not a connectable advertising packet, reception is stopped and sync search is restarted. The
bCrcErr and bIgnore bits are set according to the CRC result and the received message. The parameter
pParams->initConfig.bUseWhiteList determines if the initiator must try to connect to a specific device or
against the white list. If this parameter is 0, the white list is not used, and pParams->pWhiteList points to a
buffer containing only the device address of the device to which to connect. The address type of the peer
is given in pParams->advConfig.peerAddrType. Otherwise, pParams->pWhiteList points to a white list. If
the white list is not used, the received AdvA field in the message is checked against the address found in
pParams->pWhiteList, and the TXAdd bit of the received header is checked against
pParams->initConfig.peerAddrType. If the white list is used, the received AdvA field in the message (along
with the TXAdd bit of the received header) is checked against white list as described in Section 23.6.4.9.
For ADV_DIRECT_IND messages, the received InitA field and RXAdd bit are checked against pParams-
>deviceAddr and pParams->initConfig.deviceAddrType, respectively. Depending on this, the actions taken
are as listed in Table 23-126, where the definition of each action, including the value used on bCrcErr and
bIgnore, is listed in Table 23-127. If pParams->initConfig.bStrictLenFilter is 1, only length fields compliant
with the Bluetooth low energy specification are considered valid. For an ADV_DIRECT_IND, valid means
a length field of 12, and for ADV_IND messages it means a length field in the range from 6 to 37. If
pParams->initConfig.bStrictLenFilter is 0, all received packets with a length field less than or equal to the
maximum length of an advertiser packet (37, if not overridden) are considered valid. If the length is not
valid, the receiver is stopped.

(1) X = don't care.

Table 23-126. Actions on Packets Received by Initiator (1)

PDU Type CRC Result AdvA Match InitA Match Action
Number

ADV_IND OK No N/A 1
ADV_IND OK Yes N/A 2
ADV_IND NOK X N/A 3
ADV_DIRECT_IND OK No X 1
ADV_DIRECT_IND OK Yes No 1
ADV_DIRECT_IND OK Yes Yes 2
ADV_DIRECT_IND NOK X X 3
ADV*_IND with invalid length X X X 4
Other X N/A N/A 4

www.ti.com Bluetooth low energy

1687SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

Table 23-127. Descriptions of the Actions to Take on Packets Received by Initiator

Action Number bCrcErr bIgnore Description
1 0 1 Continue scanning
2 0 0 Send CONNECT_REQ and end operation
3 1 0 Continue scanning
4 — — Stop receiving packet, then continue scanning

If the packet received did not fit in the RX queue, the packet is received to the end, but the received bytes
are not stored. If the packet would normally not have been discarded from the RX buffer, the operation
ends.

If the action from the received packet is 2, a CONNECT_REQ packet is transmitted. When transmitting a
CONNECT_REQ, the radio CPU constructs this packet. In the header, the PDU Type bits are 0101b. The
TXAdd bit is as shown in pParams->initConfig.deviceAddrType. The RXAdd bit is as shown in the TXAdd
field of the header of the received ADV_IND or ADV_DIRECT_IND message. The length is calculated
from the length of the LLData, pParams->connectReqLen + 12. The RFU bits are 0. The payload starts
with the 6-byte device address, read from pParams->pDeviceAddress, followed by the 6-byte peer
address read from the AdvA field of the received message. The rest of the payload is read from the
pParams->pConnectData buffer. If pParams->initConfig.bDynamicWinOffset is 1, the radio CPU replaces
the bytes in the WinSize and WinOffset position with a calculated value as explained in the following
paragraphs. After a CONNECT_REQ message has been transmitted, the operation ends.

Two triggers to end the operation are set up by pParams->endTrigger/pParams->endTime and
pParams->timeoutTrigger/pParams->timeoutTime, respectively. If either of these triggers occurs, the radio
operation ends as soon as possible. If these triggers occur while waiting for sync on an ADV*_IND packet,
the operation ends immediately. If the triggers occur at another time, the operation continues until the
scan would otherwise be resumed, and then ends. If the immediate command CMD_STOP is received by
the radio CPU, it has the same meaning as the end trigger occurring, except that the status code after
ending is CMD_DONE_STOPPED. The differences between the two triggers are the status and result at
the end of the operation. Typically, timeoutTrigger is used at the end of a scan window, while endTrigger
is used when scanning is to end entirely.

If pParams->initConfig.bDynamicWinOffset is 1, the radio CPU performs automatic calculation of the
WinSize and WinOffset parameters in the transmitted message. WinSize is byte 7 of the payload, and
WinOffset is byte 8 and 9. The radio CPU finds the possible start times of the first connection event from
the pParams->connectTime parameter and the connection interval, which are given in 1.25-ms units by
the interval field (byte 10 and 11) from the payload to be transmitted. The possible times of the first
connection event are any whole multiple of connection intervals from pParams->connectTime, which may
be in the past or the future from the start of the initiator command. The radio CPU calculates a WinOffset
parameter to be inserted in the transmitted CONNECT_REQ. The calculated WinOffset ensures that the
transmit window covers the first applicable connection event with enough margin after the end of the
CONNECT_REQ packet. The radio CPU sets up the transmit window (WinOffset and WinSize) so that
there is margin both between the start of the transmit window and the start of the first master packet, and
between the start of the first master packet and the end of the transmit window. The inserted WinSize is
either 1 or 2; ensuring such a margin. The radio CPU writes the calculated values for WinSize and
WinOffset into the corresponding locations in the pParams->pConnectData buffer. The start time of the
first connection event used to transmit the first packet within the signaled transmit window is written back
by the radio CPU in pParams->connectTime. If no connection is made, the radio CPU adds a multiple of
connection intervals to pParams->connectTime, so that it is the first possible time of a connection event
after the operation ended.

The output structure pOutput contains fields that give information on running the command. The radio
CPU does not initialize the fields, so this must be done by the system CPU when a reset of the counters is
desired. The fields are updated by the radio CPU as described in the following list. The list also indicates
when interrupts are raised in the system CPU.
• If a CONNECT_REQ packet has been transmitted, nTXConnectReq is incremented and a TX_DONE

interrupt is raised.
• If an ADV*_IND packet is received with CRC OK and the bIgnore flag is cleared, nRxAdvOk is

incremented, an RX_OK interrupt is raised, and timeStamp is set to a timestamp of the start of the
packet.

Bluetooth low energy www.ti.com

1688 SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

• If an ADV*_IND packet is received with CRC OK and the bIgnore flag set, nRxAdvIgnored is
incremented and an RX_IGNORED interrupt is raised.

• If an ADV*_IND packet is received with CRC error, nRxAdvNok is incremented and an RX_NOK
interrupt is raised.

• If an ADV*_IND packet is received and did not fit in the RX queue, nRxAdvBufFull is incremented and
an RX_BUF_FULL interrupt is raised.

• If a packet is received, lastRssi is set to the RSSI of that packet
• If the first RX data entry in the RX queue changed state to Finished after a packet was received, an

RX_ENTRY_DONE interrupt is raised.

An initiator operation ends with one of the statuses listed in Table 23-128. After the operation has ended,
the status field of the command structure (2 status bytes listed in Table 23-8) indicates why the operation
ended. In all cases, a COMMAND_DONE interrupt is raised. In each case, it is indicated if the result is
TRUE, FALSE, or ABORT, which decides the next action.

Table 23-128. End of Initiator Operation

Condition Status Code Result
Performed Action Number2 (transmitted CONNECT_REQ) BLE_DONE_CONNECT FALSE
Observed trigger indicated by pParams->timeoutTrigger while waiting for
sync on ADV*_IND BLE_DONE_RXTIMEOUT TRUE

Observed trigger indicated by pParams->timeoutTrigger, then performed
Action Number1, 2, 3, 4, or 5 BLE_DONE_RXTIMEOUT TRUE

Observed trigger indicated by pParams->endTrigger while waiting for sync
on ADV*_IND BLE_DONE_ENDED FALSE

Observed trigger indicated by pParams->endTrigger, then performed Action
Number1, 2, 3, or 4 BLE_DONE_ENDED FALSE

Observed CMD_STOP while waiting for sync on ADV*_IND BLE_DONE_STOPPED FALSE
Observed CMD_STOP, then performed Action Number1, 2, 3, or 4 BLE_DONE_STOPPED FALSE
Received CMD_ABORT BLE_DONE_ABORT ABORT
No space in RX buffer to store received packet BLE_ERROR_RXBUF FALSE
Illegal value of channel BLE_ERROR_PAR ABORT
LLData length field has illegal value BLE_ERROR_PAR ABORT

23.6.4.7 Generic Receiver Command
The generic receiver command is used to receive physical layer test packets or to receive any packet,
such as in a packet sniffer application.

A generic receiver operation is started by a CMD_BLE_GENERIC_RX command. In the command
structure, CMD_BLE_GENERIC_RX has a pParams parameter of the type defined in Table 23-95, and a
pOutput parameter of the type defined in Table 23-101. At the start of a generic receiver operation, the
radio CPU waits for the start trigger, then programs the frequency based on the channel parameter of the
command structure. The radio CPU sets up the access address defined in pParams->accessAddress and
uses the CRC initialization value defined in pParams->crcInit. The whitener is set up as defined in the
whitening parameter. The radio CPU then configures the receiver.

In a generic receiver operation, the only assumptions made on the packet format are that the 6 LSBs of
the second received byte is a length field which indicates the length of the payload following that byte, and
that a standard Bluetooth low-energy-type CRC is appended to the packet.

When tuned to the correct channel, the radio CPU starts listening for a packet. If sync is obtained on the
demodulator, the message is received into the RX queue (if any). If the length is greater than the
maximum allowed length for Bluetooth low energy advertising packets (37, but can be overridden),
reception is stopped and restarted.

If pParams->pRxQ is NULL, the received packets are be stored. The counters are still updated and
interrupts are generated.

www.ti.com Bluetooth low energy

1689SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

If a packet is received with CRC error, the bCrcErr bit is set. The bIgnored flag is never set for the generic
RX command.

If the packet being received did not fit in the RX queue, the packet is received to the end, but the received
bytes are not stored. If the packet would normally not have been discarded from the RX buffer, the
operation ends.

A trigger to end the operation is set up by pParams->endTrigger and pParams->endTime. If the trigger
defined by this parameter occurs, the radio operation ends as soon as possible. If the trigger occurs while
waiting for sync, the operation ends immediately. If the trigger occurs at another time, the operation
continues until the current packet is fully received, and then ends. If the immediate command CMD_STOP
is received by the radio CPU, it has the same meaning as the end trigger occurring, except that the status
code after ending is CMD_DONE_STOPPED. The output structure pOutput contains fields that give
information on the command being run. The radio CPU does not initialize the fields, so this must be done
by the system CPU when a reset of the counters is desired. The fields are updated by the radio CPU, as
described in the following list. The list also indicates when interrupts are raised in the system CPU.
• If a packet is received with CRC OK, nRxOk is incremented and an RX_OK interrupt is raised.
• If a packet is received with CRC error, nRxNok is incremented and an RX_NOK interrupt is raised.
• If a packet is received and did not fit in the RX queue, nRxBufFull is incremented and an

RX_BUF_FULL interrupt is raised.
• If a packet is received, lastRssi is set to the RSSI of that packet
• If a packet is received, timeStamp is set to a timestamp of the start of that packet
• If the first RX data entry in the RX queue changed state to Finished after a packet was received, an

RX_ENTRY_DONE interrupt is raised.

When a packet is received, reception is restarted on the same channel if pParams->bRepeat = 1, the end
event has not been observed, and the packet fits in the receive queue. If pParams->bRepeat = 0, the
operation always ends when a packet is received.

A generic RX operation ends with one of the statuses listed in Table 23-129. After the operation has
ended, the status field of the command structure (2 status bytes listed in Table 23-8) indicates why the
operation ended. In all cases, a COMMAND_DONE interrupt is raised. In each case, it is indicated if the
result is TRUE, FALSE, or ABORT, which decides the next action. The pNextOp field of a generic RX
command structure may point to the same command structure. That way, RX may be performed until the
end trigger, or until the RX buffer becomes full.

Table 23-129. End of Generic RX Operation

Condition Status Code Result
Received a packet with CRC OK and pParams->bRepeat = 0 BLE_DONE_OK TRUE
Received a packet with CRC error and pParams->bRepeat = 0 BLE_DONE_RXERR TRUE
Observed trigger indicated by pParams->endTrigger while waiting for
sync BLE_DONE_ENDED FALSE

Observed trigger indicated by pParams->endTrigger, then finished
receiving packet BLE_DONE_ENDED FALSE

Observed CMD_STOP while waiting for sync BLE_DONE_STOPPED FALSE
Observed CMD_STOP, then finished receiving packet BLE_DONE_STOPPED FALSE
Received CMD_ABORT BLE_DONE_ABORT ABORT
No space in RX buffer to store received packet BLE_ERROR_RXBUF FALSE
Illegal value of channel BLE_ERROR_PAR ABORT

Bluetooth low energy www.ti.com

1690 SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

23.6.4.8 PHY Test Transmit Command
The test packet transmitter command may be used to transmit physical layer test packets.

A test packet transmitter operation is started by a CMD_BLE_TX_TEST command. In the command
structure, CMD_BLE_TX_TEST has a pParams parameter of the type defined in Table 23-96, and a
pOutput parameter of the type defined in Table 23-102. At the start of a test TX operation, the radio CPU
waits for the start trigger, then programs the frequency based on the channel parameter of the command
structure. The radio CPU sets up the test mode packet access address and uses the CRC initialization
value 0x55 5555. The whitener is set up as defined in the whitening parameter. To produce PHY test
packets conforming to the Bluetooth low energy Test Specification, the whitener must be disabled.

The radio CPU transmits pParams->numPackets packets, then ends the operation. If pParams-
>numPackets is 0, transmission continues until the operation ends for another reason (time-out, stop, or
abort command). The time (number of RAT ticks) between the start of each packet is given by pParams-
>period. If this time is smaller than the duration of a packet, each packet is transmitted as soon as
possible. Each packet is assembled as follows by the radio CPU. The first byte is a header byte,
containing the value of pParams->packetType, provided this is one of the values listed in Table 23-130.
The next byte is the length byte, which is the value of pParams->payloadLength, and is followed by a
number of payload bytes, which are as listed in Table 23-130. The number of payload bytes is equal to
pParams->payloadLength. If pParams->packetType is 0, the bytes are from the PRBS9 sequence.
Otherwise, all the bytes are the same, as listed in Table 23-130. A 3-byte CRC, according to the Bluetooth
low energy specification, is appended.

Table 23-130. Supported PHY Test Packet Types

Value of Packet Type Transmitted Bytes
0 PRBS9 sequence
1 Repeated 0x0F
2 Repeated 0x55
3 PRBS15 sequence
4 Repeated 0xFF
5 Repeated 0x00
6 Repeated 0xF0
7 Repeated 0xAA

The PRBS15 payload type defined in the Bluetooth low energy standard, which corresponds to payload
type 3, is implemented using the polynomial x15 + x14 + 1. The initialization is taken from the RAT for the
first packet transmitted, and is not reinitialized for subsequent packets.

If pParams->config.overrideDefault is 1, the packet is nonstandard. The header contains the value given in
pParams->packetType, and each byte transmitted is as given in pParams->byteVal. If
pParams->config.bUsePrbs9 is 1, the sequence is generated by XORing each byte of the PRBS9
sequence used for packet type 0 with pParams->byteVal. If pParams->config.bUsePrbs15 is 1, the
sequence is generated by XORing each byte of the PRBS15 sequence used for packet type 3 with
pParams->byteVal.

If either of the PRBS sequences is used, whitening is disabled regardless of the setting in the whitening
parameter.

A trigger to end the operation is set up by pParams->endTrigger and pParams->endTime. If the trigger
defined by this parameter occurs, the radio operation ends as soon as possible. If the trigger occurs while
waiting between packets, the operation ends immediately. If the trigger occurs at another time, the
operation continues until the current packet is fully transmitted, and then ends. If the immediate command
CMD_STOP is received by the radio CPU, it has the same meaning as the end trigger occurring, except
that the status code after ending is CMD_DONE_STOPPED.

The output structure pOutput contains only the field nTX, and is incremented each time a packet is
transmitted. The radio CPU does not initialize the field, so this must be done by the system CPU when a
reset of the counters is desired. A TX_DONE interrupt is raised each time a packet is transmitted.

www.ti.com Bluetooth low energy

1691SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

A PHY test TX operation ends with one of the statuses listed in Table 23-131. After the operation has
ended, the status field of the command structure (2 status bytes listed in Table 23-8) indicates why the
operation ended. In all cases, a COMMAND_DONE interrupt is raised. In each case, it is indicated if the
result is TRUE, FALSE, or ABORT, which decides the next action.

Table 23-131. End of PHY Test TX Operation

Condition Status Code Result
Transmitted pParams->numPackets packets BLE_DONE_OK TRUE
Observed trigger indicated by pParams->endTrigger while waiting between
packets BLE_DONE_ENDED FALSE

Observed trigger indicated by pParams->endTrigger, then finished
transmitting packet BLE_DONE_ENDED FALSE

Observed CMD_STOP while waiting between packets. BLE_DONE_STOPPED FALSE
Observed CMD_STOP, then finished transmitting packet BLE_DONE_STOPPED FALSE
Received CMD_ABORT BLE_DONE_ABORT ABORT
Illegal value of channel BLE_ERROR_PAR ABORT
Illegal value of pParams->packetType BLE_ERROR_PAR ABORT

23.6.4.9 White List Processing
A white list is used in advertiser, scanner, and initiator operation. The white list consists of a configurable
number of entries. The white list is an array of entries of the type defined in Table 23-71. The first entry of
the array contains the array size in the size field.

The minimum number of entries in a white list array is 1, but if no white list is to be used,
pParams->pWhiteList may be NULL. The maximum number is at least 8.

Each entry contains one address and three configuration bits. The bEnable bit is 1 if the entry is enabled,
otherwise the address is ignored when doing white-list filtering. The addrType bit indicates if the entry is a
public or random address. The bIgnore bit can be used by a scanner to avoid reporting and scanning the
same device multiple times.

When an address is checked against the white list, the address is compared against the address field of
each entry in the white list. The address is considered present in the white list only if there is an entry
where one or all of the following conditions are met:
• The bEnable bit is 1.
• addrType is equal to the address type of the address to check.
• All bytes of the address array are equal to the bytes of the address to check.
• For scanner only: the bWlIgn bit is 0.

For scanners, the bWlIgn bit may be set in the white list to indicate that a device is ignored even if the
white list entry would otherwise be a match. This feature can be used to check for advertisers that have
already been scanned, or where the advertising data has already been reported. Even if no white list
filtering is performed, this feature may be used. The white list is scanned for devices that match the
address and address type, and where bWlIgn is 1. Such devices are ignored. The bEnable bit is not
checked in this case. It is possible to configure the radio CPU to automatically set the bWlIgn bit, see
Section 23.6.4.5.

23.6.5 Immediate Commands
In addition to the immediate commands from Section 23.3.4, the following immediate command is also
supported.

23.6.5.1 Update Advertising Payload Command
The CMD_BLE_ADV_PAYLOAD command can change the payload buffer for an advertising command.
The command may be issued regardless of whether an advertising command is running or not.

Preamble Sync word Header Address Payload CRC

1 bit to 32 bytes or
repetition

8 to 32 bits 0 to 32 bits 0 to 8 bytes Arbitrary
0 or 16 bits

(0 to 32 bits)

Preamble Sync word Length field Address Payload CRC

1 bit to 32 bytes 8 to 32 bits 0 or 1 byte 0 or 1 byte 0 to 255 bytes
0 or 16 bits

(0 to 32 bits)

Proprietary Radio www.ti.com

1692 SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

The command structure has the format given in Table 23-89. When received, the radio CPU checks if an
advertiser radio operation command is running, using the parameter structure given in pParams of the
immediate command structure. If the advertiser radio operation command is not running, the radio CPU
updates the parameter structure immediately. If a radio operation command is running using the
parameter structure to be updated, the radio CPU only modifies the parameter structure if the payload to
be changed is not currently being transmitted. If the payload to be changed is being transmitted, the radio
CPU stores the request and updates as soon as transmission of the packet has finished.

When updating the parameter structure, the payload to change depends on the payloadType parameter of
the command structure. If payloadType is 0, the radio CPU sets pParams->advLen equal to newLen and
pParams->pAdvData equal to newData. If payloadType is 1, the radio CPU sets pParams->scanRspLen
equal to newLen and pParams->pScanRspData equal to newData. After the update occurs, the radio CPU
raises a TX_BUFFER_CHANGED interrupt (see Section 23.8.2.5). This interrupt is raised regardless of
whether the update was delayed or not.

If any of the parameters are illegal, the radio CPU responds with ParError in CMDSTAT and does not
perform any update. Otherwise, the radio CPU responds with Done in CMDSTAT, which may be done
before the update occurs.

23.7 Proprietary Radio
This section describes proprietary radio command structure, data handling, radio operations commands,
and immediate commands. The commands define a flexible packet handling compatible with the CC110x,
CC111x, CC112x, CC120x, CC2500, and CC251x devices, as well as supporting other legacy modes.

23.7.1 Packet Formats
For compatibility with existing TI parts, the packet format given in Figure 23-9 can be used in most cases.
This packet format is supported through the use of the commands CMD_PROP_TX and CMD_PROP_RX.

Figure 23-9. Standard Packet Format

A more flexible packet format is also possible, as defined in Figure 23-10. This format is supported by the
commands CMD_PROP_RX_ADV and CMD_PROP_TX_ADV. The format in Figure 23-9 is an example of
this.

Figure 23-10. Advanced Packet Format

23.7.2 Commands
Table 23-132 defines the proprietary radio operation commands.

Table 23-132. Proprietary Radio Operation Commands

ID Command Name Supported Devices Description

0x3801 CMD_PROP_TX
CC26x0,
CC2640R2F,
CC13x0

Transmit packet

0x3802 CMD_PROP_RX
CC26x0,
CC2640R2F,
CC13x0

Receive packet or packets

www.ti.com Proprietary Radio

1693SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

Table 23-132. Proprietary Radio Operation Commands (continued)
ID Command Name Supported Devices Description

0x3803 CMD_PROP_TX_ADV
CC26x0,
CC2640R2F,
CC13x0

Transmit packet with advanced modes

0x3804 CMD_PROP_RX_ADV
CC26x0,
CC2640R2F,
CC13x0

Receive packet or packets with advanced modes

0x3805 CMD_PROP_CS CC2640R2F,
CC13x0 Run carrier sense command

0x3806 CMD_PROP_RADIO_SETUP
CC26x0,
CC2640R2F,
CC1350

Set up radio in proprietary mode (used only on CC1350
when operating at 2.4 GHz)

0x3807 CMD_PROP_RADIO_DIV_SETUP CC13x0 Set up radio in proprietary mode

0x3808 CMD_PROP_RX_SNIFF CC2640R2F,
CC13x0 Receive packet or packets with sniff mode support

0x3809 CMD_PROP_RX_ADV_SNIFF CC2640R2F,
CC13x0

Receive packet or packets with advanced modes and
sniff mode support

Table 23-133 defines the proprietary immediate commands.

Table 23-133. Proprietary Immediate Commands

ID Command Name Description
0x3401 CMD_PROP_SET_LEN Set length of packet being received
0x3402 CMD_PROP_RESTART_RX Stop receiving a packet and go back to sync search

23.7.2.1 Command Data Definitions
This section defines data types used in describing the data structures used for communication between
the system CPU and the radio CPU. The data structures are listed with tables. The Byte Index is the offset
from the pointer to that structure. Multibyte fields are little-endian, and halfword or word alignment is
required. For bit numbering, 0 is the LSB. The R/W column is used as follows:

R: The system CPU can read a result back; the radio CPU does not read the field.

W: The system CPU writes a value, the radio CPU reads it and does not modify the value.

R/W: The system CPU writes an initial value, the radio CPU may modify the initial value.

23.7.2.1.1 Command Structures
For all the radio operation commands, the first 14 bytes are as defined in Table 23-8. Table 23-134
through Table 23-140 define the additional command structures.

Table 23-134. CMD_PROP_TX Command Structure

Byte
Index Field Name Bits Bit Field name Type Description

14 pktConf

0 bFsOff W 0: Keep frequency synthesizer on after command.
1: Turn frequency synthesizer off after command.

1–2 Reserved

3 bUseCrc W 0: Do not append CRC.
1: Append CRC.

4 bVarLen W 0: Fixed length
1: Transmit length as first byte

5–7 Reserved
15 pktLen W Packet length
16–19 syncWord W Sync word to transmit

Proprietary Radio www.ti.com

1694 SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

Table 23-134. CMD_PROP_TX Command Structure (continued)
Byte
Index Field Name Bits Bit Field name Type Description

20–23 pPkt W Pointer to packet

Table 23-135. CMD_PROP_TX_ADV Command Structure

Byte
Index Field Name Bits Bit Field name Type Description

14 pktConf

0 bFsOff W 0: Keep frequency synthesizer on after command.
1: Turn frequency synthesizer off after command.

1–2 Reserved

3 bUseCrc W 0: Do not append CRC.
1: Append CRC.

4 bCrcIncSw W 0: Do not include sync word in CRC calculation.
1: Include sync word in CRC calculation.

5 bCrcIncHdr W 0: Do not include header in CRC calculation.
1: Include header in CRC calculation.

6–7 Reserved
15 numHdrBits W Number of bits in header (0 to 32)
16–17 pktLen W Packet length. 0: Unlimited

18 startConf

0 bExtTxTrig W

0: Start packet on a fixed time from the command
start trigger.
1: Start packet on an external trigger (Contact TI
to enable this feature).

1–2 inputMode W

Input mode if external trigger is used for TX start.
00: Rising edge
01: Falling edge
10: Both edges
11: Reserved

3–7 source W RAT input event number used for capture if
external trigger is used for TX start.

19 preTrigger W

Trigger for transition from preamble to sync word.
If this is set to “now," one preamble as configured
in the setup is sent. Otherwise, the preamble is
repeated until this trigger is observed.

20–23 preTime W Time parameter for preTrigger
24–27 syncWord W Sync word to transmit
28–31 pPkt W Pointer to packet, or TX queue for unlimited length

www.ti.com Proprietary Radio

1695SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

Table 23-136. CMD_PROP_RX and CMD_PROP_RX_SNIFF Command Structure

Byte Index Field Name Bits Bit Field Name Type Description

14 pktConf

0 bFsOff W
0: Keep frequency synthesizer on after
command.
1: Turn frequency synthesizer off after command.

1 bRepeatOk W

0: End operation after receiving a packet
correctly.
1: Go back to sync search after receiving a
packet correctly.

2 bRepeatNok W

0: End operation after receiving a packet with
CRC error.
1: Go back to sync search after receiving a
packet with CRC error.

3 bUseCrc W 0: Do not check CRC.
1: Check CRC.

4 bVarLen W 0: Fixed length
1: Receive length as first byte.

5 bChkAddress W 0: No address check
1: Check address.

6 endType W

0: Packet is received to the end if end trigger
occurs after sync is obtained.
1: Packet reception is stopped if end trigger
occurs.

7 filterOp W

0: Stop receiver and restart sync search on
address mismatch.
1: Receive packet and mark it as ignored on
address mismatch.

15 rxConf W RX configuration, see Table 23-143 for details.
16–19 syncWord W Sync word to listen for

20 maxPktLen W
Packet length for fixed length, maximum packet
length for variable length
0: Unlimited or unknown length

21 address0 W Address

22 address1 W Address (Set equal to address0 to accept only
one address. If 0xFF, accept 0x00 as well.)

23 endTrigger W Trigger classifier for ending the operation
24–27 endTime W Time to end the operation
28–31 pQueue W Pointer to receive queue
32–35 pOutput W Pointer to output structure
36–47 CMD_PROP_RX_SNIFF only: carrier sense options as given in Table 23-142 (CC13x0 only)

Proprietary Radio www.ti.com

1696 SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

Table 23-137. CMD_PROP_RX_ADV and CMD_PROP_RX_ADV_SNIFF Command Structure

Byte Index Field Name Bits Bit Field Name Type Description

14 pktConf

0 bFsOff W
0: Keep frequency synthesizer on after
command.
1: Turn frequency synthesizer off after command.

1 bRepeatOk W

0: End operation after receiving a packet
correctly.
1: Go back to sync search after receiving a
packet correctly.

2 bRepeatNok W

0: End operation after receiving a packet with
CRC error.
1: Go back to sync search after receiving a
packet with CRC error.

3 bUseCrc W 0: Do not check CRC.
1: Check CRC.

4 bCrcIncSw W 0: Do not include sync word in CRC calculation.
1: Include sync word in CRC calculation.

5 bCrcIncHdr W 0: Do not include header in CRC calculation.
1: Include header in CRC calculation.

6 endType W

0: Packet is received to the end if end trigger
occurs after sync is obtained.
1: Packet reception is stopped if end trigger
occurs.

7 filterOp W

0: Stop receiver and restart sync search on
address mismatch.
1: Receive packet and mark it as ignored on
address mismatch.

15 rxConf W RX configuration, see Table 23-143 for details.
16–19 syncWord0 W Sync word to listen for
20–23 syncWord1 W Alternative sync word if nonzero

24–25 maxPktLen W Maximum length of received packets:
0: Unlimited or unknown length

26–27 hdrConf
0–5 numHdrBits W Number of bits in header (0–32)
6–10 lenPos W Position of length field in header (0–31)
11–15 numLenBits W Number of bits in length field (0–16)

28–29 addrConf

0 addrType W 0: Address after header
1: Address in header

1–5 addrSize W If addrType = 0: Address size in bytes.
If addrType = 1: Address size in bits.

6–10 addrPos W
If addrType = 1: Bit position of address in header.
If addrType = 0: Nonzero to extend address with
sync word identifier.

11–15 numAddr W Number of addresses in address list
30 lenOffset W Signed value to add to length field
31 endTrigger W Trigger classifier for ending the operation
32–35 endTime W Time to end the operation
36–39 pAddr W Pointer to address list
40–43 pQueue W Pointer to receive queue
44–47 pOutput W Pointer to output structure
48–59 CMD_PROP_RX_ADV_SNIFF only: carrier sense options as given in Table 23-142 (CC13x0 only)

www.ti.com Proprietary Radio

1697SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

Table 23-138. CMD_PROP_CS Command Structure (CC13x0 Only)

Byte Index Field Name Bits Bit Field Name Type Description

14 csFsConf

0 bFsOffIdle W

0: Keep synthesizer running if command ends with
channel IDLE.
1: Turn off synthesizer if command ends with channel
IDLE.

1 bFsOffBusy W

0: Keep synthesizer running if command ends with
channel BUSY.
1: Turn off synthesizer if command ends with channel
BUSY.

15 Reserved
16–27 Carrier sense options as given in Table 23-142.

Table 23-139. CMD_PROP_RADIO_SETUP and CMD_PROP_RADIO_DIV_SETUP Command
Structure

Byte
Index Field Name Bits Bit Field Name Type Description

14–15 modulation
0–2 modType W

0: FSK
1: GFSK
Others: Reserved

3–15 deviation W Deviation (250-Hz steps) for FSK modulations

16–19 symbolRate

0:3 preScale W Prescaler value (see Section 23.7.5.2)
4–7 Reserved, set to 0
8–28 rateWord W Rate word (see Section 23.7.5.2)
29–31 Reserved, set to 0

20 rxBw W

Receiver bandwidth, see Table 23-147
1–18: Legacy mode (bandwidth 88–4240 kHz)
(CC26x0 and CC13x0)
32–52: Normal mode (bandwidth 45–4240 kHz)
(CC13x0)

21 preamConf

0–5 nPreamBytes W

0: 1 preamble bit
1–16: Number of preamble bytes
18, 20, ..., 30: Number of preamble bytes
31: 4 preamble bits
32: 32 preamble bytes
Others: Reserved

6–7 preamMode W

00: Send 0 as the first preamble bit.
01: Send 1 as the first preamble bit.
10: Send same first bit in preamble and sync word.
11: Send different first bit in preamble and sync word.

Proprietary Radio www.ti.com

1698 SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

Table 23-139. CMD_PROP_RADIO_SETUP and CMD_PROP_RADIO_DIV_SETUP Command
Structure (continued)

Byte
Index Field Name Bits Bit Field Name Type Description

22–23 formatConf

0–5 nSwBits W Number of sync word bits. Valid values are from 8 to
32.

6 bBitReversal W 0: Use positive deviation for 1.
1: Use positive deviation for 0.

7 bMsbFirst W 0: LSB transmitted first
1: MSB transmitted first

8–11 fecMode W

Select Coding:
0000: Uncoded binary modulation
1000: Long Range Mode
1010: Manchester coded binary modulation (only
CC13x0 FSK/GFSK)
Others: Reserved

12 Reserved

13–15 whitenMode W

000: No whitening
001: CC1101 and CC2500 compatible whitening
010: PN9 whitening without byte reversal
011: Reserved
100: No whitener, 32-bit IEEE 802.15.4g compatible
CRC (only CC13x0)
101: IEEE 802.15.4g compatible whitener and 32-bit
CRC (only CC13x0)
110: No whitener, dynamically IEEE 802.15.4g
compatible 16-bit or 32-bit CRC (only CC13x0)
111: Dynamically IEEE 802.15.4g compatible
whitener and 16-bit or 32-bit CRC (only CC13x0)

24–25 config

0–2 frontEndMode W

0x00: Differential mode
0x01: Single-ended mode RFP
0x02: Single-ended mode RFN
0x05 Single-ended mode RFP with external front-end
control on RF pins (RFN and RXTX)
0x06 Single-ended mode RFN with external front-end
control on RF pins (RFP and RXTX)
Others: Reserved

3 biasMode W 0: Internal bias
1: External bias

4-9 analogCfgMode W

0x00: Write analog configuration. Required first time
after boot and when changing frequency band or
front-end configuration.
0x2D: Keep analog configuration. May be used after
standby or when changing mode with the same
frequency band and front-end configuration.
Others: Reserved

10 bNoFsPowerUp W 0: Power up frequency synthesizer.
1: Do not power up frequency synthesizer.

11–15 Reserved

26–27 txPower W Output power setting, use value from SmartRF
Studio. See Section 23.3.3.2.16 for more details.

28–31 pRegOverride W Pointer to a list of hardware and configuration
registers to override. If NULL, no override is used.

32–33 centerFreq W
CMD_PROP_RADIO_DIV_SETUP only: Center
frequency of the band. To be used in the initial
parameter computations.

34–35 intFreq W

CMD_PROP_RADIO_DIV_SETUP only: Intermediate
frequency to use for RX, in MHz on 4.12 signed
format. TX will use same intermediate frequency if
supported, otherwise 0.
0x8000: Use default.

36 loDivider W
CMD_PROP_RADIO_DIV_SETUP only: Divider
setting to use. See the Smart RF Studio for the
recommended settings per device and band.

www.ti.com Proprietary Radio

1699SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

Table 23-140. CMD_PROP_SET_LEN Command Structure

Byte Index Field Name Bits Bit Field
Name Type Description

0–1 RXLen W Payload length to use

23.7.2.2 Output Structures

Table 23-141. Receive Commands

Byte Index Field Name Type Description

0–1 nRxOk R/W Number of packets that have been received with payload, CRC OK and
not ignored

2–3 nRxNok R/W Number of packets that have been received with CRC error

4 nRxIgnored R/W Number of packets that have been received with CRC OK and ignored
due to address mismatch

5 nRxStopped R/W Number of packets not received due to illegal length or address mismatch
with pktConf.filterOp = 1

6 nRxBufFull R/W Number of packets that have been received and discarded due to lack of
buffer space

7 lastRssi R RSSI of last received packet. RSSI is captured when sync word is found.
8–11 timeStamp R Timestamp of last received packet

Proprietary Radio www.ti.com

1700 SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

23.7.2.3 Other Structures and Bit Fields

Table 23-142. Carrier Sense Fields for CMD_PROP_RX_SNIFF, CMD_PROP_RX_ADV_SNIFF, and
CMD_PROP_CS (Only Applicable for CC13x0)

Byte
Index Field Name Bits Bit Field Name Type Description

0 csConf

0 bEnaRssi W If 1, enable RSSI as a criterion.
1 bEnaCorr W If 1, enable correlation as a criterion.

2 operation W

0: Busy if either RSSI or correlation indicates
BUSY.
1: Busy if both RSSI and correlation indicates
BUSY.

3 busyOp W

0: Continue carrier sense on channel BUSY.
1: End carrier sense on channel BUSY.
For an RX command, the receiver continues
when carrier sense ends, then it does not end
if the channel goes IDLE.

4 idleOp W 0: Continue on channel Idle.
1: End on channel Idle.

5 timeoutRes W

0: Time-out with channel state Invalid treated
as BUSY.
1: Time-out with channel state Invalid treated
as IDLE.

1 rssiThr W RSSI threshold

2 numRssiIdle W
Number of consecutive RSSI measurements
below the threshold needed before the channel
is declared IDLE.

3 numRssiBusy W
Number of consecutive RSSI measurements
above the threshold needed before the channel
is declared BUSY.

4–5 corrPeriod W Number of RAT ticks for a correlation
observation periods.

6 corrConfig

0–3 numCorrInv W
Number of subsequent correlation tops with
maximum corrPeriod RAT ticks between them
needed to go from IDLE to INVALID.

4–7 numCorrBusy W
Number of subsequent correlation tops with
maximum corrPeriod RAT ticks between them
needed to go from INVALID to BUSY.

7 csEndTrigger W Trigger classifier for ending the carrier sense
8–11 csEndTime W Time to end carrier sense.

www.ti.com Proprietary Radio

1701SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

(1) This bit field is used for the rxConf byte of the parameter structures.

Table 23-143. Receive Queue Entry Configuration Bit Field (1)

Bits Bit Field Name Description
0 bAutoFlushIgnored If 1, automatically discard ignored packets from RX queue.
1 bAutoFlushCrcErr If 1, automatically discard packets with CRC error from RX queue.
2 Reserved

3 bIncludeHdr If 1, include the received header or length byte in the stored packet; otherwise
discard it.

4 bIncludeCrc If 1, include the received CRC field in the stored packet; otherwise discard it. This
requires pktConf.bUseCrc to be 1.

5 bAppendRssi If 1, append an RSSI byte to the packet in the RX queue.
6 bAppendTimestamp If 1, append a timestamp to the packet in the RX queue.
7 bAppendStatus If 1, append a status byte to the packet in the RX queue.

(1) A byte of this bit field is appended to the received entries if configured.

Table 23-144. Receive Status Byte Bit Field (1)

Bits Bit Field Name Description
0–4 addressInd Index of address found (0 if not applicable)
5 syncWordId 0 for primary sync word, 1 for alternate sync word

6–7 result

00: Packet received correctly, not ignored
01: Packet received with CRC error
10: Packet received correctly, but can be ignored
11: Packet reception was aborted

23.7.3 Interrupts
The radio CPU signals events back to the system CPU using firmware-defined interrupts. Table 23-145
lists the interrupts to be used by the proprietary commands. Each interrupt may be enabled individually in
the system CPU. Details for when the interrupts are generated are given in Section 23.7.4 and
Section 23.7.5.

Table 23-145. Interrupt Definitions

Interrupt Number Interrupt Name Description
0 COMMAND_DONE A radio operation command has finished.

1 LAST_COMMAND_DONE The last radio operation command in a chain of commands has
finished.

10 TX_ENTRY_DONE For transmission of packets with unlimited length: Reading from
a TX entry is finished.

16 RX_OK Packet received with CRC OK, payload, and is not to be
ignored.

17 RX_NOK Packet received with CRC error.
18 RX_IGNORED Packet received with CRC OK, but is to be ignored.
22 RX_BUF_FULL Packet received did not fit in RX buffer.
23 RX_ENTRY_DONE RX queue data entry changing state to FINISHED.
24 RX_DATA_WRITTEN Data written to partial read RX buffer.
25 RX_N_DATA_WRITTEN Specified number of bytes written to partial read RX buffer.
26 RX_ABORTED Packet reception stopped before packet was done.

28 SYNTH_NO_LOCK The synthesizer has reported loss of lock (only valid for
CC13x0).

29 MODULES_UNLOCKED As part of the boot process, the Cortex-M0 has opened access
to RF core modules and memories.

30 BOOT_DONE The RF core CPU boot is finished.
31 INTERNAL_ERROR The radio CPU has observed an unexpected error.

Element
length

Header/length
byte

Payload
Received

CRC
RSSI Timestamp Status

0±2 bytes 0±4 bytes n bytes 0±4 bytes 0 or 1 byte 0 or 4 bytes 0 or 1 byte

Proprietary Radio www.ti.com

1702 SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

23.7.4 Data Handling
For the proprietary mode TX commands, data received over the air is stored in a receive queue. Partial-
read RX buffers are supported, and mandatory for unlimited length. Data transmitted is fetched from a
specific buffer.

23.7.4.1 Receive Buffers
A packet being received is stored in an RX buffer. First, a length byte or word is stored if configured in the
RX entry by config.lenSz, and calculated from the length received over the air and the configuration of
appended information, or for a partial-read RX buffer initialized to maximal possible size of that segment,
and set to the length of the segment in one buffer when finished.

Following the optional length field, the received header is stored as received over the air if
rxConf.bIncludeHdr is 1. This header is the length byte for CMD_PROP_RX and a field with up to 32 bits
for CMD_PROP_RX_ADV. In the case of the 32-bits header for the CMD_PROP_RX_ADV, the last byte
of the header is padded with zeros in the MSBs if the number of bits does not divide by 8, and is followed
by the received address (if configured) and the payload.

If rxConf.bIncludeCrc is 1, the received CRC value is stored in the RX buffer; otherwise, it is not stored,
but only used to check the CRC result. If rxConf.bAppendRssi is 1, a byte indicating the received RSSI
value is appended. If rxConf.bAppendStatus is 1, a status byte of the type defined in Table 23-144 is
appended. If rxConf.bAppendTimeStamp is 1, a timestamp indicating the start of the packet is appended.
This timestamp corresponds to the ratmr_t data type. Though the timestamp is multibyte, no word-address
alignment is made, so the timestamp must be written and read byte-wise.

If the reception of a packet is aborted, the packet is immediately removed from the receive queue, except
if a partial-read RX entry is used. In that case, the RSSI, Timestamp, and Status fields are appended if
configured (except if no more buffer space is available), and the Status byte indicates that the reception
was aborted.

Figure 23-11 shows the format of an entry element in the RX queue.

Figure 23-11. Receive Buffer Entry Element

An RX_ENTRY_DONE interrupt is raised whenthe state of an RX entry changes to FINISHED. Depending
on the type of RX entry used, this means:
• For a general or pointer entry, an RX_ENTRY_DONE interrupt is raised after a packet is fully received,

unless the packet is automatically flushed.
• For a multielement entry, an RX_ENTRY_DONE interrupt is raised when a new buffer is allocated and

a new entry was taken into use, or when a buffer is finished and fills the entire entry.
• For a partial-read entry, an RX_ENTRY_DONE interrupt is raised when an RX entry is full, so writing

must continue in the next entry.

For partial-read entries, an RX_Data_Written interrupt is raised whenever data is written to the receive
buffer. An RX_N_Data_Written interrupt is raised whenever a multiple of config.irqIntv (as given in the
data entry) bytes have been written since the start of the packet.

23.7.4.2 Transmit Buffers
The transmit operations contain a buffer with the data to be transmitted. The number of bytes in this buffer
is given by pktLen. For the CMD_PROP_TX command, the length given in pktLen is transmitted as the
first byte if pktConf.bVarLen is 1, and then followed by the contents of the transmit buffer.

www.ti.com Proprietary Radio

1703SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

For CMD_PROP_TX_ADV, the first bytes of the buffer contain the header if the header length is greater
than 0. The number of bytes is the number of bits in the header divided by 8, rounded up. The MSBs of
the last header byte are not sent if the number of bits does not divide by 8. If a length field is to be
transmitted using CMD_PROP_TX_ADV, it must be given explicitly from the system side as part of the
header.

If unlimited length is configured, a TX queue is used instead of one buffer. In this case, transmission of
payload continues until the queue is emptied. Every time transmission from one entry is finished, meaning
reading continues from the next entry or the entire payload is entered into the modem, a
TX_ENTRY_DONE interrupt is raised.

23.7.5 Radio Operation Command Descriptions
Before running any of the proprietary RX or TX radio operation commands, the radio must be set up in
proprietary mode using the command CMD_PROP_RADIO_SETUP or
CMD_PROP_RADIO_DIV_SETUP, or in another compatible mode with CMD_RADIO_SETUP. Otherwise,
the operation ends with an error. The RX and TX commands also require the CMD_FS command to
program the synthesizer, which can typically be done by a command chain where an RX or TX command
follows immediately after the CMD_FS.

23.7.5.1 End of Operation
The status field of the command issued is updated during the operation. When submitting the command,
the system CPU must write this field with a state of IDLE. During the operation, the radio CPU updates the
field to indicate the operation mode. When the operation is done, the radio CPU writes a status indicating
that the operation is finished. Table 23-146 lists the status codes used by a proprietary radio operation.

Table 23-146. Proprietary Radio Operation Status Codes

Number Name Description
Operation not finished
0x0000 IDLE Operation not started
0x0001 PENDING Waiting for start trigger
0x0002 ACTIVE Running operation
Operation finished normally
0x3400 PROP_DONE_OK Operation ended normally
0x3401 PROP_DONE_RXTIMEOUT Operation stopped after end trigger while waiting for sync
0x3402 PROP_DONE_BREAK RX stopped due to time-out in the middle of a packet
0x3403 PROP_DONE_ENDED Operation stopped after end trigger during reception
0x3404 PROP_DONE_STOPPED Operation stopped after stop command
0x3405 PROP_DONE_ABORT Operation aborted by abort command
0x3406 PROP_DONE_RXERR Operation ended after receiving packet with CRC error

0x3407 PROP_DONE_IDLE Carrier sense operation ended because of idle channel (valid only for
CC13x0)

0x3408 PROP_DONE_BUSY Carrier sense operation ended because of busy channel (valid only for
CC13x0)

0x3409 PROP_DONE_IDLETIMEOUT Carrier sense operation ended because of time-out with
csConf.timeoutRes = 1 (valid only for CC13x0)

0x340A PROP_DONE_BUSYTIMEOUT Carrier sense operation ended because of time-out with
csConf.timeoutRes = 0 (valid only for CC13x0)

Operation finished with error
0x3800 PROP_ERROR_PAR Illegal parameter

0x3801 PROP_ERROR_RXBUF No RX buffer large enough for the received data available at the start of a
packet

0x3802 PROP_ERROR_RXFULL Out of RX buffer during reception in a partial read buffer
0x3803 PROP_ERROR_NO_SETUP Radio was not set up in proprietary mode
0x3804 PROP_ERROR_NO_FS Synthesizer was not programmed when running RX or TX

Proprietary Radio www.ti.com

1704 SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

Table 23-146. Proprietary Radio Operation Status Codes (continued)
Number Name Description
0x3805 PROP_ERROR_RXOVF TX overflow observed during operation
0x3806 PROP_ERROR_TXUNF TX underflow observed during operation

The conditions for giving each status are listed for each operation. Some of the error causes listed in
Table 23-146 are not repeated in these lists. If CMD_STOP or CMD_ABORT is received while waiting for
the start trigger, the end cause is DONE_STOPPED or DONE_ABORT, with an end result of FALSE and
ABORT, respectively. In some cases, general error causes may occur. For all these error cases, the result
of the operation is ABORT.

23.7.5.2 Proprietary Mode Setup Command
For proprietary mode radio, the CMD_PROP_RADIO_SETUP and CMD_PROP_RADIO_DIV_SETUP
commands are used instead of CMD_RADIO_SETUP. When CMD_PROP_RADIO_SETUP or
CMD_PROP_RADIO_DIV_SETUP is executing, trim values are read from FCFG1 unless they have been
provided elsewhere (for more details, see Section 23.3.3.1.2).

On start, the radio CPU sets up parameters for the proprietary mode with parameters given in
Table 23-139. The modulation.modType parameter selects between GFSK and unshaped FSK. For FSK
and GFSK, modulation.deviation gives the deviation in 250-Hz steps. The radio CPU uses this parameter
to calculate a proper shape for use in TX.

The symbol rate is programmed with symbolRate. The parameters are passed directly to the modem and
may be calculated using an external tool. The symbol rate is given by Equation 16.

fbaud = (R × fclk) / (p × 220)

where
• f baud is the obtained baud rate
• f clk is the system clock frequency of 24 MHz
• R is the rate word given by symbolRate.rateWord
• p is the prescaler value, given by symbolRate.preScale, which can be from 4 to 15 (16)

The rxBw parameter gives the receiver bandwidth. Values from 32 to 52 give the supported bandwidths
with the recommended settings. Values from 1 to 18 give the same bandwidths as settings from 35 to 52,
for the CC26x0 and CC13x0 devices. Table 23-147 summarizes the values supported and corresponding
settings are summarized in . These signals are also in calculation of other register settings.

Table 23-147. Receiver Bandwidth Settings

Setting CC26x0
and CC13x0

Setting Only
CC13x0

Receiver
Bandwidth
(868 MHz)

Receiver
Bandwidth
(915 MHz)

Receiver
Bandwidth
(2432 MHz)

Default Intermediate
Frequency

– 32 38.9 kHz 41.0 kHz 43.5 kHz (CC1350) 250 kHz
– 33 49.0 kHz 51.6 kHz 54.9 kHz (CC1350) 250 kHz
– 34 58.9 kHz 62.1 kHz 66.0 kHz (CC1350) 250 kHz
1 35 77.7 kHz 81.9 kHz 87.1 kHz 250 kHz
2 36 98.0 kHz 103.3 kHz 109.8 kHz 250 kHz
3 37 117.7 kHz 124.1 kHz 131.9 kHz 250 kHz
4 38 155.4 kHz 163.8 kHz 174.2 kHz 500 kHz
5 39 195.9 kHz 206.5 kHz 219.6 kHz 500 kHz
6 40 235.5 kHz 248.2 kHz 263.9 kHz 500 kHz
7 41 310.8 kHz 327.6 kHz 348.3 kHz 1 MHz
8 42 391.8 kHz 413.0 kHz 439.1 kHz 1 MHz
9 43 470.9 kHz 496.4 kHz 527.8 kHz 1 MHz
10 44 621.6 kHz 655.3 kHz 696.7 kHz 1 MHz
11 45 783.6 kHz 826.0 kHz 878.2 kHz 1 MHz

www.ti.com Proprietary Radio

1705SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

Table 23-147. Receiver Bandwidth Settings (continued)

Setting CC26x0
and CC13x0

Setting Only
CC13x0

Receiver
Bandwidth
(868 MHz)

Receiver
Bandwidth
(915 MHz)

Receiver
Bandwidth
(2432 MHz)

Default Intermediate
Frequency

12 46 941.8 kHz 992.8 kHz 1055.6 kHz 1 MHz
13 47 1243.2 kHz 1310.5 kHz 1393.3 kHz 1 MHz
14 48 1567.2 kHz 1652.1 kHz 1756.4 kHz 1 MHz
15 49 1883.7 kHz 1985.7 kHz 2111.1 kHz 1 MHz
16 50 2486.5 kHz 2621.1 kHz 2786.7 kHz 1 MHz
17 51 3134.4 kHz 3304.2 kHz 3512.9 kHz 1 MHz
18 52 3767.4 kHz 3971.4 kHz 4222.2 kHz 1 MHz
Others Reserved

The CMD_PROP_RADIO_DIV_SETUP command contains settings for frequency band and intermediate
frequency. The center frequency of the band to use is given by centerFreq, and is used to calculate the
transmitter shaping filter and the TX IF. The divider to use in the synthesizer is given by loDivider. The
user must ensure that the setting is compatible with the given frequency. A value of 2 is allowed only for
devices supporting operation in the 2.4-GHz band. In the CMD_PROP_RADIO_SETUP command,
centerFreq defaults to 2432 MHz and loDivider defaults to 2.

For CMD_PROP_RADIO_DIV_SETUP, the intermediate frequency can be specified through the intFreq
parameter, which calculates the setting in the modem for RX and is written to the configuration parameter
area. If this parameter is 0x8000 and for CMD_PROP_RADIO_SETUP, a default intermediate frequency
as given in Table 23-147 is used.

The preamConf setting gives the preamble. The preamble is a sequence of 1010... or 0101..., where
preamConf.preamMode gives the first transmitted bit. For more than 16 bytes, only an even number of
bytes is supported. Setting preamConf.nPreamBytes = 31 gives a 4-bit preamble.

The formatConf setting is used for various setup of the packet format. The sync word length is given by
nSwBits, which can be up to 32 bits. The bit polarity for FSK type modulation is given by bBitReversal,
which must be 1 for compatibility with CC1101. The bit ordering is given by bMsbFirst, where 1 gives
compatibility with the CC1101 device, and so forth. The whitenMode setting can select a whitener
scheme. Other whiteners are obtained using override settings. Details of the IEEE 802.15.4g settings are
given in Section 23.7.5.2.1. The fecMode setting can be used to change the encoding of the transmitted or
received signal. For long-range mode (fecMode = 8), the nSwBits setting and the sync word programmed
in the RX and TX commands are ignored, and a hard-coded 64-bit sync word with good performance is
used. Setting fecMode to 10 enables Manchester coding. Only encoding and decoding of the payload and
CRC is supported. A 0 will be encoded as 01b and a 1 as 10b. More information about Manchester coding
can be found in the Proprietary RF user's guide in the CC13x0SDK.

The command sets up a 16-bit CRC with the polynomial x16 + x15 + x2 + 1 and initialization of all 1s. This is
compatible with the CC1101 device. Other polynomials, lengths, and initializations can be obtained by
parameter overrides.

The txPower parameter is used to set the output power. For CC13x0, in order to set maximum output
power (+14 dBm), changes must also be made to the CCFG area. In the ccfg.c distributed through
cc13xxware by TI, set CCFG_FORCE_VDDR_HH to 1. Essentially this will increase the VDDR level,
making it possible to use +14 dBm output power. However, setting CCFG_FORCE_VDDR_HH to 1 also
increases the overall power consumption. For all output power settings other than +14 dBm, TI
recommendssetting CCFG_FORCE_VDDR_HH to 0 (default in ccfg.c distributed by TI), to achieve the
lowest possible average power consumption.

The pRegOverride parameter gives a pointer to an override structure, just as the one given for
CMD_RADIO_SETUP. This parameter can be used to override parameters calculated from the other
settings in the commands, as well as from other parameters. If the value is NULL, no overrides are used.

Proprietary Radio www.ti.com

1706 SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

23.7.5.2.1 IEEE 802.15.4g Packet Format (CC13x0 Only)
IEEE 802.15.4g PHY, including header, is supported by using the CMD_PROP_RX_ADV and
CMD_PROP_TX_ADV commands.

The radio is configured to IEEE 802.15.4g mode by setting the formatConf.whitenMode field to the values
4, 5, 6, or 7, and formatConf.bMsbFirst must be set to 1 using the CMD_PROP_RADIO_DIV_SETUP
command. For the CMD_PROP_TX_ADV and CMD_PROP_RX_ADV commands, pktConf.bCrcIncSw and
pktConf.bCrcIncHdr must both be set to 0. For CMD_PROP_RX_ADV, hdrConf.numHdrBits must be set
to 16, hdrConf.lenPos must be set to 0, hdrConf.numLenBits must be set to 11, and lenOffset must be −4.

When formatConf.whitenMode is 5 or 7, the radio is configured to produce the 32-bit CRC and whitening
defined in IEEE 802.15.4g. When formatConf.whitenMode is 6 or 7, the radio also processes the headers
in both receive and transmit as follows:
• If bit 15 of the header (counted from the LSB) is 1, the frame is assumed to consist of only a header,

with no payload or CRC.
• If bit 12 of the header (counted from the LSB) is 1, the 16-bit CRC defined in IEEE 802.15.4g is

assumed instead of the 32-bit CRC. For TX, 2 is added to the length offset to account for this,
assuming the CRC is included in the received frame length.

• For mode 7: If bit 11 of the header (counted from the LSB) is 1, whitening is enabled; otherwise it is
disabled.

NOTE: For modes 6 and 7, the transmitter adjusts CRC and whitening automatically based on
transmitted PHY header. However, for this feature to work properly, extended preamble must
be used (that is, CMD_PROP_TX_ADV.preTrigger.triggerType cannot be set to
TRIG_NOW). As a workaround, set preTrigger.triggerType to TRIG_REL_START,
preTrigger.pastTrig to 1 and preTime to 0. This will give normal preamble as configured.

NOTE: The IEEE 802.15.4g PHY header must be presented MSB first to the RF Core. In IEEE
802.15.4g specification, the payload part is LSB first, however the payload length info in
physical layer header (PHR) is MSB first. This means that the payload must be flipped in the
CM-3. This can be achieved with the Cortex-M3 assembly instruction RBIT.

The following example shows how to send a CRC-32 IEEE 802.15.4g frame with whitening enabled using
the automatic headers processing feature (formatConf.whitenMode = 7).
/*

* Prepare the .15.4g PHY header
* MS=0, Length MSBits=0, DW and CRC settings read from 15.4g header (PHDR) by

RF core.
* Total length = transmit_len (payload) + CRC length
*
* The Radio will flip the bits around, so tx_buf[0] must have the
* length LSBs (PHR[15:8] and tx_buf[1] will have PHR[7:0]
*/

/* Length in .15.4g PHY HDR includes the CRC but not the HDR itself */

uint16_t total_length;

total_length = transmit_len + CRC_LEN; /* CRC_LEN is 2 for CRC-
16 and 4 for CRC-32 */

tx_buf[0] = total_length & 0xFF;
tx_buf[1] = (total_length >> 8) + 0x08 + 0x0; /* Whitening and CRC-32 bits */
tx_buf[2] = data;

www.ti.com Proprietary Radio

1707SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

NOTE: When IEEE 802.15.4g mode is configured (CMD_PROP_RADIO_SETUP with
formatConf.whitenMode = 4, 5, 6, or 7), transmitting packets using unlimited length (pktLen =
0, pPkt pointing to a TX queue) and 32-bit CRC is not supported.

NOTE: To ensure correct crc-16 calculation when radio is configured for IEEE 802.15.4g, two
overrides are needed: (uint32_t)0x943, (uint32_t)0x963, these overrides must be added to
the override array.

An MCE patch is necessary to support FEC, mode switch, or other advanced features of IEEE 802.15.4g
PHY.

23.7.5.3 Transmitter Commands
There are two commands for sending packets, CMD_PROP_TX and CMD_PROP_TX_ADV. The latter
gives more flexibility in how the packet can be formed. Details of this are described in Section 23.7.5.3.1
and Section 23.7.5.3.2, respectively.

Both commands require the radio is set up in a compatible mode (such as proprietary mode), and that the
synthesizer is programmed using CMD_FS.

For both commands, after the packet has been transmitted, the frequency synthesizer is turned off when
the command ends if pktConf.bFsOff is 1. If pktConf.bFsOff is 0, the synthesizer keeps running, so that
the command must either be followed by one of the following:
• An RX or TX command (which operate on the same frequency)
• A CMD_FS_OFF command to turn off the synthesizer
or

Table 23-148 lists the end statuses for use with CMD_PROP_TX and CMD_PROP_TX_ADV. This status
decides the next operatio (see Section 23.7.5.1).

Table 23-148. End of Radio CMD_PROP_TX and CMD_PROP_TX_ADV Commands

Condition Status Code Result
Transmitted packet PROP_DONE_OK TRUE
Received CMD_STOP while transmitting packet and finished transmitting
packet. PROP_DONE_STOPPED FALSE

Received CMD_ABORT while transmitting packet. PROP_DONE_ABORT ABORT
Observed illegal parameter. PROP_ERROR_PAR ABORT
Command sent without setting up the radio in a supported mode using
CMD_PROP_RADIO_SETUP or CMD_RADIO_SETUP. PROP_ERROR_NO_SETUP ABORT

Command sent without the synthesizer being programmed. PROP_ERROR_NO_FS ABORT
TX underflow observed during operation. PROP_ERROR_TXUNF ABORT

23.7.5.3.1 Standard Transmit Command, CMD_PROP_TX
The CMD_PROP_TX command transmits a packet with the format from Table 23-134. The parameters
are as given in Table 23-132.

The packet transmission starts at the given start trigger, with a fixed delay. The modem first transmits the
preamble and sync word as configured. The sync word to transmit is given in the syncWord field, in the
LSBs if less than 32 bits are used. The word is transmitted in the bit order programmed in the radio.

If pktConf.bVarLen is 1, a length byte equal to the value of pktLen is sent next. After this, the content of
the buffer pointed to by pPkt is sent. This buffer consists of the number of bytes given in pktLen. If an
address byte as shown in Figure 23-9 is needed, it must be sent as the first payload byte.

If pktConf.bUseCrc is 1, a CRC is calculated and transmitted at the end. The number of CRC bits,
polynomial, and initialization are as configured in the radio. The CRC is calculated over the length byte (if
present) and over the entire contents of the buffer pointed to by pPkt.

Proprietary Radio www.ti.com

1708 SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

If whitening is enabled, the optional length byte, the entire contents of the buffer pointed to by pPkt, and
the CRC are subject to whitening. The whitening is done after the data has been used for CRC
calculation.

23.7.5.3.2 Advanced Transmit Command, CMD_PROP_TX_ADV
The CMD_PROP_TX_ADV command transmits a packet with the format from Figure 23-10. As a special
case, the user can set up packets as outlined in Figure 23-9. The radio must be set up in a compatible
mode (such as proprietary mode) and the synthesizer programmed using CMD_FS. The parameters are
as given in Table 23-137.

The packet transmission starts at the given start trigger, with a fixed delay. Alternatively, if
startConf.bExtTXTrig is 1, the packet transmission starts on an external trigger to the RF core. The trigger
is identified as one of the inputs to the RAT, and can be configured as rising edge, falling edge, or both
edges through the startConf parameter. The system must ensure that this trigger comes after the start
trigger, otherwise it is lost. The minimum delay after the start trigger is implementation-dependent and
subject to characterization.

The modem first transmits the preamble and sync word as configured. If preTrigger is not TRIG_NOW, the
configured preamble is repeated until that trigger (seen in combination with preTime) has been observed.
After the trigger is observed, the configured preamble under transmission finishes before the sync word
transmission starts. If preTrigger is TRIG_NOW, the preamble is sent once, followed by the sync word.
The sync word to transmit is given in the syncWord field, in the LSBs if less than 32 bits are used, and is
transmitted in the bit order programmed in the radio.

If numHdrBits is greater than 0, a header of numHdrBits is sent next. The header may contain a length
field or an address. If so, these fields must be inserted correctly in the packet buffer. The header to be
transmitted is the first bytes of the buffer pointed to by pPkt. If numHdrBits does not divide by 8, the MSBs
of the last byte of the header are ignored.

The header is transmitted as one field in the bit ordering programmed in the radio. If the header has more
than 8 bits, it is always read from the transmit buffer in little-endian byte order. If the radio is configured to
transmit the MSB first, the last header byte from the TX buffer is transmitted first.

After the header, the remaining bytes in the buffer pointed to by pPkt are transmitted. The payload is
transmitted byte by byte, so after the header, no swapping of bytes occurs regardless of bit ordering over
the air. The total number of bytes (including the header) in this buffer is given by pktLen. If this length is
too small to fit the header, the operation ends with PROP_ERROR_PAR as status. If an address field after
the header as shown in Figure 23-10 is needed, it must be sent as the first payload byte.

If pktLen is 0, unlimited length is used. In this case, pPkt points to a transmit queue instead of a buffer
(see Section 23.5.3.2).

If pktConf.bUseCrc is 1, a CRC is calculated and transmitted at the end. The number of CRC bits,
polynomial, and initialization are as configured in the radio. If pktConf.bCrcIncSw is 1, the transmitted sync
word is included in the data set over which the CRC is calculated. If pktConf.bCrcIncHdr is 1, the
transmitted header is included in the data set over which the CRC is calculated. The payload is always
used to calculate the CRC.

If whitening is enabled, the optional header is subject to whitening if pktConf.bCrcIncHdr is 1. The entire
payload and the CRC are always subject to whitening when enabled. The whitening is done after the data
has been used for CRC calculation.

23.7.5.4 Receiver Commands
There are two commands for receiving packets, CMD_PROP_RX and CMD_PROP_RX_ADV. The latter
gives more flexibility in how the packet can be formed. Details are described in Section 23.7.5.4.1 and
Section 23.7.5.4.2, respectively.

For both commands, the radio must be set up in a compatible mode (such as proprietary mode), and the
synthesizer must be programmed using CMD_FS before the command is sent to the radio core.

www.ti.com Proprietary Radio

1709SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

Both commands have an end trigger, given by endTrigger and endTime. If this trigger occurs while the
receiver is searching for sync, the operation ends with the status PROP_DONE_RXTIMEOUT. If the
trigger occurs while receiving a packet, the action depends on pktConf.endType.
If pktConf.endType = 0, the packet is received to the end and the operation then ends with
PROP_DONE_ENDED as the status. If pktConf.endType = 1, the packet reception is aborted and the
operation ends with PROP_DONE_BREAK as the status. The radio receives packets according to the
details given in Section 23.7.5.4.1 and Section 23.7.5.4.2. After receiving a packet, an interrupt is raised. If
pOutput is not NULL, an output structure as given in Table 23-137, pointed to by pOutput, is updated as
well. The interrupt to raise and field to update is given in Table 23-149. This table also gives the result to
write in the status field of the receive buffer, if enabled. The condition for packets being ignored is
described in Section 23.7.5.4.1 and Section 23.7.5.4.2.

(1) Provided partial-read entry is used and data has been written to the buffer.

Table 23-149. Interrupt, Counter, and Result Field for Received Packets (1)

Condition Interrupt Raised Counter
Incremented

Result Field of
Status Byte

Packet fully received with CRC OK and not to be ignored. RX_OK nRxOk 0
Packet fully received with CRC error. RX_NOK nRxNok 1
Packet fully received with CRC OK and address mismatch
(pktConf.filterOp = 1). RX_IGNORED nRxIgnored 2

Packet reception aborted due to timeout (pktConf.endType = 1),
CMD_ABORT, too short length in CMD_PROP_SET_LEN, or
CMD_PROP_RESTART_RX.

RX_ABORTED nRxStopped 3 (1)

Packet reception aborted due to illegal length or address
mismatch (pktConf.filterOp = 0). RX_ABORTED nRxStopped –

Packet could not be stored due to lack of buffer space. RX_BUF_FULL nRxBufFull 3 (1)

For both types of commands, the packet length may be configured as unlimited or unknown at the start of
packet reception, by setting maxPktLen to 0. This mode can only be used with partial-read RX buffers. If
the length is later determined, it can be set by the immediate or direct command CMD_PROP_SET_LEN,
where the number of bytes between the header (if any) and the CRC is given. In addition to setting the
length this way, packet reception may be stopped in the following ways (CRC is not performed in the
following cases):
• If CMD_PROP_SET_LEN is called with a smaller number of bytes than already received
• If CMD_PROP_RESTART_RX is given
• If no more RX buffer is available
• If the end trigger occurs and pktConf.endType is 1
• If the command is aborted with CMD_ABORT

For ignored packets and packets with CRC error, automatic flush of the RX buffer can be configured. In
this case, packets are removed from the receive buffer after they have been received, so the next packet
overwrites it and the counters are not updated to reflect the packet received.

NOTE: Automatic flush is not supported for partial-read RX entries. Packets with CRC error (that is,
for which the RX_NOK interrupt is raised) are automatically flushed if
rxConf.bAutoFlushCrcErr is 1.

Ignored packets (that is, for which the RX_IGNORED interrupt is raised) are automatically flushed if
rxConf.bAutoFlushIgnored is 1. After a packet has been received, the next action depends on
pktConf.bRepeat. If this is 0, the command ends. Otherwise, it goes back into RX, unless another criterion
exists that leads to the command to end. When the command ends, the frequency synthesizer is turned
off if pktConf.bFsOff is 1. If pktConf.bFsOff is 0, the synthesizer keeps running, so that the command must
be followed by one of the following:
• An RX or TX command (which operate on the same frequency)
• A CMD_FS_OFF command to turn off the synthesizer

Proprietary Radio www.ti.com

1710 SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

Table 23-150 lists the end statuses for CMD_PROP_RX and CMD_PROP_RX_ADV. This status decides
the next operation (see Section 23.7.5.1).

Table 23-150. End of Radio CMD_PROP_RX and CMD_PROP_RX_ADV Commands

Condition Status Code Result
Received packet with CRC OK and pktConf.bRepeatOk = 0. PROP_DONE_OK TRUE
Received packet with CRC error and pktConf.bRepeatNok = 0. PROP_DONE_RXERR FALSE
Observed end trigger while in sync search. PROP_DONE_RXTIMEOUT FALSE
Observed end trigger while receiving packet with pktConf.endType = 1. PROP_DONE_BREAK FALSE
Received packet after having observed end trigger while receiving packet with
pktConf.endType = 0. PROP_DONE_ENDED FALSE

Received CMD_STOP after command started and, if sync found, packet is
received. PROP_DONE_STOPPED FALSE

Received CMD_ABORT after command started. PROP_DONE_ABORT ABORT
No RX buffer large enough for the received data available at the start of a
packet. PROP_ERROR_RXBUF FALSE

Out of RX buffer during reception in a partial read buffer. PROP_ERROR_RXFULL FALSE
Observed illegal parameter. PROP_ERROR_PAR ABORT
Command sent without setting up the radio in a supported mode using
CMD_PROP_RADIO_SETUP or CMD_RADIO_SETUP. PROP_ERROR_NO_SETUP ABORT

Command sent without the synthesizer being programmed. PROP_ERROR_NO_FS ABORT
TX overflow observed during operation. PROP_ERROR_RXOVF ABORT

23.7.5.4.1 Standard Receive Command, CMD_PROP_RX
The CMD_PROP_RX receives packets with the format from Figure 23-9. The parameters are as given in
Table 23-138.

The modem configures the receiver and starts listening for sync. The sync word to listen for is given in the
LSBs of the syncWord field if less than 32 bits are used. The word is in the bit order programmed in the
radio.

If sync is found, the radio CPU starts receiving data. If pktConf.bVarLen is 1 and maxPktLen is nonzero, a
length byte is assumed as the next byte. This length byte is compared to maxPktLen, and if it is greater,
reception is stopped and synch search is restarted. Otherwise, this indicates the number of bytes after the
length byte and before the CRC. If pktConf.bVarLen is 0, the length is fixed, and the receiver assumes
maxPktLen bytes after the sync word and before the CRC. If maxPktLen is 0, the length is unlimited as
described in the beginning of Section 23.7.5.4.

If pktConf.bChkAddress is 1, an address byte is checked next. The address byte is checked against the
values of address0 and address1. If only one address is needed, these two fields must be set to the same
value. If address1 is 0xFF, it is also checked against the value 0x00. To check for 0xFF without checking
for 0x00, address0 must be set to 0xFF. If the address byte does not match the configured addresses, the
further treatment depends on pktConf.filterOp. If pktConf.filterOp = 0, reception is stopped and sync
search is restarted. If pktConf.filterOp = 1, the packet is received as if the address had matched, but it is
marked as ignored.

If the packet is being received, the data is placed in the RX buffer, as shown in Section 23.5.3.1. This RX
buffer is found from the receive queue pointed to by pQueue. If pQueue is NULL, the packet is never
stored.

If pktConf.bUseCrc is 1, a CRC is received and checked at the end. The number of CRC bits, polynomial,
and initialization are as configured in the radio. The CRC is calculated over the length byte (if present), the
optional address, and the payload. If pktConf.bUseCrc is 0, the treatment is the same as for CRC OK.

If whitening is enabled, the optional length byte, the payload (including the optional address), and the
received CRC are subject to dewhitening. The dewhitening is done before the CRC is evaluated.

www.ti.com Proprietary Radio

1711SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

If a status byte is appended (rxConf.bAppendStatus is 1) to the packet, it is formatted as follows (see
Table 23-144). If pktConf.addressMode is nonzero, the addressInd field is 0 if the address matched
address0, 1 if it matched address1, 2 if it matched 0x00 and this address was enabled, and 3 if it matched
0xFF and this address was enabled. Otherwise, addressInd is 0. The syncWordId field is always 0 for
CMD_PROP_RX. The result field is written according to Table 23-150.

23.7.5.4.2 Advanced Receive Command, CMD_PROP_RX_ADV
The command CMD_PROP_RX_ADV is used to receive packets with the format from Figure 23-10. As a
special case, the user can set up packets as in Figure 23-9. The parameters are as given in Table 23-139.

The modem configures the receiver and listens for sync. The sync word to listen for is given in the LSBs
of the syncWord0 field if less than 32 bits are used. The word is in the bit order programmed in the radio.
If syncWord1 is nonzero, the receiver also listens for the sync word given in the syncWord1 field
(formatted in the same way) if supported in the MCE.

If sync is found, the radio CPU starts receiving data. The packet may contain a header, which can consist
of any number of bits up to 32, given by hdrConf.numHdrBits. If the number of bits in the header does not
divide by 8, it is considered to consist of a sufficient number of bytes to contain all the stored bits, as
shown in Section 23.5.3.1. This header may contain a length field or an address.

The received packet may have fixed or variable length. If hdrConf.numLenBits is 0 and maxPktLen is
nonzero, the packet has a fixed length, consisting of maxPktLen bytes after the header and before the
CRC. If hdrConf.numLenBits is greater than 0, a field of hdrConf.numLenBits, read from bit number
hdrConf.lenPos from the LSB of the header, is taken as a length field. The signed number lenOffset is
added to the received length to give the number of bytes after the header and before the CRC. If this
number is less than or equal to maxPktLen, the packet is received. If maxPktLen is 0, the length is
unlimited as described in the beginning of Section 23.7.5.4. The definitions of packet length for
CMD_PROP_RX_ADV and CMD_PROP_TX_ADV differ; see Section 23.7.5.4.2 where the header is
included in the packet length.

Two kinds of addresses are supported. With the first option, the address is part of the header. In this case,
the address size can be from 1 to 31 bits. The other option is to have an address after the header. If so,
this address consists of from 1 to 8 bytes. To use an address as part of the header, addrConf.addrType
must be set to 1. The number of bits in the address is given by addrConf.addrSize. These bits are read
from bit number addrConf.addrPos from the first bit of the header. To use an address after the header,
addrConf.addrType must be set to 0. In this case, the number of bytes in the address is given by
addrConf.addrSize.

The received address is compared to an address list pointed to by pAddr. The address to compare against
this list is as received. In addition, 1 bit identifying the sync word is concatenated with the address as the
MSBs, if one of the following conditions is met:
• syncWord1 ≠ 0 and addrConf.addrType = 1
• syncWord1 ≠ 0, addrConf.addrType = 0, and addrConf.addrPos ≠ 0

This extra bit is 0 if the received sync word was syncWord0, and the extra bit is 1 if the received sync
word was syncWord1. The entries in the address list have a size of 8, 16, 32, or 64 bits; the size in use is
the smallest size that can fit the address size, including the sync word identification bit if applicable. The
number of entries in the address list is given by addrConf.numAddr. The radio CPU scans through the
addresses in the address list and compares it to the received address. If there is no match, the further
treatment depends on pktConf.filterOp. If pktConf.filterOp is 0, reception is stopped and synch search is
restarted. If pktConf.filterOp is 1, the packet is received as if the address had matched, but marked as
ignored.

If addrConf.addrSize is 0, no address is used. In this case, pAddr is ignored and must be NULL.

If the packet is being received, the data is placed in the RX buffer, as in Section 23.5.3.1. This RX buffer
is found from the receive queue pointed to by pQueue. If pQueue is NULL, the packet is never stored.

The header is received as one field in the bit ordering programmed in the radio. If the header has more
than 8 bits and rxConf.bIncludeHdr is 1, the header is always written in little-endian byte order to the RX
buffer. If the radio is configured to receive the MSB first, the last header byte stored in the RX buffer is
received first. The payload is stored byte by byte, so after the header, no swapping of bytes occurs
regardless of bit ordering over the air.

Proprietary Radio www.ti.com

1712 SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

If pktConf.bUseCrc is 1, a CRC is received and checked at the end. The number of CRC bits, polynomial,
and initialization are as configured in the radio. If pktConf.bCrcIncSw is 1, the received sync word
(assuming it to be exactly equal to syncWord0 or syncWord1) is included in the data set over which the
CRC is calculated. If pktConf.bCrcIncHdr is 1, the received header is included in the data set over which
the CRC is calculated. The payload, including the optional address after the header, is always used for
calculating the CRC. If pktConf.bUseCrc is 0, the treatment is the same as for CRC OK.

If whitening is enabled, the optional header is subject to dewhitening only if pktConf.bCrcIncHdr is 1. The
payload (including the optional address after the header), and the received CRC are always subject to
dewhitening when enabled. The dewhitening is done before the CRC is evaluated.

If a status byte is appended (rxConf.bAppendStatus is 1) to the packet, it is formatted as detailed in
Table 23-144. If addrConf.addrSize is nonzero, the addressInd field is the first index into the address list
that matched the received address if an address match existed. Otherwise, addressInd is 0. The
syncWordId field is 0 if the received sync word was syncWord0, and 1 if syncWord1. The result field is
written according to Table 23-149.

23.7.5.5 Carrier-Sense Operation (CC13x0 Only)
The carrier-sense operation detects if a signal is present, which has the following main purposes:
• Turns off the radio instead of receiving when no signal is present
• Turns the radio to transmit only if no signal is present

The carrier-sense operation can be used with the command CMD_PROP_CS to chain with another
operation (for example, a transmit operation), or with the commands CMD_PROP_RX_SNIFF or
CMD_PROP_RX_ADV_SNIFF to combine with a normal receive operation to implement sniff mode. The
details of these commands are described in the following subsections.

23.7.5.5.1 Common Carrier-Sense Description
The parameters for the carrier-sense operation are common for all the commands, and are given in
Section 23.7.2.3. Table 23-142 gives the offset from the first byte used for carrier-sense parameters.

The channel can be in one of three states: BUSY, IDLE, or INVALID. BUSY indicates a signal on the
channel. IDLE indicates no signal is present on the channel. INVALID indicates that the state cannot be
determined. There are two sources of channel information, RSSI and correlation, and a separate state is
maintained for each source.

The operation starts when the radio is set up in receive mode. The RSSI or correlation is monitored,
according to the enable bits csConf.bEnaRssi and csConf.bEnaCorr. If csConf.bEnaRssi is 1, the RSSI is
monitored. If csConf.bEnaCorr is 1, the correlator is set up to correlate against the preamble. It is not
possible to set both enable bits to 0.

If csConf.bEnaRssi is 1, the RSSI is monitored every time a new value is available from the radio. At each
update, the RSSI is compared against the signed value rssiThr. If the RSSI is below rssiThr and if
numRssiIdle consecutive RSSI measurements below the threshold have been observed, the RSSI state is
IDLE. If the RSSI is above rssiThr and if numRssiBusy consecutive RSSI measurements above the
threshold have been observed, the RSSI state is BUSY. Otherwise, the RSSI state is INVALID.

If csConf.bEnaCorr is 1, the radio CPU monitors correlation peaks from the modem. When the radio
starts, the state is INVALID. If no correlation top is observed until corrPeriod RAT ticks after the carrier-
sense command was started, the state becomes IDLE. If the state is IDLE and at least
corrConfig.numCorrInv correlation tops with a maximum of corrPeriod RAT ticks between them are
observed, the state becomes INVALID. If the state is INVALID and at least corrConfig.numCorrBusy
correlation tops with at most corrPeriod RAT ticks between them are observed, the state becomes BUSY.
If corrConfig.numCorrBusy is 0, the state goes directly to BUSY from IDLE. The value of
corrConfig.numCorrIdle must be greater than 0. If the state is not IDLE and corrTime RAT ticks pass after
the last correlation top, the state becomes IDLE again.

If only 1 of the enable bits is 1, the channel state is equal to the state of the corresponding source. If both
enable bits are 1, the channel state depends on the state of the two sources and the csConf.operation bit,
as shown in Table 23-151.

www.ti.com Proprietary Radio

1713SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

Table 23-151. Channel State When Both Sources are Enabled

csConf.operation = 0

RSSI state
Correlation state
INVALID IDLE BUSY

INVALID INVALID INVALID BUSY
IDLE INVALID IDLE BUSY
BUSY BUSY BUSY BUSY
csConf.operation = 1

RSSI state
Correlation state
INVALID IDLE BUSY

INVALID INVALID IDLE INVALID
IDLE IDLE IDLE IDLE
BUSY INVALID IDLE BUSY

If the state of the channel changes to BUSY, the action depends on csConf.busyOp and the command
being run. If csConf.busyOp is 0, the operation continues. If csConf.busyOp is 1 and the command is
CMD_PROP_CS, the operation ends with PROP_DONE_BUSY as the status. If csConf.busyOp is 1 and
the command is CMD_PROP_RX_SNIFF or CMD_PROP_RX_ADV_SNIFF, the receive operation
continues, but carrier sense is stopped, so the operation is not affected if the channel state later changes
to IDLE.

If the state of the channel changes to IDLE, the action depends on csConf.idleOp. If the value of this field
is 0, the receiver and carrier-sense operation continues. If the value of the bit field is 1, the operation ends
with PROP_DONE_IDLE as status.

If the trigger given by csEndTrigger and csEndTime is observed, the action depends on the command
being run and the channel state at that time. The details are described in Section 23.7.5.5.2 and
Section 23.7.5.5.3.

23.7.5.5.2 Carrier-Sense Command, CMD_PROP_CS
When the carrier-sense command starts, the radio is set up in receive mode, and the operations described
in Section 23.7.5.5.1 are performed. The radio must be set up in a compatible mode (such as proprietary
mode) and the synthesizer programmed using CMD_FS.

If the trigger given by csEndTrigger and csEndTime is observed, the operation ends, and the current
channel state is checked. If the state is BUSY or IDLE, the status is PROP_DONE_BUSY or
PROP_DONE_IDLE, respectively. If the state is INVALID, the status depends on csConf.timeoutRes. If 0,
the status is PROP_DONE_BUSYTIMEOUT; if 1, the status is PROP_DONE_IDLETIMEOUT.

When the command CMD_PROP_CS ends and the status is PROP_DONE_BUSY or
PROP_DONE_BUSYTIMEOUT, the synthesizer is turned off if csFsConf.bFsOffBusy is 1. If the command
ends and the status is PROP_DONE_IDLE or PROP_DONE_IDLETIMEOUT, the synthesizer is turned off
if csFsConf.bFsOffIdle is 1. If the command ends with another status, the synthesizer is turned off if either
of these bits is 1.

The end statuses for use with CMD_PROP_CS are summarized in Table 23-152. This status decides the
next operation, as shown in Section 23.7.5.1.

Table 23-152. End of CMD_PROP_CS Command

Condition Status Code Result
Observed channel state BUSY with csConf.busyOp = 1. PROP_DONE_BUSY TRUE
Observed channel state IDLE with csConf.idleOp = 1. PROP_DONE_IDLE FALSE
Time-out trigger observed with channel state BUSY. PROP_DONE_BUSY TRUE
Time-out trigger observed with channel state IDLE. PROP_DONE_IDLE FALSE
Time-out trigger observed with channel state INVALID and
csConf.timeoutRes = 0. PROP_DONE_BUSYTIMEOUT TRUE

Proprietary Radio www.ti.com

1714 SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

Table 23-152. End of CMD_PROP_CS Command (continued)
Condition Status Code Result
Time-out trigger observed with channel state INVALID and
csConf.timeoutRes = 1. PROP_DONE_IDLETIMEOUT FALSE

Received CMD_STOP after command started. PROP_DONE_STOPPED FALSE
Received CMD_ABORT after command started. PROP_DONE_ABORT ABORT
Observed illegal parameter. PROP_ERROR_PAR ABORT
Command sent without setting up the radio in a supported mode using
CMD_PROP_RADIO_SETUP or CMD_RADIO_SETUP. PROP_ERROR_NO_SETUP ABORT

Command sent without the synthesizer being programmed. PROP_ERROR_NO_FS ABORT

23.7.5.5.3 Sniff Mode Receiver Commands, CMD_PROP_RX_SNIFF and CMD_PROP_RX_ADV_SNIFF
The commands CMD_PROP_RX_SNIFF and CMD_PROP_RX_ADV_SNIFF behave like the commands
CMD_PROP_RX and CMD_PROP_RX_ADV, respectively, but they perform carrier-sense operations
during sync search.

When started, the commands perform the carrier-sense operations described in Section 23.7.5.5.1. As
described, the operation may end if the channel state becomes IDLE.

If the trigger given by csEndTrigger and csEndTime is observed, the current channel state is checked. If
the channel state is BUSY, the receiver continues, but may end later if the channel state becomes IDLE
and csConf.busyOp is 0. If the channel state is IDLE, the operation ends (even if csConf.idleOp is 0), and
the status is PROP_DONE_IDLE. If the channel state is INVALID, the action depends on
csConf.timeoutRes. If csConf.timeoutRes is 0, the receive operation continues, and if csConf.busyOp is 1,
carrier sense is no longer checked. If csConf.timeoutRes is 1, the operation ends and the status is
PROP_DONE_IDLETIMEOUT.

If sync is found, the receiver operates as described in Section 23.7.5.4. If sync search is restarted after a
packet is received or after reception is stopped due to an invalid length field or address mismatch, the
carrier-sense operation is resumed if it was running when sync was found.

The end statuses for use with CMD_PROP_RX_SNIFF and CMD_PROP_RX_ADV_SNIFF are listed in
Table 23-150 and Table 23-153. This status decides the next operation, as in Section 23.7.5.1.

Table 23-153. Additional End Statuses for CMD_PROP_RX_SNIFF and CMD_PROP_RX_ADV_SNIFF

Condition Status Code Result
Observed channel state IDLE with csConf.idleOp = 1. PROP_DONE_IDLE FALSE
Time-out trigger observed with channel state IDLE. PROP_DONE_IDLE FALSE
Time-out trigger observed with channel state INVALID and
csConf.timeoutRes = 1. PROP_DONE_IDLETIMEOUT FALSE

www.ti.com Proprietary Radio

1715SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

23.7.6 Immediate Commands

23.7.6.1 Set Packet Length Command, CMD_PROP_SET_LEN
The CMD_PROP_SET_LEN command takes a command structure as defined in Table 23-140.

CMD_PROP_SET_LEN must only be sent while a CMD_PROP_RX or CMD_PROP_RX_ADV command
is running configured with unlimited packet length. When the command is received, the radio CPU sets the
number of bytes to receive between the header and the CRC to RXLen. If at least this number of bytes
has already been received, reception is aborted, as in Section 23.7.5.4 and Section 23.7.5.4.2.

The command may be sent as a direct command if the payload length to set is 255 bytes or less. In this
case, the RXLen parameter is written in bits 8–16 of CMDR, and the 8 MSBs of this parameter is 0.

If the command is issued without a CMD_PROP_RX or CMD_PROP_RX_ADV command running, or if
such a command is not configured with unlimited length, the radio CPU returns the result ContextError in
CMDSTA. Otherwise, the radio CPU returns DONE.

23.7.6.2 Restart Packet RX Command, CMD_PROP_RESTART_RX
The CMD_PROP_RESTART_RX command is a direct command that takes no parameters.

CMD_PROP_RESTART_RX must only be sent while a CMD_PROP_RX or CMD_PROP_RX_ADV
command is running. If a packet is being received, reception is aborted, as described in Section 23.7.5.4
and the packet returns to sync search.

If the command is issued without an RX command running, the radio CPU returns the result ContextError
in CMDSTA. Otherwise, the radio CPU returns DONE.

Radio Registers www.ti.com

1716 SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

23.8 Radio Registers

23.8.1 RFC_RAT Registers
Table 23-154 lists the memory-mapped registers for the RFC_RAT. All register offset addresses not listed
in Table 23-154 should be considered as reserved locations and the register contents should not be
modified.

Table 23-154. RFC_RAT Registers

Offset Acronym Register Name Section
4h RATCNT Radio Timer Counter Value Section 23.8.1.1
80h RATCH0VAL Timer Channel 0 Capture/Compare Register Section 23.8.1.2
84h RATCH1VAL Timer Channel 1 Capture/Compare Register Section 23.8.1.3
88h RATCH2VAL Timer Channel 2 Capture/Compare Register Section 23.8.1.4
8Ch RATCH3VAL Timer Channel 3 Capture/Compare Register Section 23.8.1.5
90h RATCH4VAL Timer Channel 4 Capture/Compare Register Section 23.8.1.6
94h RATCH5VAL Timer Channel 5 Capture/Compare Register Section 23.8.1.7
98h RATCH6VAL Timer Channel 6 Capture/Compare Register Section 23.8.1.8
9Ch RATCH7VAL Timer Channel 7 Capture/Compare Register Section 23.8.1.9

www.ti.com Radio Registers

1717SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

23.8.1.1 RATCNT Register (Offset = 4h) [reset = 0h]
RATCNT is shown in Figure 23-12 and described in Table 23-155.

Return to Summary Table.

Radio Timer Counter Value

Figure 23-12. RATCNT Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CNT
R/W-0h

Table 23-155. RATCNT Register Field Descriptions

Bit Field Type Reset Description
31-0 CNT R/W 0h Counter value. This is not writable while radio timer counter is

enabled.

Radio Registers www.ti.com

1718 SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

23.8.1.2 RATCH0VAL Register (Offset = 80h) [reset = 0h]
RATCH0VAL is shown in Figure 23-13 and described in Table 23-156.

Return to Summary Table.

Timer Channel 0 Capture/Compare Register

Figure 23-13. RATCH0VAL Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

VAL
R/W-0h

Table 23-156. RATCH0VAL Register Field Descriptions

Bit Field Type Reset Description
31-0 VAL R/W 0h Capture/compare value. The system CPU can safely read this

register, but it is recommended to use the CPE API commands to
configure it for compare mode.

www.ti.com Radio Registers

1719SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

23.8.1.3 RATCH1VAL Register (Offset = 84h) [reset = 0h]
RATCH1VAL is shown in Figure 23-14 and described in Table 23-157.

Return to Summary Table.

Timer Channel 1 Capture/Compare Register

Figure 23-14. RATCH1VAL Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

VAL
R/W-0h

Table 23-157. RATCH1VAL Register Field Descriptions

Bit Field Type Reset Description
31-0 VAL R/W 0h Capture/compare value. The system CPU can safely read this

register, but it is recommended to use the CPE API commands to
configure it for compare mode.

Radio Registers www.ti.com

1720 SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

23.8.1.4 RATCH2VAL Register (Offset = 88h) [reset = 0h]
RATCH2VAL is shown in Figure 23-15 and described in Table 23-158.

Return to Summary Table.

Timer Channel 2 Capture/Compare Register

Figure 23-15. RATCH2VAL Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

VAL
R/W-0h

Table 23-158. RATCH2VAL Register Field Descriptions

Bit Field Type Reset Description
31-0 VAL R/W 0h Capture/compare value. The system CPU can safely read this

register, but it is recommended to use the CPE API commands to
configure it for compare mode.

www.ti.com Radio Registers

1721SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

23.8.1.5 RATCH3VAL Register (Offset = 8Ch) [reset = 0h]
RATCH3VAL is shown in Figure 23-16 and described in Table 23-159.

Return to Summary Table.

Timer Channel 3 Capture/Compare Register

Figure 23-16. RATCH3VAL Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

VAL
R/W-0h

Table 23-159. RATCH3VAL Register Field Descriptions

Bit Field Type Reset Description
31-0 VAL R/W 0h Capture/compare value. The system CPU can safely read this

register, but it is recommended to use the CPE API commands to
configure it for compare mode.

Radio Registers www.ti.com

1722 SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

23.8.1.6 RATCH4VAL Register (Offset = 90h) [reset = 0h]
RATCH4VAL is shown in Figure 23-17 and described in Table 23-160.

Return to Summary Table.

Timer Channel 4 Capture/Compare Register

Figure 23-17. RATCH4VAL Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

VAL
R/W-0h

Table 23-160. RATCH4VAL Register Field Descriptions

Bit Field Type Reset Description
31-0 VAL R/W 0h Capture/compare value. The system CPU can safely read this

register, but it is recommended to use the CPE API commands to
configure it for compare mode.

www.ti.com Radio Registers

1723SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

23.8.1.7 RATCH5VAL Register (Offset = 94h) [reset = 0h]
RATCH5VAL is shown in Figure 23-18 and described in Table 23-161.

Return to Summary Table.

Timer Channel 5 Capture/Compare Register

Figure 23-18. RATCH5VAL Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

VAL
R/W-0h

Table 23-161. RATCH5VAL Register Field Descriptions

Bit Field Type Reset Description
31-0 VAL R/W 0h Capture/compare value. The system CPU can safely read this

register, but it is recommended to use the CPE API commands to
configure it for compare mode.

Radio Registers www.ti.com

1724 SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

23.8.1.8 RATCH6VAL Register (Offset = 98h) [reset = 0h]
RATCH6VAL is shown in Figure 23-19 and described in Table 23-162.

Return to Summary Table.

Timer Channel 6 Capture/Compare Register

Figure 23-19. RATCH6VAL Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

VAL
R/W-0h

Table 23-162. RATCH6VAL Register Field Descriptions

Bit Field Type Reset Description
31-0 VAL R/W 0h Capture/compare value. The system CPU can safely read this

register, but it is recommended to use the CPE API commands to
configure it for compare mode.

www.ti.com Radio Registers

1725SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

23.8.1.9 RATCH7VAL Register (Offset = 9Ch) [reset = 0h]
RATCH7VAL is shown in Figure 23-20 and described in Table 23-163.

Return to Summary Table.

Timer Channel 7 Capture/Compare Register

Figure 23-20. RATCH7VAL Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

VAL
R/W-0h

Table 23-163. RATCH7VAL Register Field Descriptions

Bit Field Type Reset Description
31-0 VAL R/W 0h Capture/compare value. The system CPU can safely read this

register, but it is recommended to use the CPE API commands to
configure it for compare mode.

23.8.2 RFC_DBELL Registers
Table 23-164 lists the memory-mapped registers for the RFC_DBELL. All register offset addresses not
listed in Table 23-164 should be considered as reserved locations and the register contents should not be
modified.

Table 23-164. RFC_DBELL Registers

Offset Acronym Register Name Section
0h CMDR Doorbell Command Register Section 23.8.2.1
4h CMDSTA Doorbell Command Status Register Section 23.8.2.2
8h RFHWIFG Interrupt Flags From RF Hardware Modules Section 23.8.2.3
Ch RFHWIEN Interrupt Enable For RF Hardware Modules Section 23.8.2.4
10h RFCPEIFG Interrupt Flags For Command and Packet Engine

Generated Interrupts
Section 23.8.2.5

14h RFCPEIEN Interrupt Enable For Command and Packet Engine
Generated Interrupts

Section 23.8.2.6

18h RFCPEISL Interrupt Vector Selection For Command and Packet
Engine Generated Interrupts

Section 23.8.2.7

1Ch RFACKIFG Doorbell Command Acknowledgement Interrupt Flag Section 23.8.2.8
20h SYSGPOCTL RF Core General Purpose Output Control Section 23.8.2.9

Radio Registers www.ti.com

1726 SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

23.8.2.1 CMDR Register (Offset = 0h) [reset = 0h]
CMDR is shown in Figure 23-21 and described in Table 23-165.

Return to Summary Table.

Doorbell Command Register

Figure 23-21. CMDR Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CMD
R/W-0h

Table 23-165. CMDR Register Field Descriptions

Bit Field Type Reset Description
31-0 CMD R/W 0h Command register. Raises an interrupt to the Command and packet

engine (CPE) upon write.

www.ti.com Radio Registers

1727SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

23.8.2.2 CMDSTA Register (Offset = 4h) [reset = 0h]
CMDSTA is shown in Figure 23-22 and described in Table 23-166.

Return to Summary Table.

Doorbell Command Status Register

Figure 23-22. CMDSTA Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

STAT
R-0h

Table 23-166. CMDSTA Register Field Descriptions

Bit Field Type Reset Description
31-0 STAT R 0h Status of the last command used

Radio Registers www.ti.com

1728 SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

23.8.2.3 RFHWIFG Register (Offset = 8h) [reset = 0h]
RFHWIFG is shown in Figure 23-23 and described in Table 23-167.

Return to Summary Table.

Interrupt Flags From RF Hardware Modules

Figure 23-23. RFHWIFG Register
31 30 29 28 27 26 25 24

RESERVED
R-0h

23 22 21 20 19 18 17 16
RESERVED RATCH7 RATCH6 RATCH5 RATCH4

R-0h R/W-0h R/W-0h R/W-0h R/W-0h

15 14 13 12 11 10 9 8
RATCH3 RATCH2 RATCH1 RATCH0 RFESOFT2 RFESOFT1 RFESOFT0 RFEDONE
R/W-0h R/W-0h R/W-0h R/W-0h R/W-0h R/W-0h R/W-0h R/W-0h

7 6 5 4 3 2 1 0
RESERVED TRCTK MDMSOFT MDMOUT MDMIN MDMDONE FSCA RESERVED

R/W-0h R/W-0h R/W-0h R/W-0h R/W-0h R/W-0h R/W-0h R/W-0h

Table 23-167. RFHWIFG Register Field Descriptions

Bit Field Type Reset Description
31-20 RESERVED R 0h Software should not rely on the value of a reserved. Writing any

other value than the reset value may result in undefined behavior.
19 RATCH7 R/W 0h Radio timer channel 7 interrupt flag. Write zero to clear flag. Write to

one has no effect.
18 RATCH6 R/W 0h Radio timer channel 6 interrupt flag. Write zero to clear flag. Write to

one has no effect.
17 RATCH5 R/W 0h Radio timer channel 5 interrupt flag. Write zero to clear flag. Write to

one has no effect.
16 RATCH4 R/W 0h Radio timer channel 4 interrupt flag. Write zero to clear flag. Write to

one has no effect.
15 RATCH3 R/W 0h Radio timer channel 3 interrupt flag. Write zero to clear flag. Write to

one has no effect.
14 RATCH2 R/W 0h Radio timer channel 2 interrupt flag. Write zero to clear flag. Write to

one has no effect.
13 RATCH1 R/W 0h Radio timer channel 1 interrupt flag. Write zero to clear flag. Write to

one has no effect.
12 RATCH0 R/W 0h Radio timer channel 0 interrupt flag. Write zero to clear flag. Write to

one has no effect.
11 RFESOFT2 R/W 0h RF engine software defined interrupt 2 flag. Write zero to clear flag.

Write to one has no effect.
10 RFESOFT1 R/W 0h RF engine software defined interrupt 1 flag. Write zero to clear flag.

Write to one has no effect.
9 RFESOFT0 R/W 0h RF engine software defined interrupt 0 flag. Write zero to clear flag.

Write to one has no effect.
8 RFEDONE R/W 0h RF engine command done interrupt flag. Write zero to clear flag.

Write to one has no effect.
7 RESERVED R/W 0h Software should not rely on the value of a reserved. Writing any

other value than the reset value may result in undefined behavior.
6 TRCTK R/W 0h Debug tracer system tick interrupt flag. Write zero to clear flag. Write

to one has no effect.

www.ti.com Radio Registers

1729SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

Table 23-167. RFHWIFG Register Field Descriptions (continued)
Bit Field Type Reset Description
5 MDMSOFT R/W 0h Modem synchronization word detection interrupt flag. This interrupt

will be raised by modem when the synchronization word is received.
The CPE may decide to reject the packet based on its header
(protocol specific). Write zero to clear flag. Write to one has no
effect.

4 MDMOUT R/W 0h Modem FIFO output interrupt flag. Write zero to clear flag. Write to
one has no effect.

3 MDMIN R/W 0h Modem FIFO input interrupt flag. Write zero to clear flag. Write to
one has no effect.

2 MDMDONE R/W 0h Modem command done interrupt flag. Write zero to clear flag. Write
to one has no effect.

1 FSCA R/W 0h Frequency synthesizer calibration accelerator interrupt flag. Write
zero to clear flag. Write to one has no effect.

0 RESERVED R/W 0h Software should not rely on the value of a reserved. Writing any
other value than the reset value may result in undefined behavior.

Radio Registers www.ti.com

1730 SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

23.8.2.4 RFHWIEN Register (Offset = Ch) [reset = 0h]
RFHWIEN is shown in Figure 23-24 and described in Table 23-168.

Return to Summary Table.

Interrupt Enable For RF Hardware Modules

Figure 23-24. RFHWIEN Register
31 30 29 28 27 26 25 24

RESERVED
R-0h

23 22 21 20 19 18 17 16
RESERVED RATCH7 RATCH6 RATCH5 RATCH4

R-0h R/W-0h R/W-0h R/W-0h R/W-0h

15 14 13 12 11 10 9 8
RATCH3 RATCH2 RATCH1 RATCH0 RFESOFT2 RFESOFT1 RFESOFT0 RFEDONE
R/W-0h R/W-0h R/W-0h R/W-0h R/W-0h R/W-0h R/W-0h R/W-0h

7 6 5 4 3 2 1 0
RESERVED TRCTK MDMSOFT MDMOUT MDMIN MDMDONE FSCA RESERVED

R/W-0h R/W-0h R/W-0h R/W-0h R/W-0h R/W-0h R/W-0h R/W-0h

Table 23-168. RFHWIEN Register Field Descriptions

Bit Field Type Reset Description
31-20 RESERVED R 0h Software should not rely on the value of a reserved. Writing any

other value than the reset value may result in undefined behavior.
19 RATCH7 R/W 0h Interrupt enable for RFHWIFG.RATCH7.
18 RATCH6 R/W 0h Interrupt enable for RFHWIFG.RATCH6.
17 RATCH5 R/W 0h Interrupt enable for RFHWIFG.RATCH5.
16 RATCH4 R/W 0h Interrupt enable for RFHWIFG.RATCH4.
15 RATCH3 R/W 0h Interrupt enable for RFHWIFG.RATCH3.
14 RATCH2 R/W 0h Interrupt enable for RFHWIFG.RATCH2.
13 RATCH1 R/W 0h Interrupt enable for RFHWIFG.RATCH1.
12 RATCH0 R/W 0h Interrupt enable for RFHWIFG.RATCH0.
11 RFESOFT2 R/W 0h Interrupt enable for RFHWIFG.RFESOFT2.
10 RFESOFT1 R/W 0h Interrupt enable for RFHWIFG.RFESOFT1.
9 RFESOFT0 R/W 0h Interrupt enable for RFHWIFG.RFESOFT0.
8 RFEDONE R/W 0h Interrupt enable for RFHWIFG.RFEDONE.
7 RESERVED R/W 0h Software should not rely on the value of a reserved. Writing any

other value than the reset value may result in undefined behavior.
6 TRCTK R/W 0h Interrupt enable for RFHWIFG.TRCTK.
5 MDMSOFT R/W 0h Interrupt enable for RFHWIFG.MDMSOFT.
4 MDMOUT R/W 0h Interrupt enable for RFHWIFG.MDMOUT.
3 MDMIN R/W 0h Interrupt enable for RFHWIFG.MDMIN.
2 MDMDONE R/W 0h Interrupt enable for RFHWIFG.MDMDONE.
1 FSCA R/W 0h Interrupt enable for RFHWIFG.FSCA.
0 RESERVED R/W 0h Software should not rely on the value of a reserved. Writing any

other value than the reset value may result in undefined behavior.

www.ti.com Radio Registers

1731SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

23.8.2.5 RFCPEIFG Register (Offset = 10h) [reset = 0h]
RFCPEIFG is shown in Figure 23-25 and described in Table 23-169.

Return to Summary Table.

Interrupt Flags For Command and Packet Engine Generated Interrupts

Figure 23-25. RFCPEIFG Register
31 30 29 28 27 26 25 24

INTERNAL_ER
ROR

BOOT_DONE MODULES_UN
LOCKED

SYNTH_NO_L
OCK

IRQ27 RX_ABORTED RX_N_DATA_
WRITTEN

RX_DATA_WRI
TTEN

R/W-0h R/W-0h R/W-0h R/W-0h R/W-0h R/W-0h R/W-0h R/W-0h

23 22 21 20 19 18 17 16
RX_ENTRY_D

ONE
RX_BUF_FULL RX_CTRL_AC

K
RX_CTRL RX_EMPTY RX_IGNORED RX_NOK RX_OK

R/W-0h R/W-0h R/W-0h R/W-0h R/W-0h R/W-0h R/W-0h R/W-0h

15 14 13 12 11 10 9 8
IRQ15 IRQ14 IRQ13 IRQ12 TX_BUFFER_C

HANGED
TX_ENTRY_D

ONE
TX_RETRANS TX_CTRL_ACK

_ACK
R/W-0h R/W-0h R/W-0h R/W-0h R/W-0h R/W-0h R/W-0h R/W-0h

7 6 5 4 3 2 1 0
TX_CTRL_ACK TX_CTRL TX_ACK TX_DONE LAST_FG_CO

MMAND_DON
E

FG_COMMAN
D_DONE

LAST_COMMA
ND_DONE

COMMAND_D
ONE

R/W-0h R/W-0h R/W-0h R/W-0h R/W-0h R/W-0h R/W-0h R/W-0h

Table 23-169. RFCPEIFG Register Field Descriptions

Bit Field Type Reset Description
31 INTERNAL_ERROR R/W 0h Interrupt flag 31. The command and packet engine (CPE) has

observed an unexpected error. A reset of the CPE is needed. This
can be done by switching the RF Core power domain off and on in
PRCM:PDCTL1RFC. Write zero to clear flag. Write to one has no
effect.

30 BOOT_DONE R/W 0h Interrupt flag 30. The command and packet engine (CPE) boot is
finished. Write zero to clear flag. Write to one has no effect.

29 MODULES_UNLOCKED R/W 0h Interrupt flag 29. As part of command and packet engine (CPE) boot
process, it has opened access to RF Core modules and memories.
Write zero to clear flag. Write to one has no effect.

28 SYNTH_NO_LOCK R/W 0h Interrupt flag 28. The phase-locked loop in frequency synthesizer
has reported loss of lock. Write zero to clear flag. Write to one has
no effect.

27 IRQ27 R/W 0h Interrupt flag 27. Write zero to clear flag. Write to one has no effect.
26 RX_ABORTED R/W 0h Interrupt flag 26. Packet reception stopped before packet was done.

Write zero to clear flag. Write to one has no effect.
25 RX_N_DATA_WRITTEN R/W 0h Interrupt flag 25. Specified number of bytes written to partial read Rx

buffer. Write zero to clear flag. Write to one has no effect.
24 RX_DATA_WRITTEN R/W 0h Interrupt flag 24. Data written to partial read Rx buffer. Write zero to

clear flag. Write to one has no effect.
23 RX_ENTRY_DONE R/W 0h Interrupt flag 23. Rx queue data entry changing state to finished.

Write zero to clear flag. Write to one has no effect.
22 RX_BUF_FULL R/W 0h Interrupt flag 22. Packet received that did not fit in Rx queue. BLE

mode: Packet received that did not fit in the Rx queue. IEEE
802.15.4 mode: Frame received that did not fit in the Rx queue.
Write zero to clear flag. Write to one has no effect.

21 RX_CTRL_ACK R/W 0h Interrupt flag 21. BLE mode only: LL control packet received with
CRC OK, not to be ignored, then acknowledgement sent. Write zero
to clear flag. Write to one has no effect.

Radio Registers www.ti.com

1732 SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

Table 23-169. RFCPEIFG Register Field Descriptions (continued)
Bit Field Type Reset Description
20 RX_CTRL R/W 0h Interrupt flag 20. BLE mode only: LL control packet received with

CRC OK, not to be ignored. Write zero to clear flag. Write to one has
no effect.

19 RX_EMPTY R/W 0h Interrupt flag 19. BLE mode only: Packet received with CRC OK, not
to be ignored, no payload. Write zero to clear flag. Write to one has
no effect.

18 RX_IGNORED R/W 0h Interrupt flag 18. Packet received, but can be ignored. BLE mode:
Packet received with CRC OK, but to be ignored. IEEE 802.15.4
mode: Frame received with ignore flag set. Write zero to clear flag.
Write to one has no effect.

17 RX_NOK R/W 0h Interrupt flag 17. Packet received with CRC error. BLE mode: Packet
received with CRC error. IEEE 802.15.4 mode: Frame received with
CRC error. Write zero to clear flag. Write to one has no effect.

16 RX_OK R/W 0h Interrupt flag 16. Packet received correctly. BLE mode: Packet
received with CRC OK, payload, and not to be ignored. IEEE
802.15.4 mode: Frame received with CRC OK. Write zero to clear
flag. Write to one has no effect.

15 IRQ15 R/W 0h Interrupt flag 15. Write zero to clear flag. Write to one has no effect.
14 IRQ14 R/W 0h Interrupt flag 14. Write zero to clear flag. Write to one has no effect.
13 IRQ13 R/W 0h Interrupt flag 13. Write zero to clear flag. Write to one has no effect.
12 IRQ12 R/W 0h Interrupt flag 12. Write zero to clear flag. Write to one has no effect.
11 TX_BUFFER_CHANGED R/W 0h Interrupt flag 11. BLE mode only: A buffer change is complete after

CMD_BLE_ADV_PAYLOAD. Write zero to clear flag. Write to one
has no effect.

10 TX_ENTRY_DONE R/W 0h Interrupt flag 10. Tx queue data entry state changed to finished.
Write zero to clear flag. Write to one has no effect.

9 TX_RETRANS R/W 0h Interrupt flag 9. BLE mode only: Packet retransmitted. Write zero to
clear flag. Write to one has no effect.

8 TX_CTRL_ACK_ACK R/W 0h Interrupt flag 8. BLE mode only: Acknowledgement received on a
transmitted LL control packet, and acknowledgement transmitted for
that packet. Write zero to clear flag. Write to one has no effect.

7 TX_CTRL_ACK R/W 0h Interrupt flag 7. BLE mode: Acknowledgement received on a
transmitted LL control packet. Write zero to clear flag. Write to one
has no effect.

6 TX_CTRL R/W 0h Interrupt flag 6. BLE mode: Transmitted LL control packet. Write zero
to clear flag. Write to one has no effect.

5 TX_ACK R/W 0h Interrupt flag 5. BLE mode: Acknowledgement received on a
transmitted packet. IEEE 802.15.4 mode: Transmitted automatic
ACK frame. Write zero to clear flag. Write to one has no effect.

4 TX_DONE R/W 0h Interrupt flag 4. Packet transmitted. (BLE mode: A packet has been
transmitted.) (IEEE 802.15.4 mode: A frame has been transmitted).
Write zero to clear flag. Write to one has no effect.

3 LAST_FG_COMMAND_D
ONE

R/W 0h Interrupt flag 3. IEEE 802.15.4 mode only: The last foreground radio
operation command in a chain of commands has finished. Write zero
to clear flag. Write to one has no effect.

2 FG_COMMAND_DONE R/W 0h Interrupt flag 2. IEEE 802.15.4 mode only: A foreground radio
operation command has finished. Write zero to clear flag. Write to
one has no effect.

1 LAST_COMMAND_DONE R/W 0h Interrupt flag 1. The last radio operation command in a chain of
commands has finished. (IEEE 802.15.4 mode: The last background
level radio operation command in a chain of commands has
finished.) Write zero to clear flag. Write to one has no effect.

0 COMMAND_DONE R/W 0h Interrupt flag 0. A radio operation has finished. (IEEE 802.15.4
mode: A background level radio operation command has finished.)
Write zero to clear flag. Write to one has no effect.

www.ti.com Radio Registers

1733SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

23.8.2.6 RFCPEIEN Register (Offset = 14h) [reset = FFFFFFFFh]
RFCPEIEN is shown in Figure 23-26 and described in Table 23-170.

Return to Summary Table.

Interrupt Enable For Command and Packet Engine Generated Interrupts

Figure 23-26. RFCPEIEN Register
31 30 29 28 27 26 25 24

INTERNAL_ER
ROR

BOOT_DONE MODULES_UN
LOCKED

SYNTH_NO_L
OCK

IRQ27 RX_ABORTED RX_N_DATA_
WRITTEN

RX_DATA_WRI
TTEN

R/W-1h R/W-1h R/W-1h R/W-1h R/W-1h R/W-1h R/W-1h R/W-1h

23 22 21 20 19 18 17 16
RX_ENTRY_D

ONE
RX_BUF_FULL RX_CTRL_AC

K
RX_CTRL RX_EMPTY RX_IGNORED RX_NOK RX_OK

R/W-1h R/W-1h R/W-1h R/W-1h R/W-1h R/W-1h R/W-1h R/W-1h

15 14 13 12 11 10 9 8
IRQ15 IRQ14 IRQ13 IRQ12 TX_BUFFER_C

HANGED
TX_ENTRY_D

ONE
TX_RETRANS TX_CTRL_ACK

_ACK
R/W-1h R/W-1h R/W-1h R/W-1h R/W-1h R/W-1h R/W-1h R/W-1h

7 6 5 4 3 2 1 0
TX_CTRL_ACK TX_CTRL TX_ACK TX_DONE LAST_FG_CO

MMAND_DON
E

FG_COMMAN
D_DONE

LAST_COMMA
ND_DONE

COMMAND_D
ONE

R/W-1h R/W-1h R/W-1h R/W-1h R/W-1h R/W-1h R/W-1h R/W-1h

Table 23-170. RFCPEIEN Register Field Descriptions

Bit Field Type Reset Description
31 INTERNAL_ERROR R/W 1h Interrupt enable for RFCPEIFG.INTERNAL_ERROR.
30 BOOT_DONE R/W 1h Interrupt enable for RFCPEIFG.BOOT_DONE.
29 MODULES_UNLOCKED R/W 1h Interrupt enable for RFCPEIFG.MODULES_UNLOCKED.
28 SYNTH_NO_LOCK R/W 1h Interrupt enable for RFCPEIFG.SYNTH_NO_LOCK.
27 IRQ27 R/W 1h Interrupt enable for RFCPEIFG.IRQ27.
26 RX_ABORTED R/W 1h Interrupt enable for RFCPEIFG.RX_ABORTED.
25 RX_N_DATA_WRITTEN R/W 1h Interrupt enable for RFCPEIFG.RX_N_DATA_WRITTEN.
24 RX_DATA_WRITTEN R/W 1h Interrupt enable for RFCPEIFG.RX_DATA_WRITTEN.
23 RX_ENTRY_DONE R/W 1h Interrupt enable for RFCPEIFG.RX_ENTRY_DONE.
22 RX_BUF_FULL R/W 1h Interrupt enable for RFCPEIFG.RX_BUF_FULL.
21 RX_CTRL_ACK R/W 1h Interrupt enable for RFCPEIFG.RX_CTRL_ACK.
20 RX_CTRL R/W 1h Interrupt enable for RFCPEIFG.RX_CTRL.
19 RX_EMPTY R/W 1h Interrupt enable for RFCPEIFG.RX_EMPTY.
18 RX_IGNORED R/W 1h Interrupt enable for RFCPEIFG.RX_IGNORED.
17 RX_NOK R/W 1h Interrupt enable for RFCPEIFG.RX_NOK.
16 RX_OK R/W 1h Interrupt enable for RFCPEIFG.RX_OK.
15 IRQ15 R/W 1h Interrupt enable for RFCPEIFG.IRQ15.
14 IRQ14 R/W 1h Interrupt enable for RFCPEIFG.IRQ14.
13 IRQ13 R/W 1h Interrupt enable for RFCPEIFG.IRQ13.
12 IRQ12 R/W 1h Interrupt enable for RFCPEIFG.IRQ12.
11 TX_BUFFER_CHANGED R/W 1h Interrupt enable for RFCPEIFG.TX_BUFFER_CHANGED.

Radio Registers www.ti.com

1734 SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

Table 23-170. RFCPEIEN Register Field Descriptions (continued)
Bit Field Type Reset Description
10 TX_ENTRY_DONE R/W 1h Interrupt enable for RFCPEIFG.TX_ENTRY_DONE.
9 TX_RETRANS R/W 1h Interrupt enable for RFCPEIFG.TX_RETRANS.
8 TX_CTRL_ACK_ACK R/W 1h Interrupt enable for RFCPEIFG.TX_CTRL_ACK_ACK.
7 TX_CTRL_ACK R/W 1h Interrupt enable for RFCPEIFG.TX_CTRL_ACK.
6 TX_CTRL R/W 1h Interrupt enable for RFCPEIFG.TX_CTRL.
5 TX_ACK R/W 1h Interrupt enable for RFCPEIFG.TX_ACK.
4 TX_DONE R/W 1h Interrupt enable for RFCPEIFG.TX_DONE.
3 LAST_FG_COMMAND_D

ONE
R/W 1h Interrupt enable for RFCPEIFG.LAST_FG_COMMAND_DONE.

2 FG_COMMAND_DONE R/W 1h Interrupt enable for RFCPEIFG.FG_COMMAND_DONE.
1 LAST_COMMAND_DONE R/W 1h Interrupt enable for RFCPEIFG.LAST_COMMAND_DONE.
0 COMMAND_DONE R/W 1h Interrupt enable for RFCPEIFG.COMMAND_DONE.

www.ti.com Radio Registers

1735SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

23.8.2.7 RFCPEISL Register (Offset = 18h) [reset = FFFF0000h]
RFCPEISL is shown in Figure 23-27 and described in Table 23-171.

Return to Summary Table.

Interrupt Vector Selection For Command and Packet Engine Generated Interrupts

Figure 23-27. RFCPEISL Register
31 30 29 28 27 26 25 24

INTERNAL_ER
ROR

BOOT_DONE MODULES_UN
LOCKED

SYNTH_NO_L
OCK

IRQ27 RX_ABORTED RX_N_DATA_
WRITTEN

RX_DATA_WRI
TTEN

R/W-1h R/W-1h R/W-1h R/W-1h R/W-1h R/W-1h R/W-1h R/W-1h

23 22 21 20 19 18 17 16
RX_ENTRY_D

ONE
RX_BUF_FULL RX_CTRL_AC

K
RX_CTRL RX_EMPTY RX_IGNORED RX_NOK RX_OK

R/W-1h R/W-1h R/W-1h R/W-1h R/W-1h R/W-1h R/W-1h R/W-1h

15 14 13 12 11 10 9 8
IRQ15 IRQ14 IRQ13 IRQ12 TX_BUFFER_C

HANGED
TX_ENTRY_D

ONE
TX_RETRANS TX_CTRL_ACK

_ACK
R/W-0h R/W-0h R/W-0h R/W-0h R/W-0h R/W-0h R/W-0h R/W-0h

7 6 5 4 3 2 1 0
TX_CTRL_ACK TX_CTRL TX_ACK TX_DONE LAST_FG_CO

MMAND_DON
E

FG_COMMAN
D_DONE

LAST_COMMA
ND_DONE

COMMAND_D
ONE

R/W-0h R/W-0h R/W-0h R/W-0h R/W-0h R/W-0h R/W-0h R/W-0h

Table 23-171. RFCPEISL Register Field Descriptions

Bit Field Type Reset Description
31 INTERNAL_ERROR R/W 1h Select which CPU interrupt vector the

RFCPEIFG.INTERNAL_ERROR interrupt should use.
0h = Associate this interrupt line with INT_RF_CPE0 interrupt vector
1h = Associate this interrupt line with INT_RF_CPE1 interrupt vector

30 BOOT_DONE R/W 1h Select which CPU interrupt vector the RFCPEIFG.BOOT_DONE
interrupt should use.
0h = Associate this interrupt line with INT_RF_CPE0 interrupt vector
1h = Associate this interrupt line with INT_RF_CPE1 interrupt vector

29 MODULES_UNLOCKED R/W 1h Select which CPU interrupt vector the
RFCPEIFG.MODULES_UNLOCKED interrupt should use.
0h = Associate this interrupt line with INT_RF_CPE0 interrupt vector
1h = Associate this interrupt line with INT_RF_CPE1 interrupt vector

28 SYNTH_NO_LOCK R/W 1h Select which CPU interrupt vector the
RFCPEIFG.SYNTH_NO_LOCK interrupt should use.
0h = Associate this interrupt line with INT_RF_CPE0 interrupt vector
1h = Associate this interrupt line with INT_RF_CPE1 interrupt vector

27 IRQ27 R/W 1h Select which CPU interrupt vector the RFCPEIFG.IRQ27 interrupt
should use.
0h = Associate this interrupt line with INT_RF_CPE0 interrupt vector
1h = Associate this interrupt line with INT_RF_CPE1 interrupt vector

26 RX_ABORTED R/W 1h Select which CPU interrupt vector the RFCPEIFG.RX_ABORTED
interrupt should use.
0h = Associate this interrupt line with INT_RF_CPE0 interrupt vector
1h = Associate this interrupt line with INT_RF_CPE1 interrupt vector

25 RX_N_DATA_WRITTEN R/W 1h Select which CPU interrupt vector the
RFCPEIFG.RX_N_DATA_WRITTEN interrupt should use.
0h = Associate this interrupt line with INT_RF_CPE0 interrupt vector
1h = Associate this interrupt line with INT_RF_CPE1 interrupt vector

Radio Registers www.ti.com

1736 SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

Table 23-171. RFCPEISL Register Field Descriptions (continued)
Bit Field Type Reset Description
24 RX_DATA_WRITTEN R/W 1h Select which CPU interrupt vector the

RFCPEIFG.RX_DATA_WRITTEN interrupt should use.
0h = Associate this interrupt line with INT_RF_CPE0 interrupt vector
1h = Associate this interrupt line with INT_RF_CPE1 interrupt vector

23 RX_ENTRY_DONE R/W 1h Select which CPU interrupt vector the
RFCPEIFG.RX_ENTRY_DONE interrupt should use.
0h = Associate this interrupt line with INT_RF_CPE0 interrupt vector
1h = Associate this interrupt line with INT_RF_CPE1 interrupt vector

22 RX_BUF_FULL R/W 1h Select which CPU interrupt vector the RFCPEIFG.RX_BUF_FULL
interrupt should use.
0h = Associate this interrupt line with INT_RF_CPE0 interrupt vector
1h = Associate this interrupt line with INT_RF_CPE1 interrupt vector

21 RX_CTRL_ACK R/W 1h Select which CPU interrupt vector the RFCPEIFG.RX_CTRL_ACK
interrupt should use.
0h = Associate this interrupt line with INT_RF_CPE0 interrupt vector
1h = Associate this interrupt line with INT_RF_CPE1 interrupt vector

20 RX_CTRL R/W 1h Select which CPU interrupt vector the RFCPEIFG.RX_CTRL
interrupt should use.
0h = Associate this interrupt line with INT_RF_CPE0 interrupt vector
1h = Associate this interrupt line with INT_RF_CPE1 interrupt vector

19 RX_EMPTY R/W 1h Select which CPU interrupt vector the RFCPEIFG.RX_EMPTY
interrupt should use.
0h = Associate this interrupt line with INT_RF_CPE0 interrupt vector
1h = Associate this interrupt line with INT_RF_CPE1 interrupt vector

18 RX_IGNORED R/W 1h Select which CPU interrupt vector the RFCPEIFG.RX_IGNORED
interrupt should use.
0h = Associate this interrupt line with INT_RF_CPE0 interrupt vector
1h = Associate this interrupt line with INT_RF_CPE1 interrupt vector

17 RX_NOK R/W 1h Select which CPU interrupt vector the RFCPEIFG.RX_NOK interrupt
should use.
0h = Associate this interrupt line with INT_RF_CPE0 interrupt vector
1h = Associate this interrupt line with INT_RF_CPE1 interrupt vector

16 RX_OK R/W 1h Select which CPU interrupt vector the RFCPEIFG.RX_OK interrupt
should use.
0h = Associate this interrupt line with INT_RF_CPE0 interrupt vector
1h = Associate this interrupt line with INT_RF_CPE1 interrupt vector

15 IRQ15 R/W 0h Select which CPU interrupt vector the RFCPEIFG.IRQ15 interrupt
should use.
0h = Associate this interrupt line with INT_RF_CPE0 interrupt vector
1h = Associate this interrupt line with INT_RF_CPE1 interrupt vector

14 IRQ14 R/W 0h Select which CPU interrupt vector the RFCPEIFG.IRQ14 interrupt
should use.
0h = Associate this interrupt line with INT_RF_CPE0 interrupt vector
1h = Associate this interrupt line with INT_RF_CPE1 interrupt vector

13 IRQ13 R/W 0h Select which CPU interrupt vector the RFCPEIFG.IRQ13 interrupt
should use.
0h = Associate this interrupt line with INT_RF_CPE0 interrupt vector
1h = Associate this interrupt line with INT_RF_CPE1 interrupt vector

12 IRQ12 R/W 0h Select which CPU interrupt vector the RFCPEIFG.IRQ12 interrupt
should use.
0h = Associate this interrupt line with INT_RF_CPE0 interrupt vector
1h = Associate this interrupt line with INT_RF_CPE1 interrupt vector

www.ti.com Radio Registers

1737SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

Table 23-171. RFCPEISL Register Field Descriptions (continued)
Bit Field Type Reset Description
11 TX_BUFFER_CHANGED R/W 0h Select which CPU interrupt vector the

RFCPEIFG.TX_BUFFER_CHANGED interrupt should use.
0h = Associate this interrupt line with INT_RF_CPE0 interrupt vector
1h = Associate this interrupt line with INT_RF_CPE1 interrupt vector

10 TX_ENTRY_DONE R/W 0h Select which CPU interrupt vector the
RFCPEIFG.TX_ENTRY_DONE interrupt should use.
0h = Associate this interrupt line with INT_RF_CPE0 interrupt vector
1h = Associate this interrupt line with INT_RF_CPE1 interrupt vector

9 TX_RETRANS R/W 0h Select which CPU interrupt vector the RFCPEIFG.TX_RETRANS
interrupt should use.
0h = Associate this interrupt line with INT_RF_CPE0 interrupt vector
1h = Associate this interrupt line with INT_RF_CPE1 interrupt vector

8 TX_CTRL_ACK_ACK R/W 0h Select which CPU interrupt vector the
RFCPEIFG.TX_CTRL_ACK_ACK interrupt should use.
0h = Associate this interrupt line with INT_RF_CPE0 interrupt vector
1h = Associate this interrupt line with INT_RF_CPE1 interrupt vector

7 TX_CTRL_ACK R/W 0h Select which CPU interrupt vector the RFCPEIFG.TX_CTRL_ACK
interrupt should use.
0h = Associate this interrupt line with INT_RF_CPE0 interrupt vector
1h = Associate this interrupt line with INT_RF_CPE1 interrupt vector

6 TX_CTRL R/W 0h Select which CPU interrupt vector the RFCPEIFG.TX_CTRL
interrupt should use.
0h = Associate this interrupt line with INT_RF_CPE0 interrupt vector
1h = Associate this interrupt line with INT_RF_CPE1 interrupt vector

5 TX_ACK R/W 0h Select which CPU interrupt vector the RFCPEIFG.TX_ACK interrupt
should use.
0h = Associate this interrupt line with INT_RF_CPE0 interrupt vector
1h = Associate this interrupt line with INT_RF_CPE1 interrupt vector

4 TX_DONE R/W 0h Select which CPU interrupt vector the RFCPEIFG.TX_DONE
interrupt should use.
0h = Associate this interrupt line with INT_RF_CPE0 interrupt vector
1h = Associate this interrupt line with INT_RF_CPE1 interrupt vector

3 LAST_FG_COMMAND_D
ONE

R/W 0h Select which CPU interrupt vector the
RFCPEIFG.LAST_FG_COMMAND_DONE interrupt should use.
0h = Associate this interrupt line with INT_RF_CPE0 interrupt vector
1h = Associate this interrupt line with INT_RF_CPE1 interrupt vector

2 FG_COMMAND_DONE R/W 0h Select which CPU interrupt vector the
RFCPEIFG.FG_COMMAND_DONE interrupt should use.
0h = Associate this interrupt line with INT_RF_CPE0 interrupt vector
1h = Associate this interrupt line with INT_RF_CPE1 interrupt vector

1 LAST_COMMAND_DONE R/W 0h Select which CPU interrupt vector the
RFCPEIFG.LAST_COMMAND_DONE interrupt should use.
0h = Associate this interrupt line with INT_RF_CPE0 interrupt vector
1h = Associate this interrupt line with INT_RF_CPE1 interrupt vector

0 COMMAND_DONE R/W 0h Select which CPU interrupt vector the
RFCPEIFG.COMMAND_DONE interrupt should use.
0h = Associate this interrupt line with INT_RF_CPE0 interrupt vector
1h = Associate this interrupt line with INT_RF_CPE1 interrupt vector

Radio Registers www.ti.com

1738 SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

23.8.2.8 RFACKIFG Register (Offset = 1Ch) [reset = 0h]
RFACKIFG is shown in Figure 23-28 and described in Table 23-172.

Return to Summary Table.

Doorbell Command Acknowledgement Interrupt Flag

Figure 23-28. RFACKIFG Register
31 30 29 28 27 26 25 24

RESERVED
R-0h

23 22 21 20 19 18 17 16
RESERVED

R-0h

15 14 13 12 11 10 9 8
RESERVED

R-0h

7 6 5 4 3 2 1 0
RESERVED ACKFLAG

R-0h R/W-0h

Table 23-172. RFACKIFG Register Field Descriptions

Bit Field Type Reset Description
31-1 RESERVED R 0h Software should not rely on the value of a reserved. Writing any

other value than the reset value may result in undefined behavior.
0 ACKFLAG R/W 0h Interrupt flag for Command ACK

www.ti.com Radio Registers

1739SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

23.8.2.9 SYSGPOCTL Register (Offset = 20h) [reset = 0h]
SYSGPOCTL is shown in Figure 23-29 and described in Table 23-173.

Return to Summary Table.

RF Core General Purpose Output Control

Figure 23-29. SYSGPOCTL Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RESERVED
R-0h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
GPOCTL3 GPOCTL2 GPOCTL1 GPOCTL0

R/W-0h R/W-0h R/W-0h R/W-0h

Table 23-173. SYSGPOCTL Register Field Descriptions

Bit Field Type Reset Description
31-16 RESERVED R 0h Software should not rely on the value of a reserved. Writing any

other value than the reset value may result in undefined behavior.
15-12 GPOCTL3 R/W 0h RF Core GPO control bit 3. Selects which signal to output on the RF

Core GPO line 3.
0h = CPE GPO line 0
1h = CPE GPO line 1
2h = CPE GPO line 2
3h = CPE GPO line 3
4h = MCE GPO line 0
5h = MCE GPO line 1
6h = MCE GPO line 2
7h = MCE GPO line 3
8h = RFE GPO line 0
9h = RFE GPO line 1
Ah = RFE GPO line 2
Bh = RFE GPO line 3
Ch = RAT GPO line 0
Dh = RAT GPO line 1
Eh = RAT GPO line 2
Fh = RAT GPO line 3

11-8 GPOCTL2 R/W 0h RF Core GPO control bit 2. Selects which signal to output on the RF
Core GPO line 2.
0h = CPE GPO line 0
1h = CPE GPO line 1
2h = CPE GPO line 2
3h = CPE GPO line 3
4h = MCE GPO line 0
5h = MCE GPO line 1
6h = MCE GPO line 2
7h = MCE GPO line 3
8h = RFE GPO line 0
9h = RFE GPO line 1
Ah = RFE GPO line 2
Bh = RFE GPO line 3
Ch = RAT GPO line 0
Dh = RAT GPO line 1
Eh = RAT GPO line 2
Fh = RAT GPO line 3

Radio Registers www.ti.com

1740 SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

Table 23-173. SYSGPOCTL Register Field Descriptions (continued)
Bit Field Type Reset Description
7-4 GPOCTL1 R/W 0h RF Core GPO control bit 1. Selects which signal to output on the RF

Core GPO line 1.
0h = CPE GPO line 0
1h = CPE GPO line 1
2h = CPE GPO line 2
3h = CPE GPO line 3
4h = MCE GPO line 0
5h = MCE GPO line 1
6h = MCE GPO line 2
7h = MCE GPO line 3
8h = RFE GPO line 0
9h = RFE GPO line 1
Ah = RFE GPO line 2
Bh = RFE GPO line 3
Ch = RAT GPO line 0
Dh = RAT GPO line 1
Eh = RAT GPO line 2
Fh = RAT GPO line 3

3-0 GPOCTL0 R/W 0h RF Core GPO control bit 0. Selects which signal to output on the RF
Core GPO line 0.
0h = CPE GPO line 0
1h = CPE GPO line 1
2h = CPE GPO line 2
3h = CPE GPO line 3
4h = MCE GPO line 0
5h = MCE GPO line 1
6h = MCE GPO line 2
7h = MCE GPO line 3
8h = RFE GPO line 0
9h = RFE GPO line 1
Ah = RFE GPO line 2
Bh = RFE GPO line 3
Ch = RAT GPO line 0
Dh = RAT GPO line 1
Eh = RAT GPO line 2
Fh = RAT GPO line 3

23.8.3 RFC_PWR Registers
Table 23-174 lists the memory-mapped registers for the RFC_PWR. All register offset addresses not listed
in Table 23-174 should be considered as reserved locations and the register contents should not be
modified.

Table 23-174. RFC_PWR Registers

Offset Acronym Register Name Section
0h PWMCLKEN RF Core Power Management and Clock Enable Section 23.8.3.1

www.ti.com Radio Registers

1741SWCU117H–February 2015–Revised August 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Radio

23.8.3.1 PWMCLKEN Register (Offset = 0h) [reset = 1h]
PWMCLKEN is shown in Figure 23-30 and described in Table 23-175.

Return to Summary Table.

RF Core Power Management and Clock Enable

Figure 23-30. PWMCLKEN Register
31 30 29 28 27 26 25 24

RESERVED
R-0h

23 22 21 20 19 18 17 16
RESERVED

R-0h

15 14 13 12 11 10 9 8
RESERVED RFCTRC FSCA PHA

R-0h R/W-0h R/W-0h R/W-0h

7 6 5 4 3 2 1 0
RAT RFERAM RFE MDMRAM MDM CPERAM CPE RFC

R/W-0h R/W-0h R/W-0h R/W-0h R/W-0h R/W-0h R/W-0h R-1h

Table 23-175. PWMCLKEN Register Field Descriptions

Bit Field Type Reset Description
31-11 RESERVED R 0h Software should not rely on the value of a reserved. Writing any

other value than the reset value may result in undefined behavior.
10 RFCTRC R/W 0h Enable clock to the RF Core Tracer (RFCTRC) module.
9 FSCA R/W 0h Enable clock to the Frequency Synthesizer Calibration Accelerator

(FSCA) module.
8 PHA R/W 0h Enable clock to the Packet Handling Accelerator (PHA) module.
7 RAT R/W 0h Enable clock to the Radio Timer (RAT) module.
6 RFERAM R/W 0h Enable clock to the RF Engine RAM module.
5 RFE R/W 0h Enable clock to the RF Engine (RFE) module.
4 MDMRAM R/W 0h Enable clock to the Modem RAM module.
3 MDM R/W 0h Enable clock to the Modem (MDM) module.
2 CPERAM R/W 0h Enable clock to the Command and Packet Engine (CPE) RAM

module. As part of RF Core initialization, set this bit together with
CPE bit to enable CPE to boot.

1 CPE R/W 0h Enable processor clock (hclk) to the Command and Packet Engine
(CPE). As part of RF Core initialization, set this bit together with
CPERAM bit to enable CPE to boot.

0 RFC R 1h Enable essential clocks for the RF Core interface. This includes the
interconnect, the radio doorbell DBELL command interface, the
power management (PWR) clock control module, and bus clock
(sclk) for the CPE. To remove possibility of locking yourself out from
the RF Core, this bit can not be cleared. If you need to disable all
clocks to the RF Core, see the PRCM:RFCCLKG.CLK_EN register.

