

Robert	C.	Martin	Series

This	series	is	directed	at	software	developers,	team-leaders,	business	analysts,	and	managers	who	want	to	increase	their
skills	and	proficiency	to	the	level	of	a	Master	Craftsman.

The	series	contains	books	that	guide	software	professionals	in	the	principles,	patterns,	and	practices	of	programming,
software	project	management,	requirements	gathering,	design,	analysis,	testing,	and	others.

Working	Effectively	with	Legacy	Code
Michael	C.	Feathers

Prentice	Hall	Professional	Technical	Reference
Upper	Saddle	River,	NJ	07458

www.phptr.com

http://www.phptr.com

The	authors	and	publisher	have	taken	care	in	the	preparation	of	this	book,	but	make	no
expressed	or	implied	warranty	of	any	kind	and	assume	no	responsibility	for	errors	or
omissions.	No	liability	is	assumed	for	incidental	or	consequential	damages	in	connection
with	or	arising	out	of	the	use	of	the	information	or	programs	contained	herein.

Publisher:	John	Wait
Editor	in	Chief:	Don	O’Hagan
Acquisitions	Editor:	Paul	Petralia
Editorial	Assistant:	Michelle	Vincenti
Marketing	Manager:	Chris	Guzikowski
Publicist:	Kerry	Guiliano
Cover	Designer:	Sandra	Schroeder
Managing	Editor:	Gina	Kanouse
Senior	Project	Editor:	Lori	Lyons
Copy	Editor:	Krista	Hansing
Indexer:	Lisa	Stumpf
Compositor:	Karen	Kennedy
Proofreader:	Debbie	Williams
Manufacturing	Buyer:	Dan	Uhrig

Prentice	Hall	offers	excellent	discounts	on	this	book	when	ordered	in	quantity	for	bulk
purchases	or	special	sales,	which	may	include	electronic	versions	and/or	custom	covers
and	content	particular	to	your	business,	training	goals,	marketing	focus,	and	branding
interests.	For	more	information,	please	contact:

U.	S.	Corporate	and	Government	Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For	sales	outside	the	U.	S.,	please	contact:

International	Sales
1-317-428-3341
international@pearsontechgroup.com

Visit	us	on	the	web:	www.phptr.com

Library	of	Congress	Cataloging-in-Publication	Data:	2004108115

Copyright	©	2005	Pearson	Education,	Inc.

Publishing	as	Prentice	Hall	PTR

All	rights	reserved.	Printed	in	the	United	States	of	America.	This	publication	is	protected
by	copyright,	and	permission	must	be	obtained	from	the	publisher	prior	to	any	prohibited
reproduction,	storage	in	a	retrieval	system,	or	transmission	in	any	form	or	by	any	means,
electronic,	mechanical,	photocopying,	recording,	or	likewise.	For	information	regarding
permissions,	write	to:

Pearson	Education,	Inc.
Rights	and	Contracts	Department
One	Lake	Street

mailto:corpsales@pearsontechgroup.com
mailto:international@pearsontechgroup.com
http://www.phptr.com

Upper	Saddle	River,	NJ	07458

Other	product	or	company	names	mentioned	herein	are	the	trademarks	or	registered
trademarks	of	their	respective	owners.
ISBN	0-13-117705-2

Text	printed	in	the	United	States	on	recycled	paper	at	Phoenix	Book	Tech.	First	printing,
September	2004

For	Ann,	Deborah,	and	Ryan,
the	bright	centers	of	my	life.

—	Michael

Contents

Foreword	by	Robert	C.	Martin

Preface

Introduction

PART	I:	The	Mechanics	of	Change

Chapter	1:	Changing	Software

Four	Reasons	to	Change	Software

Risky	Change

Chapter	2:	Working	with	Feedback

What	Is	Unit	Testing?

Higher-Level	Testing

Test	Coverings

The	Legacy	Code	Change	Algorithm

Chapter	3:	Sensing	and	Separation

Faking	Collaborators

Chapter	4:	The	Seam	Model

A	Huge	Sheet	of	Text

Seams

Seam	Types

Chapter	5:	Tools

Automated	Refactoring	Tools

Mock	Objects

Unit-Testing	Harnesses

General	Test	Harnesses

PART	II:	Changing	Software

Chapter	6:	I	Don’t	Have	Much	Time	and	I	Have	to	Change	It

Sprout	Method

Sprout	Class

Wrap	Method

Wrap	Class

Summary

Chapter	7:	It	Takes	Forever	to	Make	a	Change

Understanding

Lag	Time

Breaking	Dependencies

Summary

Chapter	8:	How	Do	I	Add	a	Feature?

Test-Driven	Development	(TDD)

Programming	by	Difference

Summary

Chapter	9:	I	Can’t	Get	This	Class	into	a	Test	Harness

The	Case	of	the	Irritating	Parameter

The	Case	of	the	Hidden	Dependency

The	Case	of	the	Construction	Blob

The	Case	of	the	Irritating	Global	Dependency

The	Case	of	the	Horrible	Include	Dependencies

The	Case	of	the	Onion	Parameter

The	Case	of	the	Aliased	Parameter

Chapter	10:	I	Can’t	Run	This	Method	in	a	Test	Harness

The	Case	of	the	Hidden	Method

The	Case	of	the	“Helpful”	Language	Feature

The	Case	of	the	Undetectable	Side	Effect

Chapter	11:	I	Need	to	Make	a	Change.	What	Methods	Should	I	Test?

Reasoning	About	Effects

Reasoning	Forward

Effect	Propagation

Tools	for	Effect	Reasoning

Learning	from	Effect	Analysis

Simplifying	Effect	Sketches

Chapter	12:	I	Need	to	Make	Many	Changes	in	One	Area.

Interception	Points

Judging	Design	with	Pinch	Points

Pinch	Point	Traps

Chapter	13:	I	Need	to	Make	a	Change,	but	I	Don’t	Know	What	Tests	to	Write

Characterization	Tests

Characterizing	Classes

Targeted	Testing

A	Heuristic	for	Writing	Characterization	Tests

Chapter	14:	Dependencies	on	Libraries	Are	Killing	Me

Chapter	15:	My	Application	Is	All	API	Calls

Chapter	16:	I	Don’t	Understand	the	Code	Well	Enough	to	Change	It

Notes/Sketching

Listing	Markup

Scratch	Refactoring

Delete	Unused	Code

Chapter	17:	My	Application	Has	No	Structure

Telling	the	Story	of	the	System

Naked	CRC

Conversation	Scrutiny

Chapter	18:	My	Test	Code	Is	in	the	Way

Class	Naming	Conventions

Test	Location

Chapter	19:	My	Project	Is	Not	Object	Oriented.	How	Do	I	Make	Safe	Changes?

An	Easy	Case

A	Hard	Case

Adding	New	Behavior

Taking	Advantage	of	Object	Orientation

It’s	All	Object	Oriented

Chapter	20:	This	Class	Is	Too	Big	and	I	Don’t	Want	It	to	Get	Any	Bigger

Seeing	Responsibilities

Other	Techniques

Moving	Forward

After	Extract	Class

Chapter	21:	I’m	Changing	the	Same	Code	All	Over	the	Place

First	Steps

Chapter	22:	I	Need	to	Change	a	Monster	Method	and	I	Can’t	Write	Tests	for	It

Varieties	of	Monsters

Tackling	Monsters	with	Automated	Refactoring	Support

The	Manual	Refactoring	Challenge

Strategy

Chapter	23:	How	Do	I	Know	That	I’m	Not	Breaking	Anything?

Hyperaware	Editing

Single-Goal	Editing

Preserve	Signatures

Lean	on	the	Compiler

Chapter	24:	We	Feel	Overwhelmed.	It	Isn’t	Going	to	Get	Any	Better

PART	III:	Dependency-Breaking	Techniques

Chapter	25:	Dependency-Breaking	Techniques

Adapt	Parameter

Break	Out	Method	Object

Definition	Completion

Encapsulate	Global	References

Expose	Static	Method

Extract	and	Override	Call

Extract	and	Override	Factory	Method

Extract	and	Override	Getter

Extract	Implementer

Extract	Interface

Introduce	Instance	Delegator

Introduce	Static	Setter

Link	Substitution

Parameterize	Constructor

Parameterize	Method

Primitivize	Parameter

Pull	Up	Feature

Push	Down	Dependency

Replace	Function	with	Function	Pointer

Replace	Global	Reference	with	Getter

Subclass	and	Override	Method

Supersede	Instance	Variable

Template	Redefinition

Text	Redefinition

Appendix:	Refactoring

Extract	Method

Glossary

Index

Foreword

“…then	it	began…”

In	his	introduction	to	this	book,	Michael	Feathers	uses	that	phrase	to	describe	the	start	of
his	passion	for	software.

“…then	it	began…”

Do	you	know	that	feeling?	Can	you	point	to	a	single	moment	in	your	life	and	say:	“…then
it	began…”?	Was	there	a	single	event	that	changed	the	course	of	your	life	and	eventually
led	you	to	pick	up	this	book	and	start	reading	this	foreword?

I	was	in	sixth	grade	when	it	happened	to	me.	I	was	interested	in	science	and	space	and	all
things	technical.	My	mother	found	a	plastic	computer	in	a	catalog	and	ordered	it	for	me.	It
was	called	Digi-Comp	I.	Forty	years	later	that	little	plastic	computer	holds	a	place	of
honor	on	my	bookshelf.	It	was	the	catalyst	that	sparked	my	enduring	passion	for	software.
It	gave	me	my	first	inkling	of	how	joyful	it	is	to	write	programs	that	solve	problems	for
people.	It	was	just	three	plastic	S-R	flip-flops	and	six	plastic	and-gates,	but	it	was	enough
—it	served.	Then…	for	me…	it	began…

But	the	joy	I	felt	soon	became	tempered	by	the	realization	that	software	systems	almost
always	degrade	into	a	mess.	What	starts	as	a	clean	crystalline	design	in	the	minds	of	the
programmers	rots,	over	time,	like	a	piece	of	bad	meat.	The	nice	little	system	we	built	last
year	turns	into	a	horrible	morass	of	tangled	functions	and	variables	next	year.

Why	does	this	happen?	Why	do	systems	rot?	Why	can’t	they	stay	clean?

Sometimes	we	blame	our	customers.	Sometimes	we	accuse	them	of	changing	the
requirements.	We	comfort	ourselves	with	the	belief	that	if	the	customers	had	just	been
happy	with	what	they	said	they	needed,	the	design	would	have	been	fine.	It’s	the
customer’s	fault	for	changing	the	requirements	on	us.

Well,	here’s	a	news	flash:	Requirements	change.	Designs	that	cannot	tolerate	changing
requirements	are	poor	designs	to	begin	with.	It	is	the	goal	of	every	competent	software
developer	to	create	designs	that	tolerate	change.

This	seems	to	be	an	intractably	hard	problem	to	solve.	So	hard,	in	fact,	that	nearly	every
system	ever	produced	suffers	from	slow,	debilitating	rot.	The	rot	is	so	pervasive	that	we’ve
come	up	with	a	special	name	for	rotten	programs.	We	call	them:	Legacy	Code.

Legacy	code.	The	phrase	strikes	disgust	in	the	hearts	of	programmers.	It	conjures	images
of	slogging	through	a	murky	swamp	of	tangled	undergrowth	with	leaches	beneath	and
stinging	flies	above.	It	conjures	odors	of	murk,	slime,	stagnancy,	and	offal.	Although	our
first	joy	of	programming	may	have	been	intense,	the	misery	of	dealing	with	legacy	code	is
often	sufficient	to	extinguish	that	flame.

Many	of	us	have	tried	to	discover	ways	to	prevent	code	from	becoming	legacy.	We’ve
written	books	on	principles,	patterns,	and	practices	that	can	help	programmers	keep	their
systems	clean.	But	Michael	Feathers	had	an	insight	that	many	of	the	rest	of	us	missed.
Prevention	is	imperfect.	Even	the	most	disciplined	development	team,	knowing	the	best

principles,	using	the	best	patterns,	and	following	the	best	practices	will	create	messes	from
time	to	time.	The	rot	still	accumulates.	It’s	not	enough	to	try	to	prevent	the	rot—you	have
to	be	able	to	reverse	it.

That’s	what	this	book	is	about.	It’s	about	reversing	the	rot.	It’s	about	taking	a	tangled,
opaque,	convoluted	system	and	slowly,	gradually,	piece	by	piece,	step	by	step,	turning	it
into	a	simple,	nicely	structured,	well-designed	system.	It’s	about	reversing	entropy.

Before	you	get	too	excited,	I	warn	you;	reversing	rot	is	not	easy,	and	it’s	not	quick.	The
techniques,	patterns,	and	tools	that	Michael	presents	in	this	book	are	effective,	but	they
take	work,	time,	endurance,	and	care.	This	book	is	not	a	magic	bullet.	It	won’t	tell	you
how	to	eliminate	all	the	accumulated	rot	in	your	systems	overnight.	Rather,	this	book
describes	a	set	of	disciplines,	concepts,	and	attitudes	that	you	will	carry	with	you	for	the
rest	of	your	career	and	that	will	help	you	to	turn	systems	that	gradually	degrade	into
systems	that	gradually	improve.

Robert	C.	Martin
29	June,	2004

Preface

Do	you	remember	the	first	program	you	wrote?	I	remember	mine.	It	was	a	little	graphics
program	I	wrote	on	an	early	PC.	I	started	programming	later	than	most	of	my	friends.
Sure,	I’d	seen	computers	when	I	was	a	kid.	I	remember	being	really	impressed	by	a
minicomputer	I	once	saw	in	an	office,	but	for	years	I	never	had	a	chance	to	even	sit	at	a
computer.	Later,	when	I	was	a	teenager,	some	friends	of	mine	bought	a	couple	of	the	first
TRS-80s.	I	was	interested,	but	I	was	actually	a	bit	apprehensive,	too.	I	knew	that	if	I
started	to	play	with	computers,	I’d	get	sucked	into	it.	It	just	looked	too	cool.	I	don’t	know
why	I	knew	myself	so	well,	but	I	held	back.	Later,	in	college,	a	roommate	of	mine	had	a
computer,	and	I	bought	a	C	compiler	so	that	I	could	teach	myself	programming.	Then	it
began.	I	stayed	up	night	after	night	trying	things	out,	poring	through	the	source	code	of	the
emacs	editor	that	came	with	the	compiler.	It	was	addictive,	it	was	challenging,	and	I	loved
it.

I	hope	you’ve	had	experiences	like	this—just	the	raw	joy	of	making	things	work	on	a
computer.	Nearly	every	programmer	I	ask	has.	That	joy	is	part	of	what	got	us	into	this
work,	but	where	is	it	day	to	day?

A	few	years	ago,	I	gave	my	friend	Erik	Meade	a	call	after	I’d	finished	work	one	night.	I
knew	that	Erik	had	just	started	a	consulting	gig	with	a	new	team,	so	I	asked	him,	“How	are
they	doing?”	He	said,	“They’re	writing	legacy	code,	man.”	That	was	one	of	the	few	times
in	my	life	when	I	was	sucker-punched	by	a	coworker’s	statement.	I	felt	it	right	in	my	gut.
Erik	had	given	words	to	the	precise	feeling	that	I	often	get	when	I	visit	teams	for	the	first
time.	They	are	trying	very	hard,	but	at	the	end	of	the	day,	because	of	schedule	pressure,
the	weight	of	history,	or	a	lack	of	any	better	code	to	compare	their	efforts	to,	many	people
are	writing	legacy	code.

What	is	legacy	code?	I’ve	used	the	term	without	defining	it.	Let’s	look	at	the	strict
definition:	Legacy	code	is	code	that	we’ve	gotten	from	someone	else.	Maybe	our	company
acquired	code	from	another	company;	maybe	people	on	the	original	team	moved	on	to
other	projects.	Legacy	code	is	somebody	else’s	code.	But	in	programmer-speak,	the	term
means	much	more	than	that.	The	term	legacy	code	has	taken	on	more	shades	of	meaning
and	more	weight	over	time.

What	do	you	think	about	when	you	hear	the	term	legacy	code?	If	you	are	at	all	like	me,
you	think	of	tangled,	unintelligible	structure,	code	that	you	have	to	change	but	don’t	really
understand.	You	think	of	sleepless	nights	trying	to	add	in	features	that	should	be	easy	to
add,	and	you	think	of	demoralization,	the	sense	that	everyone	on	the	team	is	so	sick	of	a
code	base	that	it	seems	beyond	care,	the	sort	of	code	that	you	just	wish	would	die.	Part	of
you	feels	bad	for	even	thinking	about	making	it	better.	It	seems	unworthy	of	your	efforts.
That	definition	of	legacy	code	has	nothing	to	do	with	who	wrote	it.	Code	can	degrade	in
many	ways,	and	many	of	them	have	nothing	to	do	with	whether	the	code	came	from
another	team.

In	the	industry,	legacy	code	is	often	used	as	a	slang	term	for	difficult-to-change	code	that
we	don’t	understand.	But	over	years	of	working	with	teams,	helping	them	get	past	serious
code	problems,	I’ve	arrived	at	a	different	definition.

To	me,	legacy	code	is	simply	code	without	tests.	I’ve	gotten	some	grief	for	this	definition.
What	do	tests	have	to	do	with	whether	code	is	bad?	To	me,	the	answer	is	straightforward,
and	it	is	a	point	that	I	elaborate	throughout	the	book:

Code	without	tests	is	bad	code.	It	doesn’t	matter	how	well	written	it	is;	it	doesn’t	matter	how	pretty	or	object-oriented
or	well-encapsulated	it	is.	With	tests,	we	can	change	the	behavior	of	our	code	quickly	and	verifiably.	Without	them,
we	really	don’t	know	if	our	code	is	getting	better	or	worse.

You	might	think	that	this	is	severe.	What	about	clean	code?	If	a	code	base	is	very	clean
and	well	structured,	isn’t	that	enough?	Well,	make	no	mistake.	I	love	clean	code.	I	love	it
more	than	most	people	I	know,	but	while	clean	code	is	good,	it’s	not	enough.	Teams	take
serious	chances	when	they	try	to	make	large	changes	without	tests.	It	is	like	doing	aerial
gymnastics	without	a	net.	It	requires	incredible	skill	and	a	clear	understanding	of	what	can
happen	at	every	step.	Knowing	precisely	what	will	happen	if	you	change	a	couple	of
variables	is	often	like	knowing	whether	another	gymnast	is	going	to	catch	your	arms	after
you	come	out	of	a	somersault.	If	you	are	on	a	team	with	code	that	clear,	you	are	in	a	better
position	than	most	programmers.	In	my	work,	I’ve	noticed	that	teams	with	that	degree	of
clarity	in	all	of	their	code	are	rare.	They	seem	like	a	statistical	anomaly.	And,	you	know
what?	If	they	don’t	have	supporting	tests,	their	code	changes	still	appear	to	be	slower	than
those	of	teams	that	do.

Yes,	teams	do	get	better	and	start	to	write	clearer	code,	but	it	takes	a	long	time	for	older
code	to	get	clearer.	In	many	cases,	it	will	never	happen	completely.	Because	of	this,	I	have
no	problem	defining	legacy	code	as	code	without	tests.	It	is	a	good	working	definition,	and
it	points	to	a	solution.

I’ve	been	talking	about	tests	quite	a	bit	so	far,	but	this	book	is	not	about	testing.	This	book
is	about	being	able	to	confidently	make	changes	in	any	code	base.	In	the	following
chapters,	I	describe	techniques	that	you	can	use	to	understand	code,	get	it	under	test,
refactor	it,	and	add	features.

One	thing	that	you	will	notice	as	you	read	this	book	is	that	it	is	not	a	book	about	pretty
code.	The	examples	that	I	use	in	the	book	are	fabricated	because	I	work	under
nondisclosure	agreements	with	clients.	But	in	many	of	the	examples,	I’ve	tried	to	preserve
the	spirit	of	code	that	I’ve	seen	in	the	field.	I	won’t	say	that	the	examples	are	always
representative.	There	certainly	are	oases	of	great	code	out	there,	but,	frankly,	there	are	also
pieces	of	code	that	are	far	worse	than	anything	I	can	use	as	an	example	in	this	book.	Aside
from	client	confidentiality,	I	simply	couldn’t	put	code	like	that	in	this	book	without	boring
you	to	tears	and	burying	important	points	in	a	morass	of	detail.	As	a	result,	many	of	the
examples	are	relatively	brief.	If	you	look	at	one	of	them	and	think	“No,	he	doesn’t
understand—my	methods	are	much	larger	than	that	and	much	worse,”	please	look	at	the
advice	that	I	am	giving	at	face	value	and	see	if	it	applies,	even	if	the	example	seems
simpler.

The	techniques	here	have	been	tested	on	substantially	large	pieces	of	code.	It	is	just	a
limitation	of	the	book	format	that	makes	examples	smaller.	In	particular,	when	you	see
ellipses	(…)	in	a	code	fragment	like	this,	you	can	read	them	as	“insert	500	lines	of	ugly
code	here”:
m_pDispatcher->register(listener);

…
m_nMargins++;

If	this	book	is	not	about	pretty	code,	it	is	even	less	about	pretty	design.	Good	design
should	be	a	goal	for	all	of	us,	but	in	legacy	code,	it	is	something	that	we	arrive	at	in
discrete	steps.	In	some	of	the	chapters,	I	describe	ways	of	adding	new	code	to	existing
code	bases	and	show	how	to	add	it	with	good	design	principles	in	mind.	You	can	start	to
grow	areas	of	very	good	high-quality	code	in	legacy	code	bases,	but	don’t	be	surprised	if
some	of	the	steps	you	take	to	make	changes	involve	making	some	code	slightly	uglier.
This	work	is	like	surgery.	We	have	to	make	incisions,	and	we	have	to	move	through	the
guts	and	suspend	some	aesthetic	judgment.	Could	this	patient’s	major	organs	and	viscera
be	better	than	they	are?	Yes.	So	do	we	just	forget	about	his	immediate	problem,	sew	him
up	again,	and	tell	him	to	eat	right	and	train	for	a	marathon?	We	could,	but	what	we	really
need	to	do	is	take	the	patient	as	he	is,	fix	what’s	wrong,	and	move	him	to	a	healthier	state.
He	might	never	become	an	Olympic	athlete,	but	we	can’t	let	“best”	be	the	enemy	of
“better.”	Code	bases	can	become	healthier	and	easier	to	work	in.	When	a	patient	feels	a
little	better,	often	that	is	the	time	when	you	can	help	him	make	commitments	to	a	healthier
life	style.	That	is	what	we	are	shooting	for	with	legacy	code.	We	are	trying	to	get	to	the
point	at	which	we	are	used	to	ease;	we	expect	it	and	actively	attempt	to	make	code	change
easier.	When	we	can	sustain	that	sense	on	a	team,	design	gets	better.

The	techniques	I	describe	are	ones	that	I’ve	discovered	and	learned	with	coworkers	and
clients	over	the	course	of	years	working	with	clients	to	try	to	establish	control	over	unruly
code	bases.	I	got	into	this	legacy	code	emphasis	accidentally.	When	I	first	started	working
with	Object	Mentor,	the	bulk	of	my	work	involved	helping	teams	with	serious	problems
develop	their	skills	and	interactions	to	the	point	that	they	could	regularly	deliver	quality
code.	We	often	used	Extreme	Programming	practices	to	help	teams	take	control	of	their
work,	collaborate	intensively,	and	deliver.	I	often	feel	that	Extreme	Programming	is	less	a
way	to	develop	software	than	it	is	a	way	to	make	a	well-jelled	work	team	that	just	happens
to	deliver	great	software	every	two	weeks.

From	the	beginning,	though,	there	was	a	problem.	Many	of	the	first	XP	projects	were
“greenfield”	projects.	The	clients	I	was	seeing	had	significantly	large	code	bases,	and	they
were	in	trouble.	They	needed	some	way	to	get	control	of	their	work	and	start	to	deliver.
Over	time,	I	found	that	I	was	doing	the	same	things	over	and	over	again	with	clients.	This
sense	culminated	in	some	work	I	was	doing	with	a	team	in	the	financial	industry.	Before
I’d	arrived,	they’d	realized	that	unit	testing	was	a	great	thing,	but	the	tests	that	they	were
executing	were	full	scenario	tests	that	made	multiple	trips	to	a	database	and	exercised
large	chunks	of	code.	The	tests	were	hard	to	write,	and	the	team	didn’t	run	them	very	often
because	they	took	so	long	to	run.	As	I	sat	down	with	them	to	break	dependencies	and	get
smaller	chunks	of	code	under	test,	I	had	a	terrible	sense	of	déjà	vu.	It	seemed	that	I	was
doing	this	sort	of	work	with	every	team	I	met,	and	it	was	the	sort	of	thing	that	no	one
really	wanted	to	think	about.	It	was	just	the	grunge	work	that	you	do	when	you	want	to
start	working	with	your	code	in	a	controlled	way,	if	you	know	how	to	do	it.	I	decided	then
that	it	was	worth	really	reflecting	on	how	we	were	solving	these	problems	and	writing
them	down	so	that	teams	could	get	a	leg	up	and	start	to	make	their	code	bases	easier	to
live	in.

A	note	about	the	examples:	I’ve	used	examples	in	several	different	programming

languages.	The	bulk	of	the	examples	are	written	in	Java,	C++,	and	C.	I	picked	Java
because	it	is	a	very	common	language,	and	I	included	C++	because	it	presents	some
special	challenges	in	a	legacy	environment.	I	picked	C	because	it	highlights	many	of	the
problems	that	come	up	in	procedural	legacy	code.	Among	them,	these	languages	cover
much	of	the	spectrum	of	concerns	that	arise	in	legacy	code.	However,	if	the	languages	you
use	are	not	covered	in	the	examples,	take	a	look	at	them	anyway.	Many	of	the	techniques
that	I	cover	can	be	used	in	other	languages,	such	as	Delphi,	Visual	Basic,	COBOL,	and
FORTRAN.

I	hope	that	you	find	the	techniques	in	this	book	helpful	and	that	they	allow	you	to	get	back
to	what	is	fun	about	programming.	Programming	can	be	very	rewarding	and	enjoyable
work.	If	you	don’t	feel	that	in	your	day-to-day	work,	I	hope	that	the	techniques	I	offer	you
in	this	book	help	you	find	it	and	grow	it	on	your	team.

Acknowledgments
First	of	all,	I	owe	a	serious	debt	to	my	wife,	Ann,	and	my	children,	Deborah	and	Ryan.
Their	love	and	support	made	this	book	and	all	of	the	learning	that	preceded	it	possible.	I’d
also	like	to	thank	“Uncle	Bob”	Martin,	president	and	founder	of	Object	Mentor.	His
rigorous	pragmatic	approach	to	development	and	design,	separating	the	critical	from	the
inconsequential,	gave	me	something	to	latch	upon	about	10	years	ago,	back	when	it
seemed	that	I	was	about	to	drown	in	a	wave	of	unrealistic	advice.	And	thanks,	Bob,	for
giving	me	the	opportunity	to	see	more	code	and	work	with	more	people	over	the	past	five
years	than	I	ever	imagined	possible.

I	also	have	to	thank	Kent	Beck,	Martin	Fowler,	Ron	Jeffries,	and	Ward	Cunningham	for
offering	me	advice	at	times	and	teaching	me	a	great	deal	about	team	work,	design,	and
programming.	Special	thanks	to	all	of	the	people	who	reviewed	the	drafts.	The	official
reviewers	were	Sven	Gorts,	Robert	C.	Martin,	Erik	Meade,	and	Bill	Wake;	the	unofficial
reviewers	were	Dr.	Robert	Koss,	James	Grenning,	Lowell	Lindstrom,	Micah	Martin,	Russ
Rufer	and	the	Silicon	Valley	Patterns	Group,	and	James	Newkirk.

Thanks	also	to	reviewers	of	the	very	early	drafts	I	placed	on	the	Internet.	Their	feedback
significantly	affected	the	direction	of	the	book	after	I	reorganized	its	format.	I	apologize	in
advance	to	any	of	you	I	may	have	left	out.	The	early	reviewers	were:	Darren	Hobbs,
Martin	Lippert,	Keith	Nicholas,	Phlip	Plumlee,	C.	Keith	Ray,	Robert	Blum,	Bill	Burris,
William	Caputo,	Brian	Marick,	Steve	Freeman,	David	Putman,	Emily	Bache,	Dave	Astels,
Russel	Hill,	Christian	Sepulveda,	and	Brian	Christopher	Robinson.

Thanks	also	to	Joshua	Kerievsky	who	gave	a	key	early	review	and	Jeff	Langr	who	helped
with	advice	and	spot	reviews	all	through	the	process.

The	reviewers	helped	me	polish	the	draft	considerably,	but	if	there	are	errors	remaining,
they	are	solely	mine.

Thanks	to	Martin	Fowler,	Ralph	Johnson,	Bill	Opdyke,	Don	Roberts,	and	John	Brant	for
their	work	in	the	area	of	refactoring.	It	has	been	inspirational.

I	also	owe	a	special	debt	to	Jay	Packlick,	Jacques	Morel,	and	Kelly	Mower	of	Sabre
Holdings,	and	Graham	Wright	of	Workshare	Technology	for	their	support	and	feedback.

Special	thanks	also	to	Paul	Petralia,	Michelle	Vincenti,	Lori	Lyons,	Krista	Hansing,	and
the	rest	of	the	team	at	Prentice-Hall.	Thank	you,	Paul,	for	all	of	the	help	and
encouragement	that	this	first-time	author	needed.

Special	thanks	also	to	Gary	and	Joan	Feathers,	April	Roberts,	Dr.	Raimund	Ege,	David
Lopez	de	Quintana,	Carlos	Perez,	Carlos	M.	Rodriguez,	and	the	late	Dr.	John	C.	Comfort
for	help	and	encouragement	over	the	years.	I	also	have	to	thank	Brian	Button	for	the
example	in	Chapter	21,	I’m	Changing	the	Same	Code	All	Over	the	Place.	He	wrote	that
code	in	about	an	hour	when	we	were	developing	a	refactoring	course	together,	and	it’s
become	my	favorite	piece	of	teaching	code.

Also,	special	thanks	to	Janik	Top,	whose	instrumental	De	Futura	served	as	the	soundtrack
for	my	last	few	weeks	of	work	on	this	book.

Finally,	I’d	like	to	thank	everyone	whom	I’ve	worked	with	over	the	past	few	years	whose
insights	and	challenges	strengthened	the	material	in	this	book.

Michael	Feathers
mfeathers@objectmentor.com
www.objectmentor.com
www.michaelfeathers.com

mailto:mfeathers@objectmentor.com
http://www.objectmentor.com
http://www.michaelfeathers.com

Introduction

How	to	Use	This	Book
I	tried	several	different	formats	before	settling	on	the	current	one	for	this	book.	Many	of
the	different	techniques	and	practices	that	are	useful	when	working	with	legacy	code	are
hard	to	explain	in	isolation.	The	simplest	changes	often	go	easier	if	you	can	find	seams,
make	fake	objects,	and	break	dependencies	using	a	couple	of	dependency-breaking
techniques.	I	decided	that	the	easiest	way	to	make	the	book	approachable	and	handy
would	be	to	organize	the	bulk	of	it	(Part	II,	Changing	Software)	in	FAQ	(frequently	asked
questions)	format.	Because	specific	techniques	often	require	the	use	of	other	techniques,
the	FAQ	chapters	are	heavily	interlinked.	In	nearly	every	chapter,	you’ll	find	references,
along	with	page	numbers,	for	other	chapters	and	sections	that	describe	particular
techniques	and	refactorings.	I	apologize	if	this	causes	you	to	flip	wildly	through	the	book
as	you	attempt	to	find	answers	to	your	questions,	but	I	assumed	that	you’d	rather	do	that
than	read	the	book	cover	to	cover,	trying	to	understand	how	all	the	techniques	operate.

In	Changing	Software,	I’ve	tried	to	address	very	common	questions	that	come	up	in
legacy	code	work.	Each	of	the	chapters	is	named	after	a	specific	problem.	This	does	make
the	chapter	titles	rather	long,	but	hopefully,	they	will	allow	you	to	quickly	find	a	section
that	helps	you	with	the	particular	problems	you	are	having.

Changing	Software	is	bookended	by	a	set	of	introductory	chapters	(Part	I,	The	Mechanics
of	Change)	and	a	catalog	of	refactorings,	which	are	very	useful	in	legacy	code	work	(Part
III,	Dependency-Breaking	Techniques).	Please	read	the	introductory	chapters,	particularly
Chapter	4,	The	Seam	Model.	These	chapters	provide	the	context	and	nomenclature	for	all
the	techniques	that	follow.	In	addition,	if	you	find	a	term	that	isn’t	described	in	context,
look	for	it	in	the	Glossary.

The	refactorings	in	Dependency-Breaking	Techniques	are	special	in	that	they	are	meant	to
be	done	without	tests,	in	the	service	of	putting	tests	in	place.	I	encourage	you	to	read	each
of	them	so	that	you	can	see	more	possibilities	as	you	start	to	tame	your	legacy	code.

Part	I:	The	Mechanics	of	Change

Chapter	1:	Changing	Software

Changing	code	is	great.	It’s	what	we	do	for	a	living.	But	there	are	ways	of	changing	code
that	make	life	difficult,	and	there	are	ways	that	make	it	much	easier.	In	the	industry,	we
haven’t	spoken	about	that	much.	The	closest	we’ve	gotten	is	the	literature	on	refactoring.	I
think	we	can	broaden	the	discussion	a	bit	and	talk	about	how	to	deal	with	code	in	the
thorniest	of	situations.	To	do	that,	we	have	to	dig	deeper	into	the	mechanics	of	change.

Four	Reasons	to	Change	Software
For	simplicity’s	sake,	let’s	look	at	four	primary	reasons	to	change	software.

1.	Adding	a	feature

2.	Fixing	a	bug

3.	Improving	the	design

4.	Optimizing	resource	usage

Adding	Features	and	Fixing	Bugs

Adding	a	feature	seems	like	the	most	straightforward	type	of	change	to	make.	The
software	behaves	one	way,	and	users	say	that	the	system	needs	to	do	something	else	also.

Suppose	that	we	are	working	on	a	web-based	application,	and	a	manager	tells	us	that	she
wants	the	company	logo	moved	from	the	left	side	of	a	page	to	the	right	side.	We	talk	to	her
about	it	and	discover	it	isn’t	quite	so	simple.	She	wants	to	move	the	logo,	but	she	wants
other	changes,	too.	She’d	like	to	make	it	animated	for	the	next	release.	Is	this	fixing	a	bug
or	adding	a	new	feature?	It	depends	on	your	point	of	view.	From	the	point	of	view	of	the
customer,	she	is	definitely	asking	us	to	fix	a	problem.	Maybe	she	saw	the	site	and	attended
a	meeting	with	people	in	her	department,	and	they	decided	to	change	the	logo	placement
and	ask	for	a	bit	more	functionality.	From	a	developer’s	point	of	view,	the	change	could	be
seen	as	a	completely	new	feature.	“If	they	just	stopped	changing	their	minds,	we’d	be
done	by	now.”	But	in	some	organizations	the	logo	move	is	seen	as	just	a	bug	fix,
regardless	of	the	fact	that	the	team	is	going	to	have	to	do	a	lot	of	fresh	work.

It	is	tempting	to	say	that	all	of	this	is	just	subjective.	You	see	it	as	a	bug	fix,	and	I	see	it	as
a	feature,	and	that’s	the	end	of	it.	Sadly,	though,	in	many	organizations,	bug	fixes	and
features	have	to	be	tracked	and	accounted	for	separately	because	of	contracts	or	quality
initiatives.	At	the	people	level,	we	can	go	back	and	forth	endlessly	about	whether	we	are
adding	features	or	fixing	bugs,	but	it	is	all	just	changing	code	and	other	artifacts.
Unfortunately,	this	talk	about	bug-fixing	and	feature	addition	masks	something	that	is
much	more	important	to	us	technically:	behavioral	change.	There	is	a	big	difference
between	adding	new	behavior	and	changing	old	behavior.

Behavior	is	the	most	important	thing	about	software.	It	is	what	users	depend	on.	Users	like	it	when	we	add	behavior
(provided	it	is	what	they	really	wanted),	but	if	we	change	or	remove	behavior	they	depend	on	(introduce	bugs),	they
stop	trusting	us.

In	the	company	logo	example,	are	we	adding	behavior?	Yes.	After	the	change,	the	system

will	display	a	logo	on	the	right	side	of	the	page.	Are	we	getting	rid	of	any	behavior?	Yes,
there	won’t	be	a	logo	on	the	left	side.

Let’s	look	at	a	harder	case.	Suppose	that	a	customer	wants	to	add	a	logo	to	the	right	side	of
a	page,	but	there	wasn’t	one	on	the	left	side	to	start	with.	Yes,	we	are	adding	behavior,	but
are	we	removing	any?	Was	anything	rendered	in	the	place	where	the	logo	is	about	to	be
rendered?

Are	we	changing	behavior,	adding	it,	or	both?

It	turns	out	that,	for	us,	we	can	draw	a	distinction	that	is	more	useful	to	us	as
programmers.	If	we	have	to	modify	code	(and	HTML	kind	of	counts	as	code),	we	could	be
changing	behavior.	If	we	are	only	adding	code	and	calling	it,	we	are	often	adding
behavior.	Let’s	look	at	another	example.	Here	is	a	method	on	a	Java	class:
public	class	CDPlayer
{
				public	void	addTrackListing(Track	track)	{
								…
				}
				…
}

The	class	has	a	method	that	enables	us	to	add	track	listings.	Let’s	add	another	method	that
lets	us	replace	track	listings.
public	class	CDPlayer
{
				public	void	addTrackListing(Track	track)	{
								…
				}

				public	void	replaceTrackListing(String	name,	Track	track)	{
								…
				}
				…
}

When	we	added	that	method,	did	we	add	new	behavior	to	our	application	or	change	it?
The	answer	is:	neither.	Adding	a	method	doesn’t	change	behavior	unless	the	method	is
called	somehow.

Let’s	make	another	code	change.	Let’s	put	a	new	button	on	the	user	interface	for	the	CD
player.	The	button	lets	users	replace	track	listings.	With	that	move,	we’re	adding	the
behavior	we	specified	in	replaceTrackListing	method,	but	we’re	also	subtly	changing	behavior.
The	UI	will	render	differently	with	that	new	button.	Chances	are,	the	UI	will	take	about	a
microsecond	longer	to	display.	It	seems	nearly	impossible	to	add	behavior	without
changing	it	to	some	degree.

Improving	Design

Design	improvement	is	a	different	kind	of	software	change.	When	we	want	to	alter
software’s	structure	to	make	it	more	maintainable,	generally	we	want	to	keep	its	behavior
intact	also.	When	we	drop	behavior	in	that	process,	we	often	call	that	a	bug.	One	of	the
main	reasons	why	many	programmers	don’t	attempt	to	improve	design	often	is	because	it
is	relatively	easy	to	lose	behavior	or	create	bad	behavior	in	the	process	of	doing	it.

The	act	of	improving	design	without	changing	its	behavior	is	called	refactoring.	The	idea
behind	refactoring	is	that	we	can	make	software	more	maintainable	without	changing
behavior	if	we	write	tests	to	make	sure	that	existing	behavior	doesn’t	change	and	take
small	steps	to	verify	that	all	along	the	process.	People	have	been	cleaning	up	code	in
systems	for	years,	but	only	in	the	last	few	years	has	refactoring	taken	off.	Refactoring
differs	from	general	cleanup	in	that	we	aren’t	just	doing	low-risk	things	such	as
reformatting	source	code,	or	invasive	and	risky	things	such	as	rewriting	chunks	of	it.
Instead,	we	are	making	a	series	of	small	structural	modifications,	supported	by	tests	to
make	the	code	easier	to	change.	The	key	thing	about	refactoring	from	a	change	point	of
view	is	that	there	aren’t	supposed	to	be	any	functional	changes	when	you	refactor
(although	behavior	can	change	somewhat	because	the	structural	changes	that	you	make
can	alter	performance,	for	better	or	worse).

Optimization

Optimization	is	like	refactoring,	but	when	we	do	it,	we	have	a	different	goal.	With	both
refactoring	and	optimization,	we	say,	“We’re	going	to	keep	functionality	exactly	the	same
when	we	make	changes,	but	we	are	going	to	change	something	else.”	In	refactoring,	the
“something	else”	is	program	structure;	we	want	to	make	it	easier	to	maintain.	In
optimization,	the	“something	else”	is	some	resource	used	by	the	program,	usually	time	or
memory.

Putting	It	All	Together

It	might	seem	strange	that	refactoring	and	optimization	are	kind	of	similar.	They	seem
much	closer	to	each	other	than	adding	features	or	fixing	bugs.	But	is	this	really	true?	The
thing	that	is	common	between	refactoring	and	optimization	is	that	we	hold	functionality
invariant	while	we	let	something	else	change.

In	general,	three	different	things	can	change	when	we	do	work	in	a	system:	structure,
functionality,	and	resource	usage.

Let’s	look	at	what	usually	changes	and	what	stays	more	or	less	the	same	when	we	make
four	different	kinds	of	changes	(yes,	often	all	three	change,	but	let’s	look	at	what	is
typical):

Superficially,	refactoring	and	optimization	do	look	very	similar.	They	hold	functionality
invariant.	But	what	happens	when	we	account	for	new	functionality	separately?	When	we
add	a	feature	often	we	are	adding	new	functionality,	but	without	changing	existing
functionality.

Adding	features,	refactoring,	and	optimizing	all	hold	existing	functionality	invariant.	In
fact,	if	we	scrutinize	bug	fixing,	yes,	it	does	change	functionality,	but	the	changes	are
often	very	small	compared	to	the	amount	of	existing	functionality	that	is	not	altered.

Feature	addition	and	bug	fixing	are	very	much	like	refactoring	and	optimization.	In	all
four	cases,	we	want	to	change	some	functionality,	some	behavior,	but	we	want	to	preserve
much	more	(see	Figure	1.1).

Figure	1.1	Preserving	behavior.

That’s	a	nice	view	of	what	is	supposed	to	happen	when	we	make	changes,	but	what	does	it
mean	for	us	practically?	On	the	positive	side,	it	seems	to	tell	us	what	we	have	to
concentrate	on.	We	have	to	make	sure	that	the	small	number	of	things	that	we	change	are
changed	correctly.	On	the	negative	side,	well,	that	isn’t	the	only	thing	we	have	to
concentrate	on.	We	have	to	figure	out	how	to	preserve	the	rest	of	the	behavior.
Unfortunately,	preserving	it	involves	more	than	just	leaving	the	code	alone.	We	have	to
know	that	the	behavior	isn’t	changing,	and	that	can	be	tough.	The	amount	of	behavior	that
we	have	to	preserve	is	usually	very	large,	but	that	isn’t	the	big	deal.	The	big	deal	is	that	we
often	don’t	know	how	much	of	that	behavior	is	at	risk	when	we	make	our	changes.	If	we
knew,	we	could	concentrate	on	that	behavior	and	not	care	about	the	rest.	Understanding	is
the	key	thing	that	we	need	to	make	changes	safely.

Preserving	existing	behavior	is	one	of	the	largest	challenges	in	software	development.	Even	when	we	are	changing
primary	features,	we	often	have	very	large	areas	of	behavior	that	we	have	to	preserve.

Risky	Change
Preserving	behavior	is	a	large	challenge.	When	we	need	to	make	changes	and	preserve
behavior,	it	can	involve	considerable	risk.

To	mitigate	risk,	we	have	to	ask	three	questions:

1.	What	changes	do	we	have	to	make?

2.	How	will	we	know	that	we’ve	done	them	correctly?

3.	How	will	we	know	that	we	haven’t	broken	anything?

How	much	change	can	you	afford	if	changes	are	risky?

Most	teams	that	I’ve	worked	with	have	tried	to	manage	risk	in	a	very	conservative	way.
They	minimize	the	number	of	changes	that	they	make	to	the	code	base.	Sometimes	this	is
a	team	policy:	“If	it’s	not	broke,	don’t	fix	it.”	At	other	times,	it	isn’t	anything	that	anyone
articulates.	The	developers	are	just	very	cautious	when	they	make	changes.	“What?	Create
another	method	for	that?	No,	I’ll	just	put	the	lines	of	code	right	here	in	the	method,	where
I	can	see	them	and	the	rest	of	the	code.	It	involves	less	editing,	and	it’s	safer.”

It’s	tempting	to	think	that	we	can	minimize	software	problems	by	avoiding	them,	but,
unfortunately,	it	always	catches	up	with	us.	When	we	avoid	creating	new	classes	and
methods,	the	existing	ones	grow	larger	and	harder	to	understand.	When	you	make	changes
in	any	large	system,	you	can	expect	to	take	a	little	time	to	get	familiar	with	the	area	you
are	working	with.	The	difference	between	good	systems	and	bad	ones	is	that,	in	the	good
ones,	you	feel	pretty	calm	after	you’ve	done	that	learning,	and	you	are	confident	in	the
change	you	are	about	to	make.	In	poorly	structured	code,	the	move	from	figuring	things
out	to	making	changes	feels	like	jumping	off	a	cliff	to	avoid	a	tiger.	You	hesitate	and
hesitate.	“Am	I	ready	to	do	it?	Well,	I	guess	I	have	to.”

Avoiding	change	has	other	bad	consequences.	When	people	don’t	make	changes	often
they	get	rusty	at	it.	Breaking	down	a	big	class	into	pieces	can	be	pretty	involved	work
unless	you	do	it	a	couple	of	times	a	week.	When	you	do,	it	becomes	routine.	You	get
better	at	figuring	out	what	can	break	and	what	can’t,	and	it	is	much	easier	to	do.

The	last	consequence	of	avoiding	change	is	fear.	Unfortunately,	many	teams	live	with
incredible	fear	of	change	and	it	gets	worse	every	day.	Often	they	aren’t	aware	of	how
much	fear	they	have	until	they	learn	better	techniques	and	the	fear	starts	to	fade	away.

We’ve	talked	about	how	avoiding	change	is	a	bad	thing,	but	what	is	our	alternative?	One
alternative	is	to	just	try	harder.	Maybe	we	can	hire	more	people	so	that	there	is	enough
time	for	everyone	to	sit	and	analyze,	to	scrutinize	all	of	the	code	and	make	changes	the
“right”	way.	Surely	more	time	and	scrutiny	will	make	change	safer.	Or	will	it?	After	all	of
that	scrutiny,	will	anyone	know	that	they’ve	gotten	it	right?

Chapter	2:	Working	with	Feedback

Changes	in	a	system	can	be	made	in	two	primary	ways.	I	like	to	call	them	Edit	and	Pray
and	Cover	and	Modify.	Unfortunately,	Edit	and	Pray	is	pretty	much	the	industry	standard.
When	you	use	Edit	and	Pray,	you	carefully	plan	the	changes	you	are	going	to	make,	you
make	sure	that	you	understand	the	code	you	are	going	to	modify,	and	then	you	start	to
make	the	changes.	When	you’re	done,	you	run	the	system	to	see	if	the	change	was
enabled,	and	then	you	poke	around	further	to	make	sure	that	you	didn’t	break	anything.
The	poking	around	is	essential.	When	you	make	your	changes,	you	are	hoping	and	praying
that	you’ll	get	them	right,	and	you	take	extra	time	when	you	are	done	to	make	sure	that
you	did.

Superficially,	Edit	and	Pray	seems	like	“working	with	care,”	a	very	professional	thing	to
do.	The	“care”	that	you	take	is	right	there	at	the	forefront,	and	you	expend	extra	care	when
the	changes	are	very	invasive	because	much	more	can	go	wrong.	But	safety	isn’t	solely	a
function	of	care.	I	don’t	think	any	of	us	would	choose	a	surgeon	who	operated	with	a
butter	knife	just	because	he	worked	with	care.	Effective	software	change,	like	effective
surgery,	really	involves	deeper	skills.	Working	with	care	doesn’t	do	much	for	you	if	you
don’t	use	the	right	tools	and	techniques.

Cover	and	Modify	is	a	different	way	of	making	changes.	The	idea	behind	it	is	that	it	is
possible	to	work	with	a	safety	net	when	we	change	software.	The	safety	net	we	use	isn’t
something	that	we	put	underneath	our	tables	to	catch	us	if	we	fall	out	of	our	chairs.
Instead,	it’s	kind	of	like	a	cloak	that	we	put	over	code	we	are	working	on	to	make	sure	that
bad	changes	don’t	leak	out	and	infect	the	rest	of	our	software.	Covering	software	means
covering	it	with	tests.	When	we	have	a	good	set	of	tests	around	a	piece	of	code,	we	can
make	changes	and	find	out	very	quickly	whether	the	effects	were	good	or	bad.	We	still
apply	the	same	care,	but	with	the	feedback	we	get,	we	are	able	to	make	changes	more
carefully.

If	you	are	not	familiar	with	this	use	of	tests,	all	of	this	is	bound	to	sound	a	little	bit	odd.
Traditionally,	tests	are	written	and	executed	after	development.	A	group	of	programmers
writes	code	and	a	team	of	testers	runs	tests	against	the	code	afterward	to	see	if	it	meets
some	specification.	In	some	very	traditional	development	shops,	this	is	just	the	way	that
software	is	developed.	The	team	can	get	feedback,	but	the	feedback	loop	is	large.	Work	for
a	few	weeks	or	months,	and	then	people	in	another	group	will	tell	you	whether	you’ve
gotten	it	right.

Testing	done	this	way	is	really	“testing	to	attempt	to	show	correctness.”	Although	that	is	a
good	goal,	tests	can	also	be	used	in	a	very	different	way.	We	can	do	“testing	to	detect
change.”

In	traditional	terms,	this	is	called	regression	testing.	We	periodically	run	tests	that	check
for	known	good	behavior	to	find	out	whether	our	software	still	works	the	way	that	it	did	in
the	past.

When	you	have	tests	around	the	areas	in	which	you	are	going	to	make	changes,	they	act	as
a	software	vise.	You	can	keep	most	of	the	behavior	fixed	and	know	that	you	are	changing
only	what	you	intend	to.

Software	Vise
vise	(n.).	A	clamping	device,	usually	consisting	of	two	jaws	closed	or	opened	by	a	screw	or	lever,	used	in	carpentry
or	metalworking	to	hold	a	piece	in	position.	The	American	Heritage	Dictionary	of	the	English	Language,	Fourth
Edition

When	we	have	tests	that	detect	change,	it	is	like	having	a	vise	around	our	code.	The	behavior	of	the	code	is	fixed	in
place.	When	we	make	changes,	we	can	know	that	we	are	changing	only	one	piece	of	behavior	at	a	time.	In	short,
we’re	in	control	of	our	work.

Regression	testing	is	a	great	idea.	Why	don’t	people	do	it	more	often?	There	is	this	little
problem	with	regression	testing.	Often	when	people	practice	it,	they	do	it	at	the
application	interface.	It	doesn’t	matter	whether	it	is	a	web	application,	a	command-line
application,	or	a	GUI-based	application;	regression	testing	has	traditionally	been	seen	as
an	application-level	testing	style.	But	this	is	unfortunate.	The	feedback	we	can	get	from	it
is	very	useful.	It	pays	to	do	it	at	a	finer-grained	level.

Let’s	do	a	little	thought	experiment.	We	are	stepping	into	a	large	function	that	contains	a
large	amount	of	complicated	logic.	We	analyze,	we	think,	we	talk	to	people	who	know
more	about	that	piece	of	code	than	we	do,	and	then	we	make	a	change.	We	want	to	make
sure	that	the	change	hasn’t	broken	anything,	but	how	can	we	do	it?	Luckily,	we	have	a
quality	group	that	has	a	set	of	regression	tests	that	it	can	run	overnight.	We	call	and	ask
them	to	schedule	a	run,	and	they	say	that,	yes,	they	can	run	the	tests	overnight,	but	it	is	a
good	thing	that	we	called	early.	Other	groups	usually	try	to	schedule	regression	runs	in	the
middle	of	the	week,	and	if	we’d	waited	any	longer,	there	might	not	be	a	timeslot	and	a
machine	available	for	us.	We	breathe	a	sigh	of	relief	and	then	go	back	to	work.	We	have
about	five	more	changes	to	make	like	the	last	one.	All	of	them	are	in	equally	complicated
areas.	And	we’re	not	alone.	We	know	that	several	other	people	are	making	changes,	too.

The	next	morning,	we	get	a	phone	call.	Daiva	over	in	testing	tells	us	that	tests	AE1021	and
AE1029	failed	overnight.	She’s	not	sure	whether	it	was	our	changes,	but	she	is	calling	us
because	she	knows	we’ll	take	care	of	it	for	her.	We’ll	debug	and	see	if	the	failures	were
because	of	one	of	our	changes	or	someone	else’s.

Does	this	sound	real?	Unfortunately,	it	is	very	real.

Let’s	look	at	another	scenario.

We	need	to	make	a	change	to	a	rather	long,	complicated	function.	Luckily,	we	find	a	set	of
unit	tests	in	place	for	it.	The	last	people	who	touched	the	code	wrote	a	set	of	about	20	unit
tests	that	thoroughly	exercised	it.	We	run	them	and	discover	that	they	all	pass.	Next	we
look	through	the	tests	to	get	a	sense	of	what	the	code’s	actual	behavior	is.

We	get	ready	to	make	our	change,	but	we	realize	that	it	is	pretty	hard	to	figure	out	how	to
change	it.	The	code	is	unclear,	and	we’d	really	like	to	understand	it	better	before	making
our	change.	The	tests	won’t	catch	everything,	so	we	want	to	make	the	code	very	clear	so
that	we	can	have	more	confidence	in	our	change.	Aside	from	that,	we	don’t	want	ourselves
or	anyone	else	to	have	to	go	through	the	work	we	are	doing	to	try	to	understand	it.	What	a
waste	of	time!

We	start	to	refactor	the	code	a	bit.	We	extract	some	methods	and	move	some	conditional
logic.	After	every	little	change	that	we	make,	we	run	that	little	suite	of	unit	tests.	They

pass	almost	every	time	that	we	run	them.	A	few	minutes	ago,	we	made	a	mistake	and
inverted	the	logic	on	a	condition,	but	a	test	failed	and	we	recovered	in	about	a	minute.
When	we	are	done	refactoring,	the	code	is	much	clearer.	We	make	the	change	we	set	out
to	make,	and	we	are	confident	that	it	is	right.	We	added	some	tests	to	verify	the	new
behavior.	The	next	programmers	who	work	on	this	piece	of	code	will	have	an	easier	time
and	will	have	tests	that	cover	its	functionality.

Do	you	want	your	feedback	in	a	minute	or	overnight?	Which	scenario	is	more	efficient?

Unit	testing	is	one	of	the	most	important	components	in	legacy	code	work.	System-level
regression	tests	are	great,	but	small,	localized	tests	are	invaluable.	They	can	give	you
feedback	as	you	develop	and	allow	you	to	refactor	with	much	more	safety.

What	Is	Unit	Testing?
The	term	unit	test	has	a	long	history	in	software	development.	Common	to	most
conceptions	of	unit	tests	is	the	idea	that	they	are	tests	in	isolation	of	individual
components	of	software.	What	are	components?	The	definition	varies,	but	in	unit	testing,
we	are	usually	concerned	with	the	most	atomic	behavioral	units	of	a	system.	In	procedural
code,	the	units	are	often	functions.	In	object-oriented	code,	the	units	are	classes.

Test	Harnesses
In	this	book,	I	use	the	term	test	harness	as	a	generic	term	for	the	testing	code	that	we	write	to	exercise	some	piece	of
software	and	the	code	that	is	needed	to	run	it.	We	can	use	many	different	kinds	of	test	harnesses	to	work	with	our
code.	In	Chapter	5,	Tools,	I	discuss	the	xUnit	testing	framework	and	the	FIT	framework.	Both	of	them	can	be	used	to
do	the	testing	I	describe	in	this	book.

Can	we	ever	test	only	one	function	or	one	class?	In	procedural	systems,	it	is	often	hard	to
test	functions	in	isolation.	Top-level	functions	call	other	functions,	which	call	other
functions,	all	the	way	down	to	the	machine	level.	In	object-oriented	systems,	it	is	a	little
easier	to	test	classes	in	isolation,	but	the	fact	is,	classes	don’t	generally	live	in	isolation.
Think	about	all	of	the	classes	you’ve	ever	written	that	don’t	use	other	classes.	They	are
pretty	rare,	aren’t	they?	Usually	they	are	little	data	classes	or	data	structure	classes	such	as
stacks	and	queues	(and	even	these	might	use	other	classes).

Testing	in	isolation	is	an	important	part	of	the	definition	of	a	unit	test,	but	why	is	it
important?	After	all,	many	errors	are	possible	when	pieces	of	software	are	integrated.
Shouldn’t	large	tests	that	cover	broad	functional	areas	of	code	be	more	important?	Well,
they	are	important,	I	won’t	deny	that,	but	there	are	a	few	problems	with	large	tests:

•	Error	localization—As	tests	get	further	from	what	they	test,	it	is	harder	to	determine
what	a	test	failure	means.	Often	it	takes	considerable	work	to	pinpoint	the	source	of	a
test	failure.	You	have	to	look	at	the	test	inputs,	look	at	the	failure,	and	determine	where
along	the	path	from	inputs	to	outputs	the	failure	occurred.	Yes,	we	have	to	do	that	for
unit	tests	also,	but	often	the	work	is	trivial.

•	Execution	time—Larger	tests	tend	to	take	longer	to	execute.	This	tends	to	make	test
runs	rather	frustrating.	Tests	that	take	too	long	to	run	end	up	not	being	run.

•	Coverage—It	is	hard	to	see	the	connection	between	a	piece	of	code	and	the	values	that
exercise	it.	We	can	usually	find	out	whether	a	piece	of	code	is	exercised	by	a	test	using

coverage	tools,	but	when	we	add	new	code,	we	might	have	to	do	considerable	work	to
create	high-level	tests	that	exercise	the	new	code.

One	of	the	most	frustrating	things	about	larger	tests	is	that	we	can	have	error	localization	if	we	run	our	tests	more
often,	but	it	is	very	hard	to	achieve.	If	we	run	our	tests	and	they	pass,	and	then	we	make	a	small	change	and	they	fail,
we	know	precisely	where	the	problem	was	triggered.	It	was	something	we	did	in	that	last	small	change.	We	can	roll
back	the	change	and	try	again.	But	if	our	tests	are	large,	execution	time	can	be	too	long;	our	tendency	will	be	to	avoid
running	the	tests	often	enough	to	really	localize	errors.

Unit	tests	fill	in	gaps	that	larger	tests	can’t.	We	can	test	pieces	of	code	independently;	we
can	group	tests	so	that	we	can	run	some	under	some	conditions	and	others	under	other
conditions.	With	them	we	can	localize	errors	quickly.	If	we	think	there	is	an	error	in	some
particular	piece	of	code	and	we	can	use	it	in	a	test	harness,	we	can	usually	code	up	a	test
quickly	to	see	if	the	error	really	is	there.

Here	are	qualities	of	good	unit	tests:

1.	They	run	fast.

2.	They	help	us	localize	problems.

In	the	industry,	people	often	go	back	and	forth	about	whether	particular	tests	are	unit	tests.
Is	a	test	really	a	unit	test	if	it	uses	another	production	class?	I	go	back	to	the	two	qualities:
Does	the	test	run	fast?	Can	it	help	us	localize	errors	quickly?	Naturally,	there	is	a
continuum.	Some	tests	are	larger,	and	they	use	several	classes	together.	In	fact,	they	may
seem	to	be	little	integration	tests.	By	themselves,	they	might	seem	to	run	fast,	but	what
happens	when	you	run	them	all	together?	When	you	have	a	test	that	exercises	a	class
along	with	several	of	its	collaborators,	it	tends	to	grow.	If	you	haven’t	taken	the	time	to
make	a	class	separately	instantiable	in	a	test	harness,	how	easy	will	it	be	when	you	add
more	code?	It	never	gets	easier.	People	put	it	off.	Over	time,	the	test	might	end	up	taking
as	long	as	1/10th	of	a	second	to	execute.

A	unit	test	that	takes	1/10th	of	a	second	to	run	is	a	slow	unit	test.

Yes,	I’m	serious.	At	the	time	that	I’m	writing	this,	1/10th	of	a	second	is	an	eon	for	a	unit
test.	Let’s	do	the	math.	If	you	have	a	project	with	3,000	classes	and	there	are	about	10	tests
apiece,	that	is	30,000	tests.	How	long	will	it	take	to	run	all	of	the	tests	for	that	project	if
they	take	1/10th	of	a	second	apiece?	Close	to	an	hour.	That	is	a	long	time	to	wait	for
feedback.	You	don’t	have	3,000	classes?	Cut	it	in	half.	That	is	still	a	half	an	hour.	On	the
other	hand,	what	if	the	tests	take	1/100th	of	a	second	apiece?	Now	we	are	talking	about	5
to	10	minutes.	When	they	take	that	long,	I	make	sure	that	I	use	a	subset	to	work	with,	but	I
don’t	mind	running	them	all	every	couple	of	hours.

With	Moore’s	Law’s	help,	I	hope	to	see	nearly	instantaneous	test	feedback	for	even	the
largest	systems	in	my	lifetime.	I	suspect	that	working	in	those	systems	will	be	like
working	in	code	that	can	bite	back.	It	will	be	capable	of	letting	us	know	when	it	is	being
changed	in	a	bad	way.

Unit	tests	run	fast.	If	they	don’t	run	fast,	they	aren’t	unit	tests.

Other	kinds	of	tests	often	masquerade	as	unit	tests.	A	test	is	not	a	unit	test	if:

1.	It	talks	to	a	database.

2.	It	communicates	across	a	network.

3.	It	touches	the	file	system.

4.	You	have	to	do	special	things	to	your	environment	(such	as	editing	configuration	files)	to	run	it.

Tests	that	do	these	things	aren’t	bad.	Often	they	are	worth	writing,	and	you	generally	will	write	them	in	unit	test
harnesses.	However,	it	is	important	to	be	able	to	separate	them	from	true	unit	tests	so	that	you	can	keep	a	set	of	tests
that	you	can	run	fast	whenever	you	make	changes.

Higher-Level	Testing
Unit	tests	are	great,	but	there	is	a	place	for	higher-level	tests,	tests	that	cover	scenarios	and
interactions	in	an	application.	Higher-level	tests	can	be	used	to	pin	down	behavior	for	a	set
of	classes	at	a	time.	When	you	are	able	to	do	that,	often	you	can	write	tests	for	the
individual	classes	more	easily.

Test	Coverings
So	how	do	we	start	making	changes	in	a	legacy	project?	The	first	thing	to	notice	is	that,
given	a	choice,	it	is	always	safer	to	have	tests	around	the	changes	that	we	make.	When	we
change	code,	we	can	introduce	errors;	after	all,	we’re	all	human.	But	when	we	cover	our
code	with	tests	before	we	change	it,	we’re	more	likely	to	catch	any	mistakes	that	we	make.

Figure	2.1	shows	us	a	little	set	of	classes.	We	want	to	make	changes	to	the	getResponseText
method	of	InvoiceUpdateResponder	and	the	getValue	method	of	Invoice.	Those	methods	are	our	change
points.	We	can	cover	them	by	writing	tests	for	the	classes	they	reside	in.

Figure	2.1	Invoice	update	classes.

To	write	and	run	tests	we	have	to	be	able	to	create	instances	of	InvoiceUpdateResponder	and	Invoice	in

a	testing	harness.	Can	we	do	that?	Well,	it	looks	like	it	should	be	easy	enough	to	create	an
Invoice;	it	has	a	constructor	that	doesn’t	accept	any	arguments.	InvoiceUpdateResponder	might	be
tricky,	though.	It	accepts	a	DBConnection,	a	real	connection	to	a	live	database.	How	are	we
going	to	handle	that	in	a	test?	Do	we	have	to	set	up	a	database	with	data	for	our	tests?
That’s	a	lot	of	work.	Won’t	testing	through	the	database	be	slow?	We	don’t	particularly
care	about	the	database	right	now	anyway;	we	just	want	to	cover	our	changes	in
InvoiceUpdateResponder	and	Invoice.	We	also	have	a	bigger	problem.	The	constructor	for
InvoiceUpdateResponder	needs	an	InvoiceUpdateServlet	as	an	argument.	How	easy	will	it	be	to	create	one	of
those?	We	could	change	the	code	so	that	it	doesn’t	take	that	servlet	anymore.	If	the
InvoiceUpdateResponder	just	needs	a	little	bit	of	information	from	InvoiceUpdateServlet,	we	can	pass	it
along	instead	of	passing	the	whole	servlet	in,	but	shouldn’t	we	have	a	test	in	place	to	make
sure	that	we’ve	made	that	change	correctly?

All	of	these	problems	are	dependency	problems.	When	classes	depend	directly	on	things
that	are	hard	to	use	in	a	test,	they	are	hard	to	modify	and	hard	to	work	with.

Dependency	is	one	of	the	most	critical	problems	in	software	development.	Much	legacy	code	work	involves	breaking
dependencies	so	that	change	can	be	easier.

So,	how	do	we	do	it?	How	do	we	get	tests	in	place	without	changing	code?	The	sad	fact	is
that,	in	many	cases,	it	isn’t	very	practical.	In	some	cases,	it	might	even	be	impossible.	In
the	example	we	just	saw,	we	could	attempt	to	get	past	the	DBConnection	issue	by	using	a	real
database,	but	what	about	the	servlet	issue?	Do	we	have	to	create	a	full	servlet	and	pass	it
to	the	constructor	of	InvoiceUpdateResponder?	Can	we	get	it	into	the	right	state?	It	might	be
possible.	What	would	we	do	if	we	were	working	in	a	GUI	desktop	application?	We	might
not	have	any	programmatic	interface.	The	logic	could	be	tied	right	into	the	GUI	classes.
What	do	we	do	then?

The	Legacy	Code	Dilemma
When	we	change	code,	we	should	have	tests	in	place.	To	put	tests	in	place,	we	often	have	to	change	code.

In	the	Invoice	example	we	can	try	to	test	at	a	higher	level.	If	it	is	hard	to	write	tests
without	changing	a	particular	class,	sometimes	testing	a	class	that	uses	it	is	easier;
regardless,	we	usually	have	to	break	dependencies	between	classes	someplace.	In	this
case,	we	can	break	the	dependency	on	InvoiceUpdateServlet	by	passing	the	one	thing	that
InvoiceUpdateResponder	really	needs.	It	needs	the	collection	of	invoice	IDs	that	the	InvoiceUpdateServlet
holds.	We	can	also	break	the	dependency	that	InvoiceUpdateResponder	has	on	DBConnection	by
introducing	an	interface	(IDBConnection)	and	changing	the	InvoiceUpdateResponder	so	that	it	uses	the
interface	instead.	Figure	2.2	shows	the	state	of	these	classes	after	the	changes.

Figure	2.2	Invoice	update	classes	with	dependencies	broken.

Is	this	safe	to	do	these	refactorings	without	tests?	It	can	be.	These	refactorings	are	named
Primitivize	Parameter	(385)	and	Extract	Interface	(362),	respectively.	They	are	described
in	the	dependency	breaking	techniques	catalog	at	the	end	of	the	book.	When	we	break
dependencies,	we	can	often	write	tests	that	make	more	invasive	changes	safer.	The	trick	is
to	do	these	initial	refactorings	very	conservatively.

Being	conservative	is	the	right	thing	to	do	when	we	can	possibly	introduce	errors,	but
sometimes	when	we	break	dependencies	to	cover	code,	it	doesn’t	turn	out	as	nicely	as
what	we	did	in	the	previous	example.	We	might	introduce	parameters	to	methods	that
aren’t	strictly	needed	in	production	code,	or	we	might	break	apart	classes	in	odd	ways	just
to	be	able	to	get	tests	in	place.	When	we	do	that,	we	might	end	up	making	the	code	look	a
little	poorer	in	that	area.	If	we	were	being	less	conservative,	we’d	just	fix	it	immediately.
We	can	do	that,	but	it	depends	upon	how	much	risk	is	involved.	When	errors	are	a	big
deal,	and	they	usually	are,	it	pays	to	be	conservative.

When	you	break	dependencies	in	legacy	code,	you	often	have	to	suspend	your	sense	of	aesthetics	a	bit.	Some
dependencies	break	cleanly;	others	end	up	looking	less	than	ideal	from	a	design	point	of	view.	They	are	like	the
incision	points	in	surgery:	There	might	be	a	scar	left	in	your	code	after	your	work,	but	everything	beneath	it	can	get
better.

If	later	you	can	cover	code	around	the	point	where	you	broke	the	dependencies,	you	can	heal	that	scar,	too.

The	Legacy	Code	Change	Algorithm
When	you	have	to	make	a	change	in	a	legacy	code	base,	here	is	an	algorithm	you	can	use.

1.	Identify	change	points.

2.	Find	test	points.

3.	Break	dependencies.

4.	Write	tests.

5.	Make	changes	and	refactor.

The	day-to-day	goal	in	legacy	code	is	to	make	changes,	but	not	just	any	changes.	We	want
to	make	functional	changes	that	deliver	value	while	bringing	more	of	the	system	under
test.	At	the	end	of	each	programming	episode,	we	should	be	able	to	point	not	only	to	code
that	provides	some	new	feature,	but	also	its	tests.	Over	time,	tested	areas	of	the	code	base
surface	like	islands	rising	out	of	the	ocean.	Work	in	these	islands	becomes	much	easier.
Over	time,	the	islands	become	large	landmasses.	Eventually,	you’ll	be	able	to	work	in
continents	of	test-covered	code.

Let’s	look	at	each	of	these	steps	and	how	his	book	will	help	you	with	them.

Identify	Change	Points

The	places	where	you	need	to	make	your	changes	depend	sensitively	on	your	architecture.
If	you	don’t	know	your	design	well	enough	to	feel	that	you	are	making	changes	in	the
right	place,	take	a	look	at	Chapter	16,	I	Don’t	Understand	the	Code	Well	Enough	to
Change	It,	and	Chapter	17,	My	Application	Has	No	Structure.

Find	Test	Points

In	some	cases,	finding	places	to	write	tests	is	easy,	but	in	legacy	code	it	can	often	be	hard.
Take	a	look	at	Chapter	11,	I	Need	to	Make	a	Change.	What	Methods	Should	I	Test?,	and
Chapter	12,	I	Need	to	Make	Many	Changes	in	One	Area.	Do	I	Have	to	Break
Dependencies	for	All	the	Classes	Involved?	These	chapters	offer	techniques	that	you	can
use	to	determine	where	you	need	to	write	your	tests	for	particular	changes.

Break	Dependencies

Dependencies	are	often	the	most	obvious	impediment	to	testing.	The	two	ways	this
problem	manifests	itself	are	difficulty	instantiating	objects	in	test	harnesses	and	difficulty
running	methods	in	test	harnesses.	Often	in	legacy	code,	you	have	to	break	dependencies
to	get	tests	in	place.	Ideally,	we	would	have	tests	that	tell	us	whether	the	things	we	do	to
break	dependencies	themselves	caused	problems,	but	often	we	don’t.	Take	a	look	at
Chapter	23,	How	Do	I	Know	That	I’m	Not	Breaking	Anything?,	to	see	some	practices	that
can	be	used	to	make	the	first	incisions	in	a	system	safer	as	you	start	to	bring	it	under	test.
When	you	have	done	this,	take	a	look	at	Chapter	9,	I	Can’t	Get	This	Class	into	a	Test
Harness,	and	Chapter	10,	I	Can’t	Run	This	Method	in	a	Test	Harness,	for	scenarios	that
show	how	to	get	past	common	dependency	problems.	These	sections	heavily	reference	the
dependency	breaking	techniques	catalog	at	the	back	of	the	book,	but	they	don’t	cover	all
of	the	techniques.	Take	some	time	to	look	through	the	catalog	for	more	ideas	on	how	to
break	dependencies.

Dependencies	also	show	up	when	we	have	an	idea	for	a	test	but	we	can’t	write	it	easily.	If
you	find	that	you	can’t	write	tests	because	of	dependencies	in	large	methods,	see	Chapter
22,	I	Need	to	Change	a	Monster	Method	and	I	Can’t	Write	Tests	for	It.	If	you	find	that	you
can	break	dependencies,	but	it	takes	too	long	to	build	your	tests,	take	a	look	at	Chapter	7,
It	Takes	Forever	to	Make	a	Change.	That	chapter	describes	additional	dependency-
breaking	work	that	you	can	do	to	make	your	average	build	time	faster.

Write	Tests

I	find	that	the	tests	I	write	in	legacy	code	are	somewhat	different	from	the	tests	I	write	for

new	code.	Take	a	look	at	Chapter	13,	I	Need	to	Make	a	Change	but	I	Don’t	Know	What
Tests	to	Write,	to	learn	more	about	the	role	of	tests	in	legacy	code	work.

Make	Changes	and	Refactor

I	advocate	using	test-driven	development	(TDD)	to	add	features	in	legacy	code.	There	is	a
description	of	TDD	and	some	other	feature	addition	techniques	in	Chapter	8,	How	Do	I
Add	a	Feature?	After	making	changes	in	legacy	code,	we	often	are	better	versed	with	its
problems,	and	the	tests	we’ve	written	to	add	features	often	give	us	some	cover	to	do	some
refactoring.	Chapter	20,	This	Class	Is	Too	Big	and	I	Don’t	Want	It	to	Get	Any	Bigger;
Chapter	22,	I	Need	to	Change	a	Monster	Method	and	I	Can’t	Write	Tests	for	It;	and
Chapter	21,	I’m	Changing	the	Same	Code	All	Over	the	Place	cover	many	of	the
techniques	you	can	use	to	start	to	move	your	legacy	code	toward	better	structure.
Remember	that	the	things	I	describe	in	these	chapters	are	“baby	steps.”	They	don’t	show
you	how	to	make	your	design	ideal,	clean,	or	pattern-enriched.	Plenty	of	books	show	how
to	do	those	things,	and	when	you	have	the	opportunity	to	use	those	techniques,	I
encourage	you	to	do	so.	These	chapters	show	you	how	to	make	design	better,	where
“better”	is	context	dependent	and	often	simply	a	few	steps	more	maintainable	than	the
design	was	before.	But	don’t	discount	this	work.	Often	the	simplest	things,	such	as
breaking	down	a	large	class	just	to	make	it	easier	to	work	with,	can	make	a	significant
difference	in	applications,	despite	being	somewhat	mechanical.

The	Rest	of	This	Book

The	rest	of	this	book	shows	you	how	to	make	changes	in	legacy	code.	The	next	two
chapters	contain	some	background	material	about	three	critical	concepts	in	legacy	work:
sensing,	separation,	and	seams.

Chapter	3:	Sensing	and	Separation

Ideally,	we	wouldn’t	have	to	do	anything	special	to	a	class	to	start	working	with	it.	In	an
ideal	system,	we’d	be	able	to	create	objects	of	any	class	in	a	test	harness	and	start
working.	We’d	be	able	to	create	objects,	write	tests	for	them,	and	then	move	on	to	other
things.	If	it	were	that	easy,	there	wouldn’t	be	a	need	to	write	about	any	of	this,	but
unfortunately,	it	is	often	hard.	Dependencies	among	classes	can	make	it	very	difficult	to
get	particular	clusters	of	objects	under	test.	We	might	want	to	create	an	object	of	one	class
and	ask	it	questions,	but	to	create	it,	we	need	objects	of	another	class,	and	those	objects
need	objects	of	another	class,	and	so	on.	Eventually,	you	end	up	with	nearly	the	whole
system	in	a	harness.	In	some	languages,	this	isn’t	a	very	big	deal.	In	others,	most	notably
C++,	link	time	alone	can	make	rapid	turnaround	nearly	impossible	if	you	don’t	break
dependencies.

In	systems	that	weren’t	developed	concurrently	with	unit	tests,	we	often	have	to	break
dependencies	to	get	classes	into	a	test	harness,	but	that	isn’t	the	only	reason	to	break
dependencies.	Sometimes	the	class	we	want	to	test	has	effects	on	other	classes,	and	our
tests	need	to	know	about	them.	Sometimes	we	can	sense	those	effects	through	the
interface	of	the	other	class.	At	other	times,	we	can’t.	The	only	choice	we	have	is	to
impersonate	the	other	class	so	that	we	can	sense	the	effects	directly.

Generally,	when	we	want	to	get	tests	in	place,	there	are	two	reasons	to	break
dependencies:	sensing	and	separation.

1.	Sensing—We	break	dependencies	to	sense	when	we	can’t	access	values	our	code
computes.

2.	Separation—We	break	dependencies	to	separate	when	we	can’t	even	get	a	piece	of
code	into	a	test	harness	to	run.

Here	is	an	example.	We	have	a	class	named	NetworkBridge	in	a	network-management
application:
public	class	NetworkBridge
{
				public	NetworkBridge(EndPoint	[]	endpoints)	{
								…
				}

				public	void	formRouting(String	sourceID,	String	destID)	{
								…
				}
				…
}

NetworkBridge	accepts	an	array	of	EndPoints	and	manages	their	configuration	using	some	local
hardware.	Users	of	NetworkBridge	can	use	its	methods	to	route	traffic	from	one	endpoint	to
another.	NetworkBridge	does	this	work	by	changing	settings	on	the	EndPoint	class.	Each	instance	of
the	EndPoint	class	opens	a	socket	and	communicates	across	the	network	to	a	particular	device.

That	was	just	a	short	description	of	what	NetworkBridge	does.	We	could	go	into	more	detail,	but
from	a	testing	perspective,	there	are	already	some	evident	problems.	If	we	want	to	write
tests	for	NetworkBridge,	how	do	we	do	it?	The	class	could	very	well	make	some	calls	to	real

hardware	when	it	is	constructed.	Do	we	need	to	have	the	hardware	available	to	create	an
instance	of	the	class?	Worse	than	that,	how	in	the	world	do	we	know	what	the	bridge	is
doing	to	that	hardware	or	the	endpoints?	From	our	point	of	view,	the	class	is	a	closed	box.

It	might	not	be	too	bad.	Maybe	we	can	write	some	code	to	sniff	packets	across	the
network.	Maybe	we	can	get	some	hardware	for	NetworkBridge	to	talk	to	so	that	at	the	very	least
it	doesn’t	freeze	when	we	try	to	make	an	instance	of	it.	Maybe	we	can	set	up	the	wiring	so
that	we	can	have	a	local	cluster	of	endpoints	and	use	them	under	test.	Those	solutions
could	work,	but	they	are	an	awful	lot	of	work.	The	logic	that	we	want	to	change	in
NetworkBridge	might	not	need	any	of	those	things;	it’s	just	that	we	can’t	get	a	hold	of	it.	We
can’t	run	an	object	of	that	class	and	try	it	directly	to	see	how	it	works.

This	example	illustrates	both	the	sensing	and	separation	problems.	We	can’t	sense	the
effect	of	our	calls	to	methods	on	this	class,	and	we	can’t	run	it	separately	from	the	rest	of
the	application.

Which	problem	is	tougher?	Sensing	or	separation?	There	is	no	clear	answer.	Typically,	we
need	them	both,	and	they	are	both	reasons	why	we	break	dependencies.	One	thing	is	clear,
though:	There	are	many	ways	to	separate	software.	In	fact,	there	is	an	entire	catalog	of
those	techniques	in	the	back	of	this	book	on	that	topic,	but	there	is	one	dominant	technique
for	sensing.

Faking	Collaborators
One	of	the	big	problems	that	we	confront	in	legacy	code	work	is	dependency.	If	we	want
to	execute	a	piece	of	code	by	itself	and	see	what	it	does,	often	we	have	to	break
dependencies	on	other	code.	But	it’s	hardly	ever	that	simple.	Often	that	other	code	is	the
only	place	we	can	easily	sense	the	effects	of	our	actions.	If	we	can	put	some	other	code	in
its	place	and	test	through	it,	we	can	write	our	tests.	In	object	orientation,	these	other	pieces
of	code	are	often	called	fake	objects.

Fake	Objects

A	fake	object	is	an	object	that	impersonates	some	collaborator	of	your	class	when	it	is
being	tested.	Here	is	an	example.	In	a	point-of-sale	system,	we	have	a	class	called	Sale	(see
Figure	3.1).	It	has	a	method	called	scan()	that	accepts	a	bar	code	for	some	item	that	a
customer	wants	to	buy.	Whenever	scan()	is	called,	the	Sale	object	needs	to	display	the	name
of	the	item	that	was	scanned,	along	with	its	price	on	a	cash	register	display.

Figure	3.1	Sale.

How	can	we	test	this	to	see	if	the	right	text	shows	up	on	the	display?	Well,	if	the	calls	to
the	cash	register’s	display	API	are	buried	deep	in	the	Sale	class,	it’s	going	to	be	hard.	It
might	not	be	easy	to	sense	the	effect	on	the	display.	But	if	we	can	find	the	place	in	the
code	where	the	display	is	updated,	we	can	move	to	the	design	shown	in	Figure	3.2.

Figure	3.2	Sale	communicating	with	a	display	class.

Here	we’ve	introduced	a	new	class,	ArtR56Display.	That	class	contains	all	of	the	code	needed	to
talk	to	the	particular	display	device	we’re	using.	All	we	have	to	do	is	supply	it	with	a	line
of	text	that	contains	what	we	want	to	display.	We	can	move	all	of	the	display	code	in	Sale
over	to	ArtR56Display	and	have	a	system	that	does	exactly	the	same	thing	that	it	did	before.
Does	that	get	us	anything?	Well,	once	we’ve	done	that,	we	can	move	the	a	design	shown
in	Figure	3.3.

Figure	3.3	Sale	with	the	display	hierarchy.

The	Sale	class	can	now	hold	on	to	either	an	ArtR56Display	or	something	else,	a	FakeDisplay.	The	nice
thing	about	having	a	fake	display	is	that	we	can	write	tests	against	it	to	find	out	what	the
Sale	does.

How	does	this	work?	Well,	Sale	accepts	a	display,	and	a	display	is	an	object	of	any	class
that	implements	the	Display	interface.
public	interface	Display
{
				void	showLine(String	line);
}

Both	ArtR56Display	and	FakeDisplay	implement	Display.

A	Sale	object	can	accept	a	display	through	the	constructor	and	hold	on	to	it	internally:
public	class	Sale
{
				private	Display	display;

				public	Sale(Display	display)	{
								this.display	=	display;
				}

				public	void	scan(String	barcode)	{
								…
								String	itemLine	=	item.name()
																+	”	”	+	item.price().asDisplayText();
								display.showLine(itemLine);
								…
				}
}

In	the	scan	method,	the	code	calls	the	showLine	method	on	the	display	variable.	But	what	happens
depends	upon	what	kind	of	a	display	we	gave	the	Sale	object	when	we	created	it.	If	we	gave
it	an	ArtR56Display,	it	attempts	to	display	on	the	real	cash	register	hardware.	If	we	gave	it	a
FakeDisplay,	it	won’t,	but	we	will	be	able	to	see	what	would’ve	been	displayed.	Here	is	a	test
we	can	use	to	see	that:
import	junit.framework.*;

public	class	SaleTest	extends	TestCase
{
				public	void	testDisplayAnItem()	{
								FakeDisplay	display	=	new	FakeDisplay();
								Sale	sale	=	new	Sale(display);

								sale.scan(“1”);
								assertEquals(“Milk	$3.99”,	display.getLastLine());
				}
}

The	FakeDisplay	class	is	a	little	peculiar.	Let’s	look	at	it:
public	class	FakeDisplay	implements	Display
{
				private	String	lastLine	=	””;

				public	void	showLine(String	line)	{
								lastLine	=	line;
				}

				public	String	getLastLine()	{
								return	lastLine;
				}
}

The	showLine	method	accepts	a	line	of	text	and	assigns	it	to	the	lastLine	variable.	The	getLastLine
method	returns	that	line	of	text	whenever	it	is	called.	This	is	pretty	slim	behavior,	but	it
helps	us	a	lot.	With	the	test	we’ve	written,	we	can	find	out	whether	the	right	text	will	be
sent	to	the	display	when	the	Sale	class	is	used.

Fake	Objects	Support	Real	Tests
Sometimes	when	people	see	the	use	of	fake	objects,	they	say,	“That’s	not	really	testing.”	After	all,	this	test	doesn’t
show	us	what	really	gets	displayed	on	the	real	screen.	Suppose	that	some	part	of	the	cash	register	display	software
isn’t	working	properly;	this	test	would	never	show	it.	Well,	that’s	true,	but	that	doesn’t	mean	that	this	isn’t	a	real	test.
Even	if	we	could	devise	a	test	that	really	showed	us	exactly	which	pixels	were	set	on	a	real	cash	register	display,	does
that	mean	that	the	software	would	work	with	all	hardware?	No,	it	doesn’t—but	that	doesn’t	mean	that	that	isn’t	a	test,
either.	When	we	write	tests,	we	have	to	divide	and	conquer.	This	test	tells	us	how	Sale	objects	affect	displays,	that’s
all.	But	that	isn’t	trivial.	If	we	discover	a	bug,	running	this	test	might	help	us	see	that	the	problem	isn’t	in	Sale.	If	we
can	use	information	like	that	to	help	us	localize	errors,	we	can	save	an	incredible	amount	of	time.

When	we	write	tests	for	individual	units,	we	end	up	with	small,	well-understood	pieces.	This	can	make	it	easier	to
reason	about	our	code.

The	Two	Sides	of	a	Fake	Object

Fake	objects	can	be	confusing	when	you	first	see	them.	One	of	the	oddest	things	about
them	is	that	they	have	two	“sides,”	in	a	way.	Let’s	take	a	look	at	the	FakeDisplay	class	again,	in
Figure	3.4.

Figure	3.4	Two	sides	to	a	fake	object.

The	showLine	method	is	needed	on	FakeDisplay	because	FakeDisplay	implements	Display.	It	is	the	only
method	on	Display	and	the	only	one	that	Sale	will	see.	The	other	method,	getLastLine,	is	for	the
use	of	the	test.	That	is	why	we	declare	display	as	a	FakeDisplay,	not	a	Display:
import	junit.framework.*;

public	class	SaleTest	extends	TestCase
{
				public	void	testDisplayAnItem()	{
								FakeDisplay	display	=	new	FakeDisplay();
								Sale	sale	=	new	Sale(display);

								sale.scan(“1”);
								assertEquals(“Milk	$3.99”,	display.getLastLine());
				}
}

The	Sale	class	will	see	the	fake	display	as	Display,	but	in	the	test,	we	need	to	hold	on	to	the
object	as	FakeDisplay.	If	we	don’t,	we	won’t	be	able	to	call	getLastLine()	to	find	out	what	the	sale
displays.

Fakes	Distilled

The	example	I’ve	shown	in	this	section	is	very	simple,	but	it	shows	the	central	idea	behind
fakes.	They	can	be	implemented	in	a	wide	variety	of	ways.	In	OO	languages,	they	are
often	implemented	as	simple	classes	like	the	FakeDisplay	class	in	the	previous	example.	In
non-OO	languages,	we	can	implement	a	fake	by	defining	an	alternative	function,	one
which	records	values	in	some	global	data	structure	that	we	can	access	in	tests.	See	Chapter
19,	My	Project	is	Not	Object-Oriented.	How	Do	I	Make	Safe	Changes?,	for	details.

Mock	Objects

Fakes	are	easy	to	write	and	are	a	very	valuable	tool	for	sensing.	If	you	have	to	write	a	lot
of	them,	you	might	want	to	consider	a	more	advanced	type	of	fake	called	a	mock	object.
Mock	objects	are	fakes	that	perform	assertions	internally.	Here	is	an	example	of	a	test
using	a	mock	object:
import	junit.framework.*;

public	class	SaleTest	extends	TestCase
{
				public	void	testDisplayAnItem()	{
								MockDisplay	display	=	new	MockDisplay();
								display.setExpectation(“showLine”,	“Milk	$3.99”);

								Sale	sale	=	new	Sale(display);
								sale.scan(“1”);
								display.verify();
				}
}

In	this	test,	we	create	a	mock	display	object.	The	nice	thing	about	mocks	is	that	we	can	tell
them	what	calls	to	expect,	and	then	we	tell	them	to	check	and	see	if	they	received	those
calls.	That	is	precisely	what	happens	in	this	test	case.	We	tell	the	display	to	expect	its
showLine	method	to	be	called	with	an	argument	of	“Milk	$3.99”.	After	the	expectation	has	been
set,	we	just	go	ahead	and	use	the	object	inside	the	test.	In	this	case,	we	call	the	method
scan().	Afterward,	we	call	the	verify()	method,	which	checks	to	see	if	all	of	the	expectations
have	been	met.	If	they	haven’t,	it	makes	the	test	fail.

Mocks	are	a	powerful	tool,	and	a	wide	variety	of	mock	object	frameworks	are	available.
However,	mock	object	frameworks	are	not	available	in	all	languages,	and	simple	fake
objects	suffice	in	most	situations.

Chapter	4:	The	Seam	Model

One	of	the	things	that	nearly	everyone	notices	when	they	try	to	write	tests	for	existing
code	is	just	how	poorly	suited	code	is	to	testing.	It	isn’t	just	particular	programs	or
languages.	In	general,	programming	languages	just	don’t	seem	to	support	testing	very
well.	It	seems	that	the	only	ways	to	end	up	with	an	easily	testable	program	are	to	write
tests	as	you	develop	it	or	spend	a	bit	of	time	trying	to	“design	for	testability.”	There	is	a	lot
of	hope	for	the	former	approach,	but	if	much	of	the	code	in	the	field	is	evidence,	the	latter
hasn’t	been	very	successful.

One	thing	that	I’ve	noticed	is	that,	in	trying	to	get	code	under	test,	I’ve	started	to	think
about	code	in	a	rather	different	way.	I	could	just	consider	this	some	private	quirk,	but	I’ve
found	that	this	different	way	of	looking	at	code	helps	me	when	I	work	in	new	and
unfamiliar	programming	languages.	Because	I	won’t	be	able	to	cover	every	programming
language	in	this	book,	I’ve	decided	to	outline	this	view	here	in	the	hope	that	it	helps	you
as	well	as	it	helps	me.

A	Huge	Sheet	of	Text
When	I	first	started	programming,	I	was	lucky	that	I	started	late	enough	to	have	a	machine
of	my	own	and	a	compiler	to	run	on	that	machine;	many	of	my	friends	starting
programming	in	the	punch-card	days.	When	I	decided	to	study	programming	in	school,	I
started	working	on	a	terminal	in	a	lab.	We	could	compile	our	code	remotely	on	a	DEC
VAX	machine.	There	was	a	little	accounting	system	in	place.	Each	compile	cost	us	money
out	of	our	account,	and	we	had	a	fixed	amount	of	machine	time	each	term.

At	that	point	in	my	life,	a	program	was	just	a	listing.	Every	couple	of	hours,	I’d	walk	from
the	lab	to	the	printer	room,	get	a	printout	of	my	program	and	scrutinize	it,	trying	to	figure
out	what	was	right	or	wrong.	I	didn’t	know	enough	to	care	much	about	modularity.	We
had	to	write	modular	code	to	show	that	we	could	do	it,	but	at	that	point	I	really	cared	more
about	whether	the	code	was	going	to	produce	the	right	answers.	When	I	got	around	to
writing	object-oriented	code,	the	modularity	was	rather	academic.	I	wasn’t	going	to	be
swapping	in	one	class	for	another	in	the	course	of	a	school	assignment.	When	I	got	out	in
the	industry,	I	started	to	care	a	lot	about	those	things,	but	in	school,	a	program	was	just	a
listing	to	me,	a	long	set	of	functions	that	I	had	to	write	and	understand	one	by	one.

This	view	of	a	program	as	a	listing	seems	accurate,	at	least	if	we	look	at	how	people
behave	in	relation	to	programs	that	they	write.	If	we	knew	nothing	about	what
programming	was	and	we	saw	a	room	full	of	programmers	working,	we	might	think	that
they	were	scholars	inspecting	and	editing	large	important	documents.	A	program	can	seem
like	a	large	sheet	of	text.	Changing	a	little	text	can	cause	the	meaning	of	the	whole
document	to	change,	so	people	make	those	changes	carefully	to	avoid	mistakes.

Superficially,	that	is	all	true,	but	what	about	modularity?	We	are	often	told	it	is	better	to
write	programs	that	are	made	of	small	reusable	pieces,	but	how	often	are	small	pieces
reused	independently?	Not	very	often.	Reuse	is	tough.	Even	when	pieces	of	software	look
independent,	they	often	depend	upon	each	other	in	subtle	ways.

Seams

When	you	start	to	try	to	pull	out	individual	classes	for	unit	testing,	often	you	have	to	break
a	lot	of	dependencies.	Interestingly	enough,	you	often	have	a	lot	of	work	to	do,	regardless
of	how	“good”	the	design	is.	Pulling	classes	out	of	existing	projects	for	testing	really
changes	your	idea	of	what	“good”	is	with	regard	to	design.	It	also	leads	you	to	think	of
software	in	a	completely	different	way.	The	idea	of	a	program	as	a	sheet	of	text	just
doesn’t	cut	it	anymore.	How	should	we	look	at	it?	Let’s	take	a	look	at	an	example,	a
function	in	C++.
bool	CAsyncSslRec::Init()
{
				if	(m_bSslInitialized)	{
								return	true;
				}
				m_smutex.Unlock();
				m_nSslRefCount++;

				m_bSslInitialized	=	true;

				FreeLibrary(m_hSslDll1);
				m_hSslDll1=0;
				FreeLibrary(m_hSslDll2);
				m_hSslDll2=0;

				if	(!m_bFailureSent)	{
								m_bFailureSent=TRUE;
								PostReceiveError(SOCKETCALLBACK,	SSL_FAILURE);
				}

				CreateLibrary(m_hSslDll1,“syncesel1.dll”);
				CreateLibrary(m_hSslDll2,“syncesel2.dll”);

				m_hSslDll1->Init();
				m_hSslDll2->Init();

				return	true;
}

It	sure	looks	like	just	a	sheet	of	text,	doesn’t	it?	Suppose	that	we	want	to	run	all	of	that
method	except	for	this	line:

PostReceiveError(SOCKETCALLBACK,	SSL_FAILURE);

How	would	we	do	that?

It’s	easy,	right?	All	we	have	to	do	is	go	into	the	code	and	delete	that	line.

Okay,	let’s	constrain	the	problem	a	little	more.	We	want	to	avoid	executing	that	line	of
code	because	PostReceiveError	is	a	global	function	that	communicates	with	another	subsystem,
and	that	subsystem	is	a	pain	to	work	with	under	test.	So	the	problem	becomes,	how	do	we
execute	the	method	without	calling	PostReceiveError	under	test?	How	do	we	do	that	and	still
allow	the	call	to	PostReceiveError	in	production?

To	me,	that	is	a	question	with	many	possible	answers,	and	it	leads	to	the	idea	of	a	seam.

Here’s	the	definition	of	a	seam.	Let’s	take	a	look	at	it	and	then	some	examples.

Seam
A	seam	is	a	place	where	you	can	alter	behavior	in	your	program	without	editing	in	that	place.

Is	there	a	seam	at	the	call	to	PostReceiveError?	Yes.	We	can	get	rid	of	the	behavior	there	in	a
couple	of	ways.	Here	is	one	of	the	most	straightforward	ones.	PostReceiveError	is	a	global
function,	it	isn’t	part	of	the	CAsynchSslRec	class.	What	happens	if	we	add	a	method	with	the
exact	same	signature	to	the	CAsynchSslRec	class?
class	CAsyncSslRec
{
				…
				virtual	void	PostReceiveError(UINT	type,	UINT	errorcode);
				…
};

In	the	implementation	file,	we	can	add	a	body	for	it	like	this:
void	CAsyncSslRec::PostReceiveError(UINT	type,	UINT	errorcode)
{
				::PostReceiveError(type,	errorcode);
}

That	change	should	preserve	behavior.	We	are	using	this	new	method	to	delegate	to	the
global	PostReceiveError	function	using	C++’s	scoping	operator	(::).	We	have	a	little	indirection
there,	but	we	end	up	calling	the	same	global	function.

Okay,	now	what	if	we	subclass	the	CAsyncSslRec	class	and	override	the	PostReceiveError	method?
class	TestingAsyncSslRec	:	public	CAsyncSslRec
{
				virtual	void	PostReceiveError(UINT	type,	UINT	errorcode)
				{
				}
};

If	we	do	that	and	go	back	to	where	we	are	creating	our	CAsyncSslRec	and	create	a	TestingAsyncSslRec
instead,	we’ve	effectively	nulled	out	the	behavior	of	the	call	to	PostReceiveError	in	this	code:
bool	CAsyncSslRec::Init()
{
				if	(m_bSslInitialized)	{
								return	true;
				}
				m_smutex.Unlock();
				m_nSslRefCount++;

				m_bSslInitialized	=	true;

				FreeLibrary(m_hSslDll1);
				m_hSslDll1=0;
				FreeLibrary(m_hSslDll2);
				m_hSslDll2=0;

				if	(!m_bFailureSent)	{
								m_bFailureSent=TRUE;
								PostReceiveError(SOCKETCALLBACK,	SSL_FAILURE);
				}

				CreateLibrary(m_hSslDll1,“syncesel1.dll”);
				CreateLibrary(m_hSslDll2,“syncesel2.dll”);

				m_hSslDll1->Init();
				m_hSslDll2->Init();

				return	true;
}

Now	we	can	write	tests	for	that	code	without	the	nasty	side	effect.

This	seam	is	what	I	call	an	object	seam.	We	were	able	to	change	the	method	that	is	called
without	changing	the	method	that	calls	it.	Object	seams	are	available	in	object-oriented
languages,	and	they	are	only	one	of	many	different	kinds	of	seams.

Why	seams?	What	is	this	concept	good	for?

One	of	the	biggest	challenges	in	getting	legacy	code	under	test	is	breaking	dependencies.
When	we	are	lucky,	the	dependencies	that	we	have	are	small	and	localized;	but	in
pathological	cases,	they	are	numerous	and	spread	out	throughout	a	code	base.	The	seam
view	of	software	helps	us	see	the	opportunities	that	are	already	in	the	code	base.	If	we	can
replace	behavior	at	seams,	we	can	selectively	exclude	dependencies	in	our	tests.	We	can
also	run	other	code	where	those	dependencies	were	if	we	want	to	sense	conditions	in	the
code	and	write	tests	against	those	conditions.	Often	this	work	can	help	us	get	just	enough
tests	in	place	to	support	more	aggressive	work.

Seam	Types
The	types	of	seams	available	to	us	vary	among	programming	languages.	The	best	way	to
explore	them	is	to	look	at	all	of	the	steps	involved	in	turning	the	text	of	a	program	into
running	code	on	a	machine.	Each	identifiable	step	exposes	different	kinds	of	seams.

Preprocessing	Seams

In	most	programming	environments,	program	text	is	read	by	a	compiler.	The	compiler
then	emits	object	code	or	bytecode	instructions.	Depending	on	the	language,	there	can	be
later	processing	steps,	but	what	about	earlier	steps?

Only	a	couple	of	languages	have	a	build	stage	before	compilation.	C	and	C++	are	the	most
common	of	them.

In	C	and	C++,	a	macro	preprocessor	runs	before	the	compiler.	Over	the	years,	the	macro
preprocessor	has	been	cursed	and	derided	incessantly.	With	it,	we	can	take	lines	of	text	as
innocuous	looking	as	this:
TEST(getBalance,Account)
{
				Account	account;
				LONGS_EQUAL(0,	account.getBalance());
}

and	have	them	appear	like	this	to	the	compiler.
	class	AccountgetBalanceTest	:	public	Test
					{	public:	AccountgetBalanceTest	()	:	Test	(“getBalance”	“Test”)	{}
											void	run	(TestResult&	result_);	}
			AccountgetBalanceInstance;
					void	AccountgetBalanceTest::run	(TestResult&	result_)
{
					Account	account;
{	result_.countCheck();
		long	actualTemp	=	(account.getBalance());
		long	expectedTemp	=	(0);
		if	((expectedTemp)	!=	(actualTemp))

{	result_.addFailure	(Failure	(name_,	“c:\seamexample.cpp”,	24,
StringFrom(expectedTemp),
StringFrom(actualTemp)));	return;	}	}

}

We	can	also	nest	code	in	conditional	compilation	statements	like	this	to	support	debugging
and	different	platforms	(aarrrgh!):
…
m_pRtg->Adj(2.0);

#ifdef	DEBUG
#ifndef	WINDOWS
				{	FILE	*fp	=	fopen(TGLOGNAME,“w”);
				if	(fp)	{	fprintf(fp,”%s”,	m_pRtg->pszState);	fclose(fp);	}}
#endif

m_pTSRTable->p_nFlush	|=	GF_FLOT;
#endif

…

It’s	not	a	good	idea	to	use	excessive	preprocessing	in	production	code	because	it	tends	to
decrease	code	clarity.	The	conditional	compilation	directives	(#ifdef,	#ifndef,	#if,	and	so	on)
pretty	much	force	you	to	maintain	several	different	programs	in	the	same	source	code.
Macros	(defined	with	#define)	can	be	used	to	do	some	very	good	things,	but	they	just	do
simple	text	replacement.	It	is	easy	to	create	macros	that	hide	terribly	obscure	bugs.

These	considerations	aside,	I’m	actually	glad	that	C	and	C++	have	a	preprocessor	because
the	preprocessor	gives	us	more	seams.	Here	is	an	example.	In	a	C	program,	we	have
dependencies	on	a	library	routine	named	db_update.	The	db_update	function	talks	directly	to	a
database.	Unless	we	can	substitute	in	another	implementation	of	the	routine,	we	can’t
sense	the	behavior	of	the	function.
#include	<DFHLItem.h>
#include	<DHLSRecord.h>
extern	int	db_update(int,	struct	DFHLItem	*);

void	account_update(
				int	account_no,	struct	DHLSRecord	*record,	int	activated)
{
				if	(activated)	{
								if	(record->dateStamped	&&	record->quantity	>	MAX_ITEMS)	{
												db_update(account_no,	record->item);
								}	else	{
												db_update(account_no,	record->backup_item);
								}
				}
				db_update(MASTER_ACCOUNT,	record->item);
}

We	can	use	preprocessing	seams	to	replace	the	calls	to	db_update.	To	do	this,	we	can	introduce
a	header	file	called	localdefs.h.
#include	<DFHLItem.h>
#include	<DHLSRecord.h>

extern	int	db_update(int,	struct	DFHLItem	*);

#include	“localdefs.h”

void	account_update(
				int	account_no,	struct	DHLSRecord	*record,	int	activated)
{
				if	(activated)	{
								if	(record->dateStamped	&&	record->quantity	>	MAX_ITEMS)	{
												db_update(account_no,	record->item);
								}	else	{
												db_update(account_no,	record->backup_item);
								}
				}
				db_update(MASTER_ACCOUNT,	record->item);
}

Within	it,	we	can	provide	a	definition	for	db_update	and	some	variables	that	will	be	helpful	for
us:
#ifdef	TESTING
…
struct	DFHLItem	*last_item	=	NULL;
int	last_account_no	=	-1;

#define	db_update(account_no,item)\
				{last_item	=	(item);	last_account_no	=	(account_no);}
…
#endif

With	this	replacement	of	db_update	in	place,	we	can	write	tests	to	verify	that	db_update	was	called
with	the	right	parameters.	We	can	do	it	because	the	#include	directive	of	the	C	preprocessor
gives	us	a	seam	that	we	can	use	to	replace	text	before	it	is	compiled.

Preprocessing	seams	are	pretty	powerful.	I	don’t	think	I’d	really	want	a	preprocessor	for
Java	and	other	more	modern	languages,	but	it	is	nice	to	have	this	tool	in	C	and	C++	as
compensation	for	some	of	the	other	testing	obstacles	they	present.

I	didn’t	mention	it	earlier,	but	there	is	something	else	that	is	important	to	understand	about
seams:	Every	seam	has	an	enabling	point.	Let’s	look	at	the	definition	of	a	seam	again:

Seam
A	seam	is	a	place	where	you	can	alter	behavior	in	your	program	without	editing	in	that	place.

When	you	have	a	seam,	you	have	a	place	where	behavior	can	change.	We	can’t	really	go
to	that	place	and	change	the	code	just	to	test	it.	The	source	code	should	be	the	same	in
both	production	and	test.	In	the	previous	example,	we	wanted	to	change	the	behavior	at
the	text	of	the	db_update	call.	To	exploit	that	seam,	you	have	to	make	a	change	someplace
else.	In	this	case,	the	enabling	point	is	a	preprocessor	define	named	TESTING.	When	TESTING	is
defined,	the	localdefs.h	file	defines	macros	that	replace	calls	to	db_update	in	the	source	file.

Enabling	Point
Every	seam	has	an	enabling	point,	a	place	where	you	can	make	the	decision	to	use	one	behavior	or	another.

Link	Seams

In	many	language	systems,	compilation	isn’t	the	last	step	of	the	build	process.	The

compiler	produces	an	intermediate	representation	of	the	code,	and	that	representation
contains	calls	to	code	in	other	files.	Linkers	combine	these	representations.	They	resolve
each	of	the	calls	so	that	you	can	have	a	complete	program	at	runtime.

In	languages	such	as	C	and	C++,	there	really	is	a	separate	linker	that	does	the	operation	I
just	described.	In	Java	and	similar	languages,	the	compiler	does	the	linking	process	behind
the	scenes.	When	a	source	file	contains	an	import	statement,	the	compiler	checks	to	see	if	the
imported	class	really	has	been	compiled.	If	the	class	hasn’t	been	compiled,	it	compiles	it,
if	necessary,	and	then	checks	to	see	if	all	of	its	calls	will	really	resolve	correctly	at
runtime.

Regardless	of	which	scheme	your	language	uses	to	resolve	references,	you	can	usually
exploit	it	to	substitute	pieces	of	a	program.	Let’s	look	at	the	Java	case.	Here	is	a	little	class
called	FitFilter:
package	fitnesse;

import	fit.Parse;
import	fit.Fixture;

import	java.io.*;
import	java.util.Date;

import	java.io.*;
import	java.util.*;

public	class	FitFilter	{

				public	String	input;
				public	Parse	tables;
				public	Fixture	fixture	=	new	Fixture();
				public	PrintWriter	output;

				public	static	void	main	(String	argv[])	{
								new	FitFilter().run(argv);
				}

				public	void	run	(String	argv[])	{
								args(argv);
								process();
								exit();
				}

				public	void	process()	{
								try	{
												tables	=	new	Parse(input);
												fixture.doTables(tables);
								}	catch	(Exception	e)	{
												exception(e);
								}
								tables.print(output);
				}
				…
}

In	this	file,	we	import	fit.Parse	and	fit.Fixture.	How	do	the	compiler	and	the	JVM	find	those
classes?	In	Java,	you	can	use	a	classpath	environment	variable	to	determine	where	the
Java	system	looks	to	find	those	classes.	You	can	actually	create	classes	with	the	same

names,	put	them	into	a	different	directory,	and	alter	the	classpath	to	link	to	a	different
fit.Parse	and	fit.Fixture.	Although	it	would	be	confusing	to	use	this	trick	in	production	code,
when	you	are	testing,	it	can	be	a	pretty	handy	way	of	breaking	dependencies.

Suppose	we	wanted	to	supply	a	different	version	of	the	Parse	class	for	testing.	Where	would	the	seam	be?

The	seam	is	the	new	Parse	call	in	the	process	method.

Where	is	the	enabling	point?

The	enabling	point	is	the	classpath.

This	sort	of	dynamic	linking	can	be	done	in	many	languages.	In	most,	there	is	some	way
to	exploit	link	seams.	But	not	all	linking	is	dynamic.	In	many	older	languages,	nearly	all
linking	is	static;	it	happens	once	after	compilation.

Many	C	and	C++	build	systems	perform	static	linking	to	create	executables.	Often	the
easiest	way	to	use	the	link	seam	is	to	create	a	separate	library	for	any	classes	or	functions
you	want	to	replace.	When	you	do	that,	you	can	alter	your	build	scripts	to	link	to	those
rather	than	the	production	ones	when	you	are	testing.	This	can	be	a	bit	of	work,	but	it	can
pay	off	if	you	have	a	code	base	that	is	littered	with	calls	to	a	third-party	library.	For
instance,	imagine	a	CAD	application	that	contains	a	lot	of	embedded	calls	to	a	graphics
library.	Here	is	an	example	of	some	typical	code:
void	CrossPlaneFigure::rerender()
{
				//	draw	the	label
				drawText(m_nX,	m_nY,	m_pchLabel,	getClipLen());
				drawLine(m_nX,	m_nY,	m_nX	+	getClipLen(),	m_nY);
				drawLine(m_nX,	m_nY,	m_nX,	m_nY	+	getDropLen());
				if	(!m_bShadowBox)	{
								drawLine(m_nX	+	getClipLen(),	m_nY,
																				m_nX	+	getClipLen(),	m_nY	+	getDropLen());
								drawLine(m_nX,	m_nY	+	getDropLen(),
																				m_nX	+	getClipLen(),	m_nY	+	getDropLen());
				}

				//	draw	the	figure
				for	(int	n	=	0;	n	<	edges.size();	n++)	{
								…
				}

				…
}

This	code	makes	many	direct	calls	to	a	graphics	library.	Unfortunately,	the	only	way	to
really	verify	that	this	code	is	doing	what	you	want	it	to	do	is	to	look	at	the	computer
screen	when	figures	are	redrawn.	In	complicated	code,	that	is	pretty	error	prone,	not	to
mention	tedious.	An	alternative	is	to	use	link	seams.	If	all	of	the	drawing	functions	are
part	of	a	particular	library,	you	can	create	stub	versions	that	link	to	the	rest	of	the
application.	If	you	are	interested	in	only	separating	out	the	dependency,	they	can	be	just
empty	functions:
void	drawText(int	x,	int	y,	char	*text,	int	textLength)
{
}

void	drawLine(int	firstX,	int	firstY,	int	secondX,	int	secondY)

{
}

If	the	functions	return	values,	you	have	to	return	something.	Often	a	code	that	indicates
success	or	the	default	value	of	a	type	is	a	good	choice:
int	getStatus()
{
				return	FLAG_OKAY;
}

The	case	of	a	graphics	library	is	a	little	atypical.	One	reason	that	it	is	a	good	candidate	for
this	technique	is	that	it	is	almost	a	pure	“tell”	interface.	You	issue	calls	to	functions	to	tell
them	to	do	something,	and	you	aren’t	asking	for	much	information	back.	Asking	for
information	is	difficult	because	the	defaults	often	aren’t	the	right	thing	to	return	when	you
are	trying	to	exercise	your	code.

Separation	is	often	a	reason	to	use	a	link	seam.	You	can	do	sensing	also;	it	just	requires	a
little	more	work.	In	the	case	of	the	graphics	library	we	just	faked,	we	could	introduce
some	additional	data	structures	to	record	calls:
std::queue<GraphicsAction>	actions;

void	drawLine(int	firstX,	int	firstY,	int	secondX,	int	secondY)
{
				actions.push_back(GraphicsAction(LINE_DRAW,
												firstX,	firstY,	secondX,	secondY);
}

With	these	data	structures,	we	can	sense	the	effects	of	a	function	in	a	test:
TEST(simpleRender,Figure)
{
				std::string	text	=	“simple”;
				Figure	figure(text,	0,	0);

				figure.rerender();
				LONGS_EQUAL(5,	actions.size());
				GraphicsAction	action;
				action	=	actions.pop_front();
				LONGS_EQUAL(LABEL_DRAW,	action.type);

				action	=	actions.pop_front();
				LONGS_EQUAL(0,	action.firstX);
				LONGS_EQUAL(0,	action.firstY);
				LONGS_EQUAL(text.size(),	action.secondX);
}

The	schemes	that	we	can	use	to	sense	effects	can	grow	rather	complicated,	but	it	is	best	to
start	with	a	very	simple	scheme	and	allow	it	to	get	only	as	complicated	as	it	needs	to	be	to
solve	the	current	sensing	needs.

The	enabling	point	for	a	link	seam	is	always	outside	the	program	text.	Sometimes	it	is	in	a
build	or	a	deployment	script.	This	makes	the	use	of	link	seams	somewhat	hard	to	notice.

Usage	Tip
If	you	use	link	seams,	make	sure	that	the	difference	between	test	and	production	environments	is	obvious.

Object	Seams

Object	seams	are	pretty	much	the	most	useful	seams	available	in	object-oriented
programming	languages.	The	fundamental	thing	to	recognize	is	that	when	we	look	at	a	call
in	an	object-oriented	program,	it	does	not	define	which	method	will	actually	be	executed.
Let’s	look	at	a	Java	example:
cell.Recalculate();

When	we	look	at	this	code,	it	seems	that	there	has	to	be	a	method	named	Recalculate	that	will
execute	when	we	make	that	call.	If	the	program	is	going	to	run,	there	has	to	be	a	method
with	that	name;	but	the	fact	is,	there	can	be	more	than	one:

Figure	4.1	Cell	hierarchy.

Which	method	will	be	called	in	this	line	of	code?
cell.Recalculate();

Without	knowing	what	object	cell	points	to,	we	just	don’t	know.	It	could	be	the	Recalculate
method	of	ValueCell	or	the	Recalculate	method	of	FormulaCell.	It	could	even	be	the	Recalculate	method	of
some	other	class	that	doesn’t	inherit	from	Cell	(if	that’s	the	case,	cell	was	a	particularly	cruel
name	to	use	for	that	variable!).	If	we	can	change	which	Recalculate	is	called	in	that	line	of
code	without	changing	the	code	around	it,	that	call	is	a	seam.

In	object-oriented	languages,	not	all	method	calls	are	seams.	Here	is	an	example	of	a	call
that	isn’t	a	seam:
public	class	CustomSpreadsheet	extends	Spreadsheet
{
				public	Spreadsheet	buildMartSheet()	{
								…
								Cell	cell	=	new	FormulaCell(this,	“A1”,	“=A2+A3”);
								…
								cell.Recalculate();
								…
				}
				…
}

In	this	code,	we’re	creating	a	cell	and	then	using	it	in	the	same	method.	Is	the	call	to
Recalculate	an	object	seam?	No.	There	is	no	enabling	point.	We	can’t	change	which	Recalculate
method	is	called	because	the	choice	depends	on	the	class	of	the	cell.	The	class	of	the	cell
is	decided	when	the	object	is	created,	and	we	can’t	change	it	without	modifying	the
method.

What	if	the	code	looked	like	this?

public	class	CustomSpreadsheet	extends	Spreadsheet
{
				public	Spreadsheet	buildMartSheet(Cell	cell)	{
								…
								cell.Recalculate();
								…
				}
				…
}

Is	the	call	to	cell.Recalculate	in	buildMartSheet	a	seam	now?	Yes.	We	can	create	a	CustomSpreadsheet	in	a
test	and	call	buildMartSheet	with	whatever	kind	of	Cell	we	want	to	use.	We’ll	have	ended	up
varying	what	the	call	to	cell.Recalculate	does	without	changing	the	method	that	calls	it.

Where	is	the	enabling	point?

In	this	example,	the	enabling	point	is	the	argument	list	of	buildMartSheet.	We	can	decide	what
kind	of	an	object	to	pass	and	change	the	behavior	of	Recalculate	any	way	that	we	want	to	for
testing.

Okay,	most	object	seams	are	pretty	straightforward.	Here	is	a	tricky	one.	Is	there	an	object
seam	at	the	call	to	Recalculate	in	this	version	of	buildMartSheet?
public	class	CustomSpreadsheet	extends	Spreadsheet
{
				public	Spreadsheet	buildMartSheet(Cell	cell)	{
								…
								Recalculate(cell);
								…
				}

				private	static	void	Recalculate(Cell	cell)	{
								…
				}

				…
}

The	Recalculate	method	is	a	static	method.	Is	the	call	to	Recalculate	in	buildMartSheet	a	seam?	Yes.	We
don’t	have	to	edit	buildMartSheet	to	change	behavior	at	that	call.	If	we	delete	the	keyword	static
on	Recalculate	and	make	it	a	protected	method	instead	of	a	private	method,	we	can	subclass
and	override	it	during	test:
public	class	CustomSpreadsheet	extends	Spreadsheet
{
				public	Spreadsheet	buildMartSheet(Cell	cell)	{
								…
								Recalculate(cell);
								…
				}
				protected	void	Recalculate(Cell	cell)	{
								…
				}

				…
}

public	class	TestingCustomSpreadsheet	extends	CustomSpreadsheet	{
				protected	void	Recalculate(Cell	cell)	{
								…
				}

}

Isn’t	this	all	rather	indirect?	If	we	don’t	like	a	dependency,	why	don’t	we	just	go	into	the
code	and	change	it?	Sometimes	that	works,	but	in	particularly	nasty	legacy	code,	often	the
best	approach	is	to	do	what	you	can	to	modify	the	code	as	little	as	possible	when	you	are
getting	tests	in	place.	If	you	know	the	seams	that	your	language	offers	and	how	to	use
them,	you	can	often	get	tests	in	place	more	safely	than	you	could	otherwise.

The	seams	types	I’ve	shown	are	the	major	ones.	You	can	find	them	in	many	programming
languages.	Let’s	take	a	look	at	the	example	that	led	off	this	chapter	again	and	see	what
seams	we	can	see:
bool	CAsyncSslRec::Init()
{
				if	(m_bSslInitialized)	{
								return	true;
				}
				m_smutex.Unlock();
				m_nSslRefCount++;

				m_bSslInitialized	=	true;

				FreeLibrary(m_hSslDll1);
				m_hSslDll1=0;
				FreeLibrary(m_hSslDll2);
				m_hSslDll2=0;

				if	(!m_bFailureSent)	{
								m_bFailureSent=TRUE;
								PostReceiveError(SOCKETCALLBACK,	SSL_FAILURE);
				}

				CreateLibrary(m_hSslDll1,“syncesel1.dll”);
				CreateLibrary(m_hSslDll2,“syncesel2.dll”);

				m_hSslDll1->Init();
				m_hSslDll2->Init();
				return	true;
}

What	seams	are	available	at	the	PostReceiveError	call?	Let’s	list	them.

1.	PostReceiveError	is	a	global	function,	so	we	can	easily	use	the	link	seam	there.	We	can
create	a	library	with	a	stub	function	and	link	to	it	to	get	rid	of	the	behavior.	The
enabling	point	would	be	our	makefile	or	some	setting	in	our	IDE.	We’d	have	to	alter
our	build	so	that	we	would	link	to	a	testing	library	when	we	are	testing	and	a
production	library	when	we	want	to	build	the	real	system.

2.	We	could	add	a	#include	statement	to	the	code	and	use	the	preprocessor	to	define	a
macro	named	PostReceiveError	when	we	are	testing.	So,	we	have	a	preprocessing	seam
there.	Where	is	the	enabling	point?	We	can	use	a	preprocessor	define	to	turn	the
macro	definition	on	or	off.

3.	We	could	also	declare	a	virtual	function	for	PostRecieveError	like	we	did	at	the	beginning
of	this	chapter,	so	we	have	an	object	seam	there	also.	Where	is	the	enabling	point?
In	this	case,	the	enabling	point	is	the	place	where	we	decide	to	create	an	object.	We
can	create	either	an	CAsyncSslRec	object	or	an	object	of	some	testing	subclass	that

overrides	PostRecieveError.

It	is	actually	kind	of	amazing	that	there	are	so	many	ways	to	replace	the	behavior	at	this
call	without	editing	the	method:
bool	CAsyncSslRec::Init()
{
				…
				if	(!m_bFailureSent)	{
								m_bFailureSent=TRUE;
								PostReceiveError(SOCKETCALLBACK,	SSL_FAILURE);
				}
				…

				return	true;
}

It	is	important	to	choose	the	right	type	of	seam	when	you	want	to	get	pieces	of	code	under
test.	In	general,	object	seams	are	the	best	choice	in	object-oriented	languages.
Preprocessing	seams	and	link	seams	can	be	useful	at	times	but	they	are	not	as	explicit	as
object	seams.	In	addition,	tests	that	depend	upon	them	can	be	hard	to	maintain.	I	like	to
reserve	preprocessing	seams	and	link	seams	for	cases	where	dependencies	are	pervasive
and	there	are	no	better	alternatives.

When	you	get	used	to	seeing	code	in	terms	of	seams,	it	is	easier	to	see	how	to	test	things
and	to	see	how	to	structure	new	code	to	make	testing	easier.

Chapter	5:	Tools

What	tools	do	you	need	when	you	work	with	legacy	code?	You	need	an	editor	(or	an	IDE)
and	your	build	system,	but	you	also	need	a	testing	framework.	If	there	are	refactoring	tools
for	your	language,	they	can	be	very	helpful	as	well.

In	this	chapter,	I	describe	some	of	the	tools	that	are	currently	available	and	the	role	that
they	can	play	in	your	legacy	code	work.

Automated	Refactoring	Tools
Refactoring	by	hand	is	fine,	but	when	you	have	a	tool	that	does	some	refactoring	for	you,
you	have	a	real	time	saver.	In	the	1990s,	Bill	Opdyke	started	work	on	a	C++	refactoring
tool	as	part	of	his	thesis	work	on	refactoring.	Although	it	never	became	commercially
available,	to	my	knowledge,	his	work	inspired	many	other	efforts	in	other	languages.	One
of	the	most	significant	was	the	Smalltalk	refactoring	browser	developed	by	John	Brant	and
Don	Roberts	at	the	University	of	Illinois.	The	Smalltalk	refactoring	browser	supported	a
very	large	number	of	refactorings	and	has	served	as	a	state-of-the-art	example	of
automated	refactoring	technology	for	a	long	while.	Since	then,	there	have	been	many
attempts	to	add	refactoring	support	to	various	languages	in	wider	use.	At	the	time	of	this
writing,	many	Java	refactoring	tools	are	available;	most	are	integrated	into	IDEs,	but	a	few
are	not.	There	are	also	refactoring	tools	for	Delphi	and	some	relatively	new	ones	for	C++.
Tools	for	C#	refactoring	are	under	active	development	at	the	time	of	this	writing.

With	all	of	these,	tools	it	seems	that	refactoring	should	be	much	easier.	It	is,	in	some
environments.	Unfortunately,	the	refactoring	support	in	many	of	these	tools	varies.	Let’s
remember	what	refactoring	is	again.	Here	is	Martin	Fowler’s	definition	from	Refactoring:
Improving	the	Design	of	Existing	Code	(Addison-Wesley	1999):

refactoring	(n.).	A	change	made	to	the	internal	structure	of	software	to	make	it	easier	to	understand	and	cheaper	to
modify	without	changing	its	existing	behavior.

A	change	is	a	refactoring	only	if	it	doesn’t	change	behavior.	Refactoring	tools	should
verify	that	a	change	does	not	change	behavior,	and	many	of	them	do.	This	was	a	cardinal
rule	in	the	Smalltalk	refactoring	browser,	Bill	Opdyke’s	work,	and	many	of	the	early	Java
refactoring	tools.	At	the	fringes,	however,	some	tools	don’t	really	check—and	if	they	don’t
check,	you	could	be	introducing	subtle	bugs	when	you	refactor.

It	pays	to	choose	your	refactoring	tools	with	care.	Find	out	what	the	tool	developers	say
about	the	safety	of	their	tool.	Run	your	own	tests.	When	I	encounter	a	new	refactoring
tool,	I	often	run	little	sanity	checks.	When	you	attempt	to	extract	a	method	and	give	it	the
name	of	a	method	that	already	exists	in	that	class,	does	it	flag	that	as	an	error?	What	if	it	is
the	name	of	a	method	in	a	base	class—does	the	tool	detect	that?	If	it	doesn’t,	you	could
mistakenly	override	a	method	and	break	code.

In	this	book,	I	discuss	work	with	and	without	automated	refactoring	support.	In	the
examples,	I	mention	whether	I	am	assuming	the	availability	of	a	refactoring	tool.

In	all	cases,	I	assume	that	the	refactorings	supplied	by	the	tool	preserve	behavior.	If	you

discover	that	the	ones	supplied	by	your	tool	don’t	preserve	behavior,	don’t	use	the
automated	refactorings.	Follow	the	advice	for	cases	in	which	you	don’t	have	a	refactoring
tool—it	will	be	safer.

Tests	and	Automated	Refactoring
When	you	have	a	tool	that	does	refactorings	for	you,	it’s	tempting	to	believe	that	you	don’t	have	to	write	tests	for	the
code	you	are	about	to	refactor.	In	some	cases,	this	is	true.	If	your	tool	performs	safe	refactorings	and	you	go	from	one
automated	refactoring	to	another	without	doing	any	other	editing,	you	can	assume	that	your	edits	haven’t	changed
behavior.	However,	this	isn’t	always	the	case.

Here	is	an	example:
public	class	A	{
				private	int	alpha	=	0;
				private	int	getValue()	{
								alpha++;
								return	12;
				}
				public	void	doSomething()	{
								int	v	=	getValue();
								int	total	=	0;
								for	(int	n	=	0;	n	<	10;	n++)	{
													total	+=	v;
								}
				}
}

In	at	least	two	Java	refactoring	tools,	we	can	use	a	refactoring	to	remove	the	v	variable	from	doSomething.	After	the
refactoring,	the	code	looks	like	this:
public	class	A	{
				private	int	alpha	=	0;
				private	int	getValue()	{
								alpha++;
								return	12;
				}
				public	void	doSomething()	{
							int	total	=	0;
							for	(int	n	=	0;	n	<	10;	n++)	{
											total	+=	getValue();
							}
				}
}

See	the	problem?	The	variable	was	removed,	but	now	the	value	of	alpha	is	incremented	10	times	rather	than	1.	This
change	clearly	didn’t	preserve	behavior.

It	is	a	good	idea	to	have	tests	around	your	code	before	you	start	to	use	automated	refactorings.	You	can	do	some
automated	refactoring	without	tests,	but	you	have	to	know	what	the	tool	is	checking	and	what	it	isn’t.	When	I	start	to
use	a	new	tool,	the	first	thing	that	I	do	is	put	its	support	for	extracting	methods	through	its	paces.	If	I	can	trust	it	well
enough	to	use	it	without	tests,	I	can	get	the	code	into	a	much	more	testable	state.

Mock	Objects
One	of	the	big	problems	that	we	confront	in	legacy	code	work	is	dependency.	If	we	want
to	execute	a	piece	of	code	by	itself	and	see	what	it	does,	often	we	have	to	break
dependencies	on	other	code.	But	it’s	hardly	ever	that	simple.	If	we	remove	the	other	code,
we	need	to	have	something	in	its	place	that	supplies	the	right	values	when	we	are	testing
so	that	we	can	exercise	our	piece	of	code	thoroughly.	In	object-oriented	code,	these	are
often	called	mock	objects.

Several	mock	object	libraries	are	freely	available.	The	web	site	www.mockobjects.com	is
a	good	place	to	find	references	for	most	of	them.

Unit-Testing	Harnesses
Testing	tools	have	a	long	and	varied	history.	Not	a	year	goes	by	that	I	don’t	run	into	four
or	five	teams	that	have	bought	some	expensive	license-per-seat	testing	tool	that	ends	up
not	living	up	to	its	price.	In	fairness	to	tool	vendors,	testing	is	a	tough	problem,	and	people
are	often	seduced	by	the	idea	that	they	can	test	through	a	GUI	or	web	interface	without
having	to	do	anything	special	to	their	application.	It	can	be	done,	but	it	is	usually	more
work	than	anyone	on	a	team	is	prepared	to	admit.	In	addition,	a	user	interface	often	isn’t
the	best	place	to	write	tests.	UIs	are	often	volatile	and	too	far	from	the	functionality	being
tested.	When	UI-based	tests	fail,	it	can	be	hard	to	figure	out	why.	Regardless,	people	often
spend	considerable	money	trying	to	do	all	of	their	testing	with	those	sorts	of	tools.

The	most	effective	testing	tools	I’ve	run	across	have	been	free.	The	first	one	is	the	xUnit
testing	framework.	Originally	written	in	Smalltalk	by	Kent	Beck	and	then	ported	to	Java
by	Kent	Beck	and	Erich	Gamma,	xUnit	is	a	small,	powerful	design	for	a	unit-testing
framework.	Here	are	its	key	features:

•	It	lets	programmers	write	tests	in	the	language	they	are	developing	in.

•	All	tests	run	in	isolation.

•	Tests	can	be	grouped	into	suites	so	that	they	can	be	run	and	rerun	on	demand.

The	xUnit	framework	has	been	ported	to	most	major	languages	and	quite	a	few	small,
quirky	ones.

The	most	revolutionary	thing	about	xUnit’s	design	is	its	simplicity	and	focus.	It	allows	us
to	write	tests	with	little	muss	and	fuss.	Although	it	was	originally	designed	for	unit	testing,
you	can	use	it	to	write	larger	tests	because	xUnit	really	doesn’t	care	how	large	or	small	a
test	is.	If	the	test	can	be	written	in	the	language	you	are	using,	xUnit	can	run	it.

In	this	book,	most	of	the	examples	are	in	Java	and	C++.	In	Java,	JUnit	is	the	preferred
xUnit	harness,	and	it	looks	very	much	like	most	of	the	other	xUnits.	In	C++,	I	often	use	a
testing	harness	I	wrote	named	CppUnitLite.	It	looks	quite	a	bit	different,	and	I	describe	it
in	this	chapter	also.	By	the	way,	I’m	not	slighting	the	original	author	of	CppUnit	by	using
CppUnitLite.	I	was	that	guy	a	long	time	ago,	and	I	discovered	only	after	I	released
CppUnit	that	it	could	be	quite	a	bit	smaller,	easier	to	use,	and	far	more	portable	if	it	used
some	C	idioms	and	only	a	bare	subset	of	the	C++	language.

JUnit

In	JUnit,	you	write	tests	by	subclassing	a	class	named	TestCase.
import	junit.framework.*;

public	class	FormulaTest	extends	TestCase	{
				public	void	testEmpty()	{
								assertEquals(0,	new	Formula(””).value());
				}

				public	void	testDigit()	{
								assertEquals(1,	new	Formula(“1”).value());

http://www.mockobjects.com

				}
}

Each	method	in	a	test	class	defines	a	test	if	it	has	a	signature	of	this	form:	void	testXXX(),	where
XXX	is	the	name	you	want	to	give	the	test.	Each	test	method	can	contain	code	and	assertions.
In	the	previous	testEmpty	method,	there	is	code	to	create	a	new	Formula	object	and	call	its	value
method.	There	is	also	assertion	code	that	checks	to	see	if	that	value	is	equal	to	0.	If	it	is,	the
test	passes.	If	it	isn’t,	the	test	fails.

In	a	nutshell,	here	is	what	happens	when	you	run	JUnit	tests.	The	JUnit	test	runner	loads	a
test	class	like	the	one	shown	previously,	and	then	it	uses	reflection	to	find	all	of	the	test
methods.	What	it	does	next	is	kind	of	sneaky.	It	creates	a	completely	separate	object	for
each	one	of	those	test	methods.	From	the	previous	code,	it	creates	two	of	them:	an	object
whose	only	job	is	to	run	the	testEmpty	method,	and	an	object	whose	only	job	is	to	run	the
testDigit	object.	If	you	are	wondering	what	the	classes	of	the	objects	are,	in	both	cases,	it	is
the	same:	FormulaTest.	Each	object	is	configured	to	run	exactly	one	of	the	test	methods	on
FormulaTest.	The	key	thing	is	that	we	have	a	completely	separate	object	for	each	method.
There	is	no	way	that	they	can	affect	each	other.	Here	is	an	example.
public	class	EmployeeTest	extends	TestCase	{
				private	Employee	employee;

				protected	void	setUp()	{
								employee	=	new	Employee(“Fred”,	0,	10);
								TDate	cardDate	=	new	TDate(10,	10,	2000);
								employee.addTimeCard(new	TimeCard(cardDate,40));
				}

				public	void	testOvertime()	{
								TDate	newCardDate	=	new	TDate(11,	10,	2000);
								employee.addTimeCard(new	TimeCard(newCardDate,	50));
								assertTrue(employee.hasOvertimeFor(newCardDate));
				}

				public	void	testNormalPay()	{
								assertEquals(400,	employee.getPay());
				}
}

In	the	EmployeeTest	class,	we	have	a	special	method	named	setUp.	The	setUp	method	is	defined	in
TestCase	and	is	run	in	each	test	object	before	the	test	method	is	run.	The	setUp	method	allows	us
to	create	a	set	of	objects	that	we’ll	use	in	a	test.	That	set	of	objects	is	created	the	same	way
before	each	test’s	execution.	In	the	object	that	runs	testNormalPay,	an	employee	created	in	setUp	is
checked	to	see	if	it	calculates	pay	correctly	for	one	timecard,	the	one	added	in	setUp.	In	the
object	that	runs	testOvertime,	an	employee	created	in	setUp	for	that	object	gets	an	additional
timecard,	and	there	is	a	check	to	verify	that	the	second	timecard	triggers	an	overtime
condition.	The	setUp	method	is	called	for	each	object	of	the	class	EmployeeTest,	and	each	of	those
objects	gets	its	own	set	of	objects	created	via	setUp.	If	you	need	to	do	anything	special	after
a	test	finishes	executing,	you	can	override	another	method	named	tearDown,	defined	in	TestCase.
It	runs	after	the	test	method	for	each	object

When	you	first	see	an	xUnit	harness,	it	is	bound	to	look	a	little	strange.	Why	do	test-case
classes	have	setUp	and	tearDown	at	all?	Why	can’t	we	just	create	the	objects	we	need	in	the
constructor?	Well,	we	could,	but	remember	what	the	test	runner	does	with	test	case

classes.	It	goes	to	each	test	case	class	and	creates	a	set	of	objects,	one	for	each	test
method.	That	is	a	large	set	of	objects,	but	it	isn’t	so	bad	if	those	objects	haven’t	allocated
what	they	need	yet.	By	placing	code	in	setUp	to	create	what	we	need	just	when	we	need	it,
we	save	quite	a	bit	on	resources.	In	addition,	by	delaying	setUp,	we	can	also	run	it	at	a	time
when	we	can	detect	and	report	any	problems	that	might	happen	during	setup.

CppUnitLite

When	I	did	the	initial	port	of	CppUnit,	I	tried	to	keep	it	as	close	as	I	could	to	JUnit.	I
figured	it	would	be	easier	for	people	who’d	seen	the	xUnit	architecture	before,	so	it
seemed	to	be	the	better	thing	to	do.	Almost	immediately,	I	ran	into	a	series	of	things	that
were	hard	or	impossible	to	implement	cleanly	in	C++	because	of	differences	in	C++	and
Java’s	features.	The	primary	issue	was	C++’s	lack	of	reflection.	In	Java,	you	can	hold	on
to	a	reference	to	a	derived	class’s	methods,	find	methods	at	runtime,	and	so	on.	In	C++,
you	have	to	write	code	to	register	the	method	you	want	to	access	at	runtime.	As	a	result,
CppUnit	became	a	little	bit	harder	to	use	and	understand.	You	had	to	write	your	own	suite
function	on	a	test	class	so	that	the	test	runner	could	run	objects	for	individual	methods.
Test	*EmployeeTest::suite()
{
				TestSuite	*suite	=	new	TestSuite;
				suite.addTest(new	TestCaller<EmployeeTest>(“testNormalPay”,
												testNormalPay));
				suite.addTest(new	TestCaller<EmployeeTest>(“testOvertime”,
												testOvertime));
				return	suite;
}

Needless	to	say,	this	gets	pretty	tedious.	It	is	hard	to	maintain	momentum	writing	tests
when	you	have	to	declare	test	methods	in	a	class	header,	define	them	in	a	source	file,	and
register	them	in	a	suite	method.	A	variety	of	macro	schemes	can	be	used	to	get	past	these
issues,	but	I	choose	to	start	over.	I	ended	up	with	a	scheme	in	which	someone	could	write
a	test	just	by	writing	this	source	file:
#include	“testharness.h”
#include	“employee.h”
#include	<memory>

using	namespace	std;

TEST(testNormalPay,Employee)
{
				auto_ptr<Employee>	employee(new	Employee(“Fred”,	0,	10));
				LONGS_EQUALS(400,	employee->getPay());
}

This	test	used	a	macro	named	LONGS_EQUAL	that	compares	two	long	integers	for	equality.	It
behaves	the	same	way	that	assertEquals	does	in	JUnit,	but	it’s	tailored	for	longs.

The	TEST	macro	does	some	nasty	things	behind	the	scenes.	It	creates	a	subclass	of	a	testing
class	and	names	it	by	pasting	the	two	arguments	together	(the	name	of	the	test	and	the
name	of	the	class	being	tested).	Then	it	creates	an	instance	of	that	subclass	that	is
configured	to	run	the	code	in	braces.	The	instance	is	static;	when	the	program	loads,	it
adds	itself	to	a	static	list	of	test	objects.	Later	a	test	runner	can	rip	through	the	list	and	run
each	of	the	tests.

After	I	wrote	this	little	framework,	I	decided	not	to	release	it	because	the	code	in	the
macro	wasn’t	terribly	clear,	and	I	spend	a	lot	of	time	convincing	people	to	write	clearer
code.	A	friend	of	mine,	Mike	Hill,	ran	into	some	of	the	same	issues	before	we	met	and
created	a	Microsoft-specific	testing	framework	called	TestKit	that	handled	registration	the
same	way.	Emboldened	by	Mike,	I	started	to	reduce	the	number	of	late	C++	features	used
in	my	little	framework,	and	then	I	released	it.	(Those	issues	had	been	a	big	issue	in
CppUnit.	Nearly	every	day	I	received	e-mail	from	people	who	couldn’t	use	templates	or
the	standard	library,	or	who	had	exceptions	with	their	C++	compiler.)

Both	CppUnit	and	CppUnitLite	are	adequate	as	testing	harnesses.	Tests	written	using
CppUnitLite	are	a	little	briefer,	so	I	use	it	for	the	C++	examples	in	this	book.

NUnit

NUnit	is	a	testing	framework	for	the	.NET	languages.	You	can	write	tests	for	C#	code,
VB.NET	code,	or	any	other	language	that	runs	on	the	.NET	platform.	NUnit	is	very	close
in	operation	to	JUnit.	The	one	significant	difference	is	that	it	uses	attributes	to	mark	test
methods	and	test	classes.	The	syntax	of	attributes	depends	upon	the	.NET	language	the
tests	are	written	in.

Here	is	an	NUnit	test	written	in	VB.NET:
Imports	NUnit.Framework

<TestFixture()>	Public	Class	LogOnTest
				Inherits	Assertion

				<Test()>	Public	Sub	TestRunValid()
								Dim	display	As	New	MockDisplay()
								Dim	reader	As	New	MockATMReader()
								Dim	logon	As	New	LogOn(display,	reader)
								logon.Run()
								AssertEquals(“Please	Enter	Card”,	display.LastDisplayedText)
								AssertEquals(“MainMenu”,logon.GetNextTransaction().GetType.Name)
				End	Sub

End	Class

<TestFixture()>	and	<Test()>	are	attributes	that	mark	LogonTest	as	a	test	class	and	TestRunValid	as	a	test
method,	respectively.

Other	xUnit	Frameworks

There	are	many	ports	of	xUnit	to	many	different	languages	and	platforms.	In	general,	they
support	the	specification,	grouping,	and	running	of	unit	tests.	If	you	need	to	find	an	xUnit
port	for	your	platform	or	language,	go	to	www.xprogramming.com	and	look	in	the
Downloads	section.	This	site	is	run	by	Ron	Jeffries,	and	it	is	the	de	facto	repository	for	all
of	the	xUnit	ports.

General	Test	Harnesses
The	xUnit	frameworks	I	described	in	the	preceding	section	were	designed	to	be	used	for
unit	testing.	They	can	be	used	to	test	several	classes	at	a	time,	but	that	sort	of	work	is	more
properly	the	domain	of	FIT	and	Fitnesse.

Framework	for	Integrated	Tests	(FIT)

http://www.xprogramming.com

FIT	is	a	concise	and	elegant	testing	framework	that	was	developed	by	Ward	Cunningham.
The	idea	behind	FIT	is	simple	and	powerful.	If	you	can	write	documents	about	your
system	and	embed	tables	within	them	that	describe	inputs	and	outputs	for	your	system,
and	if	those	documents	can	be	saved	as	HTML,	the	FIT	framework	can	run	them	as	tests.

FIT	accepts	HTML,	runs	tests	defined	in	HTML	tables	in	it,	and	produces	HTML	output.
The	output	looks	the	same	as	the	input,	and	all	text	and	tables	are	preserved.	However,	the
cells	in	the	tables	are	colored	green	to	indicate	values	that	made	a	test	pass	and	red	to
indicate	values	that	caused	a	test	to	fail.	You	also	can	use	options	to	have	test	summary
information	placed	in	the	resulting	HTML.

The	only	thing	you	have	to	do	to	make	this	work	is	to	customize	some	table-handling	code
so	that	it	knows	how	to	run	chunks	of	your	code	and	retrieve	results	from	them.	Generally,
this	is	rather	easy	because	the	framework	provides	code	to	support	a	number	of	different
table	types.

One	of	the	very	powerful	things	about	FIT	is	its	capability	to	foster	communication
between	people	who	write	software	and	people	who	need	to	specify	what	it	should	do.	The
people	who	specify	can	write	documents	and	embed	actual	tests	within	them.	The	tests
will	run,	but	they	won’t	pass.	Later	developers	can	add	in	the	features,	and	the	tests	will
pass.	Both	users	and	developers	can	have	a	common	and	up-to-date	view	of	the
capabilities	of	the	system.

There	is	far	more	to	FIT	than	I	can	describe	here.	There	is	more	information	about	FIT	at
http://fit.c2.com.

Fitnesse

Fitnesse	is	essentially	FIT	hosted	in	a	wiki.	Most	of	it	was	developed	by	Robert	Martin
and	Micah	Martin.	I	worked	on	a	little	bit	of	it,	but	I	dropped	out	to	concentrate	on	this
book.	I’m	looking	forward	to	getting	back	to	work	on	it	soon.

Fitnesse	supports	hierarchical	web	pages	that	define	FIT	tests.	Pages	of	test	tables	can	be
run	individually	or	in	suites,	and	a	multitude	of	different	options	make	collaboration	easy
across	a	team.	Fitnesse	is	available	at	http://www.fitnesse.org.	Like	all	of	the	other	testing
tools	described	in	this	chapter,	it	is	free	and	supported	by	a	community	of	developers.

http://fit.c2.com
http://www.fitnesse.org

Part	II:	Changing	Software

Chapter	6:	I	Don’t	Have	Much	Time	and	I	Have	to	Change
It

Let’s	face	facts:	The	book	you	are	reading	right	now	describes	additional	work—work	that
you	probably	aren’t	doing	now	and	work	that	could	make	it	take	longer	to	finish	some
change	you	are	about	to	make	in	your	code.	You	might	be	wondering	whether	it’s	worth
doing	these	things	right	now.

The	truth	is,	the	work	that	you	do	to	break	dependencies	and	write	tests	for	your	changes
is	going	to	take	some	time,	but	in	most	cases,	you	are	going	to	end	up	saving	time—and	a
lot	of	frustration.	When?	Well,	it	depends	on	the	project.	In	some	cases,	you	might	write
tests	for	some	code	that	you	need	to	change,	and	it	takes	you	two	hours	to	do	that.	The
change	that	you	make	afterward	might	take	15	minutes.	When	you	look	back	on	the
experience,	you	might	say,	“I	just	wasted	two	hours—was	it	worth	it?”	It	depends.	You
don’t	know	how	long	that	work	might	have	taken	you	if	you	hadn’t	written	the	tests.	You
also	don’t	know	how	much	time	it	would’ve	taken	you	to	debug	if	you	made	a	mistake,
time	you	could	have	saved	if	you	had	tests	in	place.	I’m	not	only	talking	about	the	amount
of	time	you	would	save	if	the	tests	caught	the	error,	but	also	the	amount	of	time	tests	save
you	when	you	are	trying	to	find	an	error.	With	tests	around	the	code,	nailing	down
functional	problems	is	often	easier.

Let’s	assume	the	worst	case.	The	change	was	simple,	but	we	got	the	code	around	the
change	under	test	anyway;	we	make	all	of	our	changes	correctly.	Were	the	tests	worth	it?
We	don’t	know	when	we’ll	get	back	to	that	area	of	the	code	and	make	another	change.	In
the	best	case,	you	go	back	into	the	code	the	next	iteration,	and	you	start	to	recoup	your
investment	quickly.	In	the	worst	case,	it’s	years	before	anyone	goes	back	and	modifies	that
code.	But,	chances	are,	we’ll	read	it	periodically,	if	only	to	find	out	whether	we	need	to
make	a	change	there	or	someplace	else.	Would	it	be	easier	to	understand	if	the	classes
were	smaller	and	there	were	unit	tests?	Chances	are,	it	would.	But	this	is	just	the	worst
case.	How	often	does	it	happen?	Typically,	changes	cluster	in	systems.	If	you	are	changing
it	today,	chances	are,	you’ll	have	a	change	close	by	pretty	soon.

When	I	work	with	teams,	I	often	start	by	asking	them	to	take	part	in	an	experiment.	For	an
iteration,	we	try	to	make	no	change	to	the	code	without	having	tests	that	cover	the	change.
If	anyone	thinks	that	they	can’t	write	a	test,	they	have	to	call	a	quick	meeting	in	which
they	ask	the	group	whether	it	is	possible	to	write	the	test.	The	beginnings	of	those
iterations	are	terrible.	People	feel	that	they	aren’t	getting	all	the	work	done	that	they	need
to.	But	slowly,	they	start	to	discover	that	they	are	revisiting	better	code.	Their	changes	are
getting	easier,	and	they	know	in	their	gut	that	this	is	what	it	takes	to	move	forward	in	a
better	way.	It	takes	time	for	a	team	to	get	over	that	hump,	but	if	there	is	one	thing	that	I
could	instantaneously	do	for	every	team	in	the	world,	it	would	be	to	give	them	that	shared
experience,	that	experience	that	you	can	see	in	their	faces:	“Boy,	we	aren’t	going	back	to
that	again.”

If	you	haven’t	had	that	experience	yet,	you	need	to.

Ultimately,	this	is	going	to	make	your	work	go	faster,	and	that’s	important	in	nearly	every
development	organization.	But	frankly,	as	a	programmer,	I’m	just	happy	that	it	makes

work	much	less	frustrating.

When	you	get	over	the	hump,	life	isn’t	completely	rosy,	but	it	is	better.	When	you	know
the	value	of	testing	and	you’ve	felt	the	difference,	the	only	thing	that	you	have	to	deal	with
is	the	cold,	mercenary	decision	of	what	to	do	in	each	particular	case.

It	Happens	Someplace	Every	Day
You	boss	comes	in.	He	says,	“Clients	are	clamoring	for	this	feature.	Can	we	get	it	done	today?”

“I	don’t	know.”

You	look	around.	Are	there	tests	in	place?	No.

You	ask,	“How	bad	do	you	need	it?”

You	know	that	you	can	make	the	changes	inline	in	all	10	places	where	you	need	to	change	things,	and	it	will	be	done
by	5:00.	This	is	an	emergency	right?	We’re	going	to	fix	this	tomorrow,	aren’t	we?

Remember,	code	is	your	house,	and	you	have	to	live	in	it.

The	hardest	thing	about	trying	to	decide	whether	to	write	tests	when	you	are	under
pressure	is	the	fact	that	you	just	might	not	know	how	long	it	is	going	to	take	to	add	the
feature.	In	legacy	code,	it	is	particularly	hard	to	come	up	with	estimates	that	are
meaningful.	There	are	some	techniques	that	can	help.	Take	a	look	at	Chapter	16,	I	Don’t
Understand	the	Code	Well	Enough	to	Change	It,	for	details.	When	you	don’t	really	know
how	long	it	is	going	to	take	to	add	a	feature	and	you	suspect	that	it	will	be	longer	than	the
amount	of	time	you	have,	it	is	tempting	to	just	hack	the	feature	in	the	quickest	way	that
you	can.	Then	if	you	have	enough	time,	you	can	go	back	and	do	some	testing	and
refactoring.	The	hard	part	is	actually	going	back	and	doing	that	testing	and	refactoring.
Before	people	get	over	the	hump,	they	often	avoid	that	work.	It	can	be	a	morale	problem.
Take	a	look	at	Chapter	24,	We	Feel	Overwhelmed.	It	Isn’t	Going	to	Get	Any	Better,	for
some	constructive	ways	to	move	forward.

So	far,	what	I’ve	described	sounds	like	a	real	dilemma:	Pay	now	or	pay	more	later.	Either
write	tests	as	you	make	your	changes	or	live	with	the	fact	that	it	is	going	to	get	tougher
over	time.	It	can	be	that	tough,	but	sometimes	it	isn’t.

If	you	have	to	make	a	change	to	a	class	right	now,	try	instantiating	the	class	in	a	test
harness.	If	you	can’t,	take	a	look	at	Chapter	9,	I	Can’t	Get	This	Class	into	a	Test	Harness,
or	Chapter	10,	I	Can’t	Run	This	Method	in	a	Test	Harness,	first.	Getting	the	code	you	are
changing	into	a	test	harness	might	be	easier	than	you	think.	If	you	look	at	those	sections
and	you	decide	that	you	really	can’t	afford	to	break	dependencies	and	get	tests	in	place
now,	scrutinize	the	changes	that	you	need	to	make.	Can	you	make	them	by	writing	fresh
code?	In	many	cases,	you	can.	The	rest	of	this	chapter	contains	descriptions	of	several
techniques	we	can	use	to	do	this.

Read	about	these	techniques	and	consider	them,	but	remember	that	these	techniques	have
to	be	used	carefully.	When	you	use	them,	you	are	adding	tested	code	into	your	system,	but
unless	you	cover	the	code	that	calls	it,	you	aren’t	testing	its	use.	Use	caution.

Sprout	Method
When	you	need	to	add	a	feature	to	a	system	and	it	can	be	formulated	completely	as	new
code,	write	the	code	in	a	new	method.	Call	it	from	the	places	where	the	new	functionality

needs	to	be.	You	might	not	be	able	to	get	those	call	points	under	test	easily,	but	at	the	very
least,	you	can	write	tests	for	the	new	code.	Here	is	an	example.
public	class	TransactionGate
{
				public	void	postEntries(List	entries)	{
								for	(Iterator	it	=	entries.iterator();	it.hasNext();)	{
												Entry	entry	=	(Entry)it.next();
												entry.postDate();
								}
								transactionBundle.getListManager().add(entries);
				}
				…
}

We	need	to	add	code	to	verify	that	none	of	the	new	entries	are	already	in	transactionBundle
before	we	post	their	dates	and	add	them.	Looking	at	the	code,	it	seems	that	this	has	to
happen	at	the	beginning	of	the	method,	before	the	loop.	But,	actually,	it	could	happen
inside	the	loop.	We	could	change	the	code	to	this:
public	class	TransactionGate
{
				public	void	postEntries(List	entries)	{
								List	entriesToAdd	=	new	LinkedList();
								for	(Iterator	it	=	entries.iterator();	it.hasNext();)	{
												Entry	entry	=	(Entry)it.next();
												if	(!transactionBundle.getListManager().hasEntry(entry)	{
																	entry.postDate();
																	entriesToAdd.add(entry);
												}
								}
								transactionBundle.getListManager().add(entriesToAdd);
				}
				…
}

This	seems	like	a	simple	change,	but	it	was	pretty	invasive.	How	do	we	know	we	got	it
right?	There	isn’t	any	separation	between	the	new	code	we’ve	added	and	the	old	code.
Worse,	we’re	making	the	code	a	little	muddier.	We’re	mingling	two	operations	here:	date
posting	and	duplicate	entry	detection.	This	method	is	rather	small,	but	already	it	is	a	little
less	clear,	and	we’ve	also	introduced	a	temporary	variable.	Temporaries	aren’t	necessarily
bad,	but	sometimes	they	attract	new	code.	If	the	next	change	that	we	have	to	make
involves	work	with	all	nonduplicated	entries	before	they	are	added,	well,	there	is	only	one
place	in	the	code	that	a	variable	like	that	exists:	right	in	this	method.	It	will	be	tempting	to
just	put	that	code	in	the	method	also.	Could	we	have	done	this	in	a	different	way?

Yes.	We	can	treat	duplicate	entry	removal	as	a	completely	separate	operation.	We	can	use
test-driven	development	(88)	to	create	a	new	method	named	uniqueEntries:
public	class	TransactionGate
{
				…
				List	uniqueEntries(List	entries)	{
								List	result	=	new	ArrayList();
								for	(Iterator	it	=	entries.iterator();	it.hasNext();)	{
												Entry	entry	=	(Entry)it.next();
												if	(!transactionBundle.getListManager().hasEntry(entry)	{
																result.add(entry);
												}

								}
								return	result;
				}
				…
}

It	would	be	easy	to	write	tests	that	would	drive	us	toward	code	like	that	for	this	method.
When	we	have	the	method,	we	can	go	back	to	the	original	code	and	add	the	call.
public	class	TransactionGate
{
				…
				public	void	postEntries(List	entries)	{
								List	entriesToAdd	=	uniqueEntries(entries);
								for	(Iterator	it	=	entriesToAdd.iterator();	it.hasNext();)	{
												Entry	entry	=	(Entry)it.next();
												entry.postDate();
								}
								transactionBundle.getListManager().add(entriesToAdd);
				}
				…
}

We	still	have	a	new	temporary	variable	here,	but	the	code	is	much	less	cluttered.	If	we
need	to	add	more	code	that	works	with	the	nonduplicated	entries,	we	can	make	a	method
for	that	code	also	and	call	it	from	here.	If	we	end	up	with	yet	more	code	that	needs	to	work
with	them,	we	can	introduce	a	class	and	shift	all	of	those	new	methods	over	to	it.	The	net
effect	is	that	we	end	up	keeping	this	method	small	and	we	end	up	with	shorter,	easier-to-
understand	methods	overall.

That	was	an	example	of	Sprout	Method.	Here	are	the	steps	that	you	actually	take:

1.	Identify	where	you	need	to	make	your	code	change.

2.	If	the	change	can	be	formulated	as	a	single	sequence	of	statements	in	one	place	in	a
method,	write	down	a	call	for	a	new	method	that	will	do	the	work	involved	and	then
comment	it	out.	(I	like	to	do	this	before	I	even	write	the	method	so	that	I	can	get	a
sense	of	what	the	method	call	will	look	like	in	context.)

3.	Determine	what	local	variables	you	need	from	the	source	method,	and	make	them
arguments	to	the	call.

4.	Determine	whether	the	sprouted	method	will	need	to	return	values	to	source
method.	If	so,	change	the	call	so	that	its	return	value	is	assigned	to	a	variable.

5.	Develop	the	sprout	method	using	test-driven	development	(88).

6.	Remove	the	comment	in	the	source	method	to	enable	the	call.

I	recommend	using	Sprout	Method	whenever	you	can	see	the	code	that	you	are	adding	as	a
distinct	piece	of	work	or	you	can’t	get	tests	around	a	method	yet.	It	is	far	preferable	to
adding	code	inline.

Sometimes	when	you	want	to	use	Sprout	Method,	the	dependencies	in	your	class	are	so
bad	that	you	can’t	create	an	instance	of	it	without	faking	a	lot	of	constructor	arguments.
One	alternative	is	to	use	Pass	Null	(111).	When	that	won’t	work,	consider	making	the
sprout	a	public	static	method.	You	might	have	to	pass	in	instance	variables	of	the	source

class	as	arguments,	but	it	will	allow	you	to	make	your	change.	It	might	seem	weird	to
make	a	static	for	this	purpose,	but	it	can	be	useful	in	legacy	code.	I	tend	to	look	at	static
methods	on	classes	as	a	staging	area.	Often	after	you	have	several	statics	and	you	notice
that	they	share	some	of	the	same	variables,	you	are	able	to	see	that	you	can	make	a	new
class	and	move	the	statics	over	to	the	new	class	as	instance	methods.	When	they	really
deserve	to	be	instance	methods	on	the	current	class,	they	can	be	moved	back	into	the	class
when	you	finally	get	it	under	test.

Advantages	and	Disadvantages

Sprout	Method	has	some	advantages	and	disadvantages.	Let’s	look	at	the	disadvantages
first.	What	are	the	downsides	of	Sprout	Method?	For	one	thing,	when	you	use	it,	in	effect
you	essentially	are	saying	that	you	are	giving	up	on	the	source	method	and	its	class	for	the
moment.	You	aren’t	going	to	get	it	under	test,	and	you	aren’t	going	to	make	it	better—you
are	just	going	to	add	some	new	functionality	in	a	new	method.	Giving	up	on	a	method	or	a
class	is	the	practical	choice	sometimes,	but	it	still	is	kind	of	sad.	It	leaves	your	code	in
limbo.	The	source	method	might	contain	a	lot	of	complicated	code	and	a	single	sprout	of	a
new	method.	Sometimes	it	isn’t	clear	why	only	that	work	is	happening	someplace	else,
and	it	leaves	the	source	method	in	an	odd	state.	But	at	least	that	points	to	some	additional
work	that	you	can	do	when	you	get	the	source	class	under	test	later.

Although	there	are	some	disadvantages,	there	are	a	couple	of	key	advantages.	When	you
use	Sprout	Method,	you	are	clearly	separating	new	code	from	old	code.	Even	if	you	can’t
get	the	old	code	under	test	immediately,	you	can	at	least	see	your	changes	separately	and
have	a	clean	interface	between	the	new	code	and	the	old	code.	You	see	all	of	the	variables
affected,	and	this	can	make	it	easier	to	determine	whether	the	code	is	right	in	context.

Sprout	Class
Sprout	Method	is	a	powerful	technique,	but	in	some	tangled	dependency	situations,	it	isn’t
powerful	enough.

Consider	the	case	in	which	you	have	to	make	changes	to	a	class,	but	there	is	just	no	way
that	you	are	going	to	be	able	to	create	objects	of	that	class	in	a	test	harness	in	a	reasonable
amount	of	time,	so	there	is	no	way	to	sprout	a	method	and	write	tests	for	it	on	that	class.
Maybe	you	have	a	large	set	of	creational	dependencies,	things	that	make	it	hard	to
instantiate	your	class.	Or	you	could	have	many	hidden	dependencies.	To	get	rid	of	them,
you’d	need	to	do	a	lot	of	invasive	refactoring	to	separate	them	out	well	enough	to	compile
the	class	in	a	test	harness.

In	these	cases,	you	can	create	another	class	to	hold	your	changes	and	use	it	from	the
source	class.	Let’s	look	at	a	simplified	example.

Here	is	an	ancient	method	on	a	C++	class	called	QuarterlyReportGenerator:
std::string	QuarterlyReportGenerator::generate()
{
				std::vector<Result>	results	=	database.queryResults(
																																													beginDate,	endDate);
				std::string	pageText;

				pageText	+=	“<html><head><title>”
												“Quarterly	Report”

												”</title></head><body><table>”;
				if	(results.size()	!=	0)	{
								for	(std::vector<Result>::iterator	it	=	results.begin();
																it	!=	results.end();
																++it)	{
												pageText	+=	“<tr>”;
												pageText	+=	“<td>”	+	it->department	+	“</td>”;
												pageText	+=	“<td>”	+	it->manager	+	“</td>”;
												char	buffer	[128];
												sprintf(buffer,	“<td>$%d</td>”,	it->netProfit	/	100);
												pageText	+=	std::string(buffer);
												sprintf(buffer,	“<td>$%d</td>”,	it->operatingExpense	/	100);
												pageText	+=	std::string(buffer);
												pageText	+=	“</tr>”;
								}
				}	else	{
								pageText	+=	“No	results	for	this	period”;
				}
				pageText	+=	“</table>”;
				pageText	+=	“</body>”;
				pageText	+=	“</html>”;

				return	pageText;
}

Let’s	suppose	that	the	change	that	we	need	to	make	to	the	code	is	to	add	a	header	row	for
the	HTML	table	it’s	producing.	The	header	row	should	look	something	like	this:
“<tr><td>Department</td><td>Manager</td><td>Profit</td><td>Expenses</td></tr>”

Furthermore,	let’s	suppose	that	this	is	a	huge	class	and	that	it	would	take	about	a	day	to	get
the	class	in	a	test	harness,	and	this	is	time	that	we	just	can’t	afford	right	now.

We	could	formulate	the	change	as	a	little	class	called	QuarterlyReportTableHeaderProducer	and	develop
it	using	test-driven	development	(88).
using	namespace	std;

class	QuarterlyReportTableHeaderProducer
{
public:
				string	makeHeader();
};

string	QuarterlyReportTableProducer::makeHeader()
{
				return	“<tr><td>Department</td><td>Manager</td>”
								”<td>Profit</td><td>Expenses</td>”;
}

When	we	have	it,	we	can	create	an	instance	and	call	it	directly	in	QuarterlyReportGenerator::generate():
…
QuarterlyReportTableHeaderProducer	producer;
pageText	+=	producer.makeHeader();
…

I’m	sure	that	at	this	point	you’re	looking	at	this	and	saying,	“He	can’t	be	serious.	It’s
ridiculous	to	create	a	class	for	this	change!	It’s	just	a	tiny	little	class	that	doesn’t	give	you
any	benefit	in	the	design.	It	introduces	a	completely	new	concept	that	just	clutters	the
code.”	Well,	at	this	point,	that	is	true.	The	only	reason	we’re	doing	it	is	to	get	out	of	a	bad
dependency	situation,	but	let’s	take	a	closer	look.

What	if	we’d	named	the	class	QuarterlyReportTableHeaderGenerator	and	gave	it	this	sort	of	an	interface?
class	QuarterlyReportTableHeaderGenerator
{
public:
				string	generate();
};

Now	the	class	is	part	of	a	concept	that	we’re	familiar	with.	QuarterlyReportTableHeaderGenerator	is	a
generator,	just	like	QuarterlyReportGenerator.	They	both	have	generate()	methods	that	return	strings.
We	can	document	that	commonality	in	the	code	by	creating	an	interface	class	and	having
them	both	inherit	from	it:
class	HTMLGenerator
{
public:
				virtual	~HTMLGenerator()	=	0;
				virtual	string	generate()	=	0;
};

class	QuarterlyReportTableHeaderGenerator	:	public	HTMLGenerator
{
public:
				…
				virtual	string	generate();
				…
};

class	QuarterlyReportGenerator	:	public	HTMLGenerator
{
public:
				…
				virtual	string	generate();
				…
};

As	we	do	more	work,	we	might	be	able	to	get	QuarterlyReportGenerator	under	test	and	change	its
implementation	so	that	it	does	most	of	its	work	using	generator	classes.

In	this	case,	we	were	able	to	quickly	fold	the	class	into	the	set	of	concepts	that	we	already
had	in	the	application.	In	many	other	cases,	we	can’t,	but	that	doesn’t	mean	that	we	should
hold	back.	Some	sprouted	classes	never	fold	back	into	the	main	concepts	in	the
application.	Instead,	they	become	new	ones.	You	might	sprout	a	class	and	think	that	it	is
rather	insignificant	to	your	design	until	you	do	something	similar	someplace	else	and	see
the	similarity.	Sometimes	you	are	able	to	factor	out	duplicated	code	in	the	new	classes,
and	often	you	have	to	rename	them,	but	don’t	expect	it	all	to	happen	at	once.

The	way	that	you	look	at	a	sprouted	class	when	you	first	create	it	and	the	way	that	you
look	at	it	after	a	few	months	are	often	significantly	different.	The	fact	that	you	have	this
odd	new	class	in	your	system	gives	you	plenty	to	think	about.	When	you	need	to	make	a
change	close	to	it,	you	might	start	to	think	about	whether	the	change	is	part	of	the	new
concept	or	whether	the	concept	needs	to	change	a	little.	This	is	all	part	of	the	ongoing
process	of	design.

Essentially	two	cases	lead	us	to	Sprout	Class.	In	one	case,	your	changes	lead	you	toward
adding	an	entirely	new	responsibility	to	one	of	your	classes.	For	instance,	in	tax-
preparation	software,	certain	deductions	might	not	be	possible	at	certain	times	of	the	year.

You	can	see	how	to	add	a	date	check	to	the	TaxCalculator	class,	but	isn’t	checking	that	off	to
the	side	of	TaxCalculator’s	main	responsibility:	calculating	tax?	Maybe	it	should	be	a	new	class.
The	other	case	is	the	one	we	led	off	this	chapter	with.	We	have	a	small	bit	of	functionality
that	we	could	place	into	an	existing	class,	but	we	can’t	get	the	class	into	a	test	harness.	If
we	could	get	it	to	at	least	compile	into	a	harness,	we	could	attempt	to	use	Sprout	Method,
but	sometimes	we’re	not	even	that	lucky.

The	thing	to	recognize	about	these	two	cases	is	that	even	though	the	motivation	is
different,	when	you	look	at	the	results,	there	isn’t	really	a	hard	line	between	them.
Whether	a	piece	of	functionality	is	strong	enough	to	be	a	new	responsibility	is	a	judgment
call.	Moreover,	because	the	code	changes	over	time,	the	decision	to	sprout	a	class	often
looks	better	in	retrospect.

Here	are	the	steps	for	Sprout	Class:

1.	Identify	where	you	need	to	make	your	code	change.

2.	If	the	change	can	be	formulated	as	a	single	sequence	of	statements	in	one	place	in	a
method,	think	of	a	good	name	for	a	class	that	could	do	that	work.	Afterward,	write
code	that	would	create	an	object	of	that	class	in	that	place,	and	call	a	method	in	it
that	will	do	the	work	that	you	need	to	do;	then	comment	those	lines	out.

3.	Determine	what	local	variables	you	need	from	the	source	method,	and	make	them
arguments	to	the	classes’	constructor.

4.	Determine	whether	the	sprouted	class	will	need	to	return	values	to	the	source
method.	If	so,	provide	a	method	in	the	class	that	will	supply	those	values,	and	add	a
call	in	the	source	method	to	receive	those	values.

5.	Develop	the	sprout	class	test	first	(see	test-driven	development	(88)).

6.	Remove	the	comment	in	the	source	method	to	enable	the	object	creation	and	calls.

Advantages	and	Disadvantages

The	key	advantage	of	Sprout	Class	is	that	it	allows	you	to	move	forward	with	your	work
with	more	confidence	than	you	could	have	if	you	were	making	invasive	changes.	In	C++,
Sprout	Class	has	the	added	advantage	that	you	don’t	have	to	modify	any	existing	header
files	to	get	your	change	in	place.	You	can	include	the	header	for	the	new	class	in	the
implementation	file	for	the	source	class.	In	addition,	the	fact	that	you	are	adding	a	new
header	file	to	your	project	is	a	good	thing.	Over	time,	you’ll	put	declarations	into	the	new
header	file	that	could	have	ended	up	in	the	header	of	the	source	class.	This	decreases	the
compilation	load	on	the	source	class.	At	least	you’ll	know	that	you	aren’t	making	a	bad
situation	worse.	At	some	time	later,	you	might	be	able	to	revisit	the	source	class	and	put	it
under	test.

The	key	disadvantage	of	Sprout	Class	is	conceptual	complexity.	As	programmers	learn
new	code	bases,	they	develop	a	sense	of	how	the	key	classes	work	together.	When	you	use
Sprout	Class,	you	start	to	gut	the	abstractions	and	do	the	bulk	of	the	work	in	other	classes.
At	times,	this	is	entirely	the	right	thing	to	do.	At	other	times,	you	move	toward	it	only
because	your	back	is	against	the	wall.	Things	that	ideally	would	have	stayed	in	that	one
class	end	up	in	sprouts	just	to	make	safe	change	possible.

Wrap	Method
Adding	behavior	to	existing	methods	is	easy	to	do,	but	often	it	isn’t	the	right	thing	to	do.
When	you	first	create	a	method,	it	usually	does	just	one	thing	for	a	client.	Any	additional
code	that	you	add	later	is	sort	of	suspicious.	Chances	are,	you’re	adding	it	just	because	it
has	to	execute	at	the	same	time	as	the	code	you’re	adding	it	to.	Back	in	the	early	days	of
programming,	this	was	named	temporal	coupling,	and	it	is	a	pretty	nasty	thing	when	you
do	it	excessively.	When	you	group	things	together	just	because	they	have	to	happen	at	the
same	time,	the	relationship	between	them	isn’t	very	strong.	Later	you	might	find	that	you
have	to	do	one	of	those	things	without	the	other,	but	at	that	point	they	might	have	grown
together.	Without	a	seam,	separating	them	can	be	hard	work.

When	you	need	to	add	behavior,	you	can	do	it	in	a	not-so-tangled	way.	One	of	the
techniques	that	you	can	use	is	Sprout	Method,	but	there	is	another	that	is	very	useful	at
times.	I	call	it	Wrap	Method.	Here	is	a	simple	example.
public	class	Employee
{
				…
				public	void	pay()	{
								Money	amount	=	new	Money();
								for	(Iterator	it	=	timecards.iterator();	it.hasNext();)	{
												Timecard	card	=	(Timecard)it.next();
												if	(payPeriod.contains(date))	{
																amount.add(card.getHours()	*	payRate);
												}
								}
								payDispatcher.pay(this,	date,	amount);
				}
}

In	this	method,	we	are	adding	up	daily	timecards	for	an	employee	and	then	sending	his
payment	information	to	a	PayDispatcher.	Let’s	suppose	that	a	new	requirement	comes	along.
Every	time	that	we	pay	an	employee,	we	have	to	update	a	file	with	the	employee’s	name
so	that	it	can	be	sent	off	to	some	reporting	software.	The	easiest	place	to	put	the	code	is	in
the	pay	method.	After	all,	it	has	to	happen	at	the	same	time,	right?	What	if	we	do	this
instead?
public	class	Employee
{
				private	void	dispatchPayment()	{
								Money	amount	=	new	Money();
								for	(Iterator	it	=	timecards.iterator();	it.hasNext();)	{
												Timecard	card	=	(Timecard)it.next();
												if	(payPeriod.contains(date))	{
																amount.add(card.getHours()	*	payRate);
												}
								}
								payDispatcher.pay(this,	date,	amount);
				}

				public	void	pay()	{
								logPayment();
								dispatchPayment();
				}

				private	void	logPayment()	{
				…
				}
}

In	the	code,	I’ve	renamed	pay()	as	dispatchPayment()	and	made	it	private.	Next,	I	created	a	new
pay	method	that	calls	it.	Our	new	pay()	method	logs	a	payment	and	then	dispatches
payment.	Clients	who	used	to	call	pay()	don’t	have	to	know	or	care	about	the	change.	They
just	make	their	call,	and	everything	works	out	okay.

This	is	one	form	of	Wrap	Method.	We	create	a	method	with	the	name	of	the	original
method	and	have	it	delegate	to	our	old	code.	We	use	this	when	we	want	to	add	behavior	to
existing	calls	of	the	original	method.	If	every	time	a	client	calls	pay()	we	want	logging	to
occur,	this	technique	can	be	very	useful.

There	is	another	form	of	Wrap	Method	that	we	can	use	when	we	just	want	to	add	a	new
method,	a	method	that	no	one	calls	yet.	In	the	previous	example,	if	we	wanted	logging	to
be	explicit,	we	could	add	a	makeLoggedPayment	method	to	Employee	like	this:
public	class	Employee
{
				public	void	makeLoggedPayment()	{
								logPayment();
								pay();
				}

				public	void	pay()	{
								…
				}

				private	void	logPayment()	{
								…
				}

}

Now	users	have	the	option	of	paying	in	either	way.	It	was	described	by	Kent	Beck	in
Smalltalk	Patterns:	Best	Practices	(Pearson	Education,	1996).

Wrap	Method	is	a	great	way	to	introduce	seams	while	adding	new	features.	There	are	only
a	couple	of	downsides.	The	first	is	that	the	new	feature	that	you	add	can’t	be	intertwined
with	the	logic	of	the	old	feature.	It	has	to	be	something	that	you	do	either	before	or	after
the	old	feature.	Wait,	did	I	say	that	is	bad?	Actually,	it	isn’t.	Do	it	when	you	can.	The
second	(and	more	real)	downside	is	that	you	have	to	make	up	a	new	name	for	the	old	code
that	you	had	in	the	method.	In	this	case,	I	named	the	code	in	the	pay()	method	dispatchPayment().
That	is	a	bit	of	a	stretch,	and,	frankly,	I	don’t	like	the	way	the	code	ended	up	in	this
example.	The	dispatchPayment()	method	is	really	doing	more	than	dispatching;	it	calculates	pay
also.	If	I	had	tests	in	place,	chances	are,	I’d	extract	the	first	part	of	dispatchPayment()	into	its	own
method	named	calculatePay()	and	make	the	pay()	method	read	like	this:
public	void	pay()	{
				logPayment();
				Money	amount	=	calculatePay();
				dispatchPayment(amount);
}

That	seems	to	separate	all	of	the	responsibilities	well.

Here	are	the	steps	for	the	first	version	of	the	Wrap	Method:

1.	Identify	a	method	you	need	to	change.

2.	If	the	change	can	be	formulated	as	a	single	sequence	of	statements	in	one	place,
rename	the	method	and	then	create	a	new	method	with	the	same	name	and	signature
as	the	old	method.	Remember	to	Preserve	Signatures	(312)	as	you	do	this.

3.	Place	a	call	to	the	old	method	in	the	new	method

4.	Develop	a	method	for	the	new	feature,	test	first	(see	test-driven	development	(88)),
and	call	it	from	the	new	method

In	the	second	version,	when	we	don’t	care	to	use	the	same	name	as	the	old	method,	the
steps	look	like	this:

1.	Identify	a	method	you	need	to	change.

2.	If	the	change	can	be	formulated	as	a	single	sequence	of	statements	in	one	place,
develop	a	new	method	for	it	using	test-driven	development	(88).

3.	Create	another	method	that	calls	the	new	method	and	the	old	method.

Advantages	and	Disadvantages

Wrap	Method	is	a	good	way	of	getting	new,	tested	functionality	into	an	application	when
we	can’t	easily	write	tests	for	the	calling	code.	Sprout	Method	and	Sprout	Class	add	code
to	existing	methods	and	make	them	longer	by	at	least	one	line,	but	Wrap	Method	does	not
increase	the	size	of	existing	methods.

Another	advantage	of	Wrap	Method	is	that	it	explicitly	makes	the	new	functionality
independent	of	existing	functionality.	When	you	wrap,	you	are	not	intertwining	code	for
one	purpose	with	code	for	another.

The	primary	disadvantage	of	Wrap	Method	is	that	it	can	lead	to	poor	names.	In	the
previous	example,	we	renamed	the	pay	method	dispatchPay()	just	because	we	needed	a	different
name	for	code	in	the	original	method.	If	our	code	isn’t	terribly	brittle	or	complex,	or	if	we
have	a	refactoring	tool	that	does	Extract	Method	(415)	safely,	we	can	do	some	further
extractions	and	end	up	with	better	names.	However,	in	many	cases,	we	are	wrapping
because	we	don’t	have	any	tests,	the	code	is	brittle	and	those	tools	aren’t	available.

Wrap	Class
The	class-level	companion	to	Wrap	Method	is	Wrap	Class.	Wrap	Class	uses	pretty	much
the	same	concept.	If	we	need	to	add	behavior	in	a	system,	we	can	add	it	to	an	existing
method,	but	we	can	also	add	it	to	something	else	that	uses	that	method.	In	Wrap	Class,
that	something	else	is	another	class.

Let’s	take	a	look	at	the	code	from	the	Employee	class	again.
class	Employee
{
				public	void	pay()	{
								Money	amount	=	new	Money();
								for	(Iterator	it	=	timecards.iterator();	it.hasNext();)	{
												Timecard	card	=	(Timecard)it.next();
												if	(payPeriod.contains(date))	{

																amount.add(card.getHours()	*	payRate);
												}
								}
								payDispatcher.pay(this,	date,	amount);
				}
				…
}

We	want	to	log	the	fact	that	we	are	paying	a	particular	employee.	One	thing	that	we	can	do
is	make	another	class	that	has	a	pay	method.	Objects	of	that	class	can	hold	on	to	an
employee,	do	the	logging	work	in	the	pay()	method,	and	then	delegate	to	the	employee	so
that	it	can	perform	payment.	Often	the	easiest	way	to	do	this,	if	you	can’t	instantiate	the
original	class	in	a	test	harness,	is	to	use	Extract	Implementer	(356)	or	Extract	Interface
(362)	on	it	and	have	the	wrapper	implement	that	interface.

In	the	following	code	we’ve	used	Extract	Implementer	to	turn	the	Employee	class	into	an
interface.	Now	a	new	class,	LoggingEmployee,	implements	that	class.	We	can	pass	any	Employee	to	a
LoggingEmployee	so	that	it	will	log	as	well	as	pay.
class	LoggingEmployee	extends	Employee
{
				public	LoggingEmployee(Employee	e)	{
								employee	=	e;
				}

				public	void	pay()	{
								logPayment();
								employee.pay();
				}

				private	void	logPayment()	{
								…
				}
				…
}

This	technique	is	called	the	decorator	pattern.	We	create	objects	of	a	class	that	wraps
another	class	and	pass	them	around.	The	class	that	wraps	should	have	the	same	interface
as	the	class	it	is	wrapping	so	that	clients	don’t	know	that	they	are	working	with	a	wrapper.
In	the	example,	LoggingEmployee	is	a	decorator	for	Employee.	It	needs	to	have	a	pay()	method	and	any
other	methods	on	Employee	that	are	used	by	the	client.

The	Decorator	Pattern
Decorator	allows	you	to	build	up	complex	behaviors	by	composing	objects	at	runtime.	For	example,	in	an	industrial
process-control	system,	we	might	have	a	class	called	ToolController	with	methods	such	as	raise(),	lower(),	step(),	on(),
and	off().	If	we	need	to	have	additional	things	happen	whenever	we	raise()	or	lower()	(things	such	as	audible	alarms	to
tell	people	to	get	out	of	the	way),	we	could	put	that	functionality	right	in	those	methods	in	the	ToolController	class.
Chances	are,	though,	that	wouldn’t	be	the	end	to	the	enhancements.	Eventually,	we	might	need	to	log	the	number	of
times	we	turn	the	controller	on	and	off.	We	might	also	need	to	notify	other	controllers	that	are	close	by	when	we	step
so	that	they	can	avoid	stepping	at	the	same	time.	The	list	of	things	that	we	can	do	along	with	our	five	simple
operations	(raise,	lower,	step,	on	and	off)	is	endless,	and	it	won’t	do	to	just	create	subclasses	for	each	combination	of
things.	The	number	of	combinations	of	those	behaviors	could	be	endless.

The	decorator	pattern	is	an	ideal	fit	for	this	sort	of	problem.	When	you	use	decorator,	you	create	an	abstract	class	that
defines	the	set	of	operations	you	need	to	support.	Then	you	create	a	subclass	that	inherits	from	that	abstract	class,
accepts	an	instance	of	the	class	in	its	constructor,	and	provides	a	body	for	each	of	those	methods.	Here	is	that	class
for	the	ToolController	problem:

abstract	class	ToolControllerDecorator	extends	ToolController
{
protected	ToolController	controller;
				public	ToolControllerDecorator(ToolController	controller)	{
								this.controller	=	controller;
				}
				public	void	raise()	{	controller.raise();	}
				public	void	lower()	{	controller.lower();	}
				public	void	step()	{	controller.step();	}
				public	void	on()	{	controller.on();	}
				public	void	off()	{	controller.off();	}
}

This	class	might	not	look	very	useful,	but	it	is.	You	can	subclass	it	and	override	any	or	all	of	the	methods	to	add
additional	behavior.	For	example,	if	we	need	to	notify	other	controllers	when	we	step,	we	could	have	a
StepNotifyingController	that	looks	like	this:
public	class	StepNotifyingController	extends	ToolControllerDecorator
{
				private	List	notifyees;
				public	StepNotifyingController(ToolController	controller,
												List	notifyees)	{
								super(controller);
								this.notifyees	=	notifyees;
				}
				public	void	step()	{
								//	notify	all	notifyees	here
												…
								controller.step();
				}
}

The	really	neat	thing	is	that	we	can	nest	the	subclasses	of	ToolControllerDecorator:
ToolController	controller	=	new	StepNotifyingController(
																							new	AlarmingController
																							(new	ACMEController()),	notifyees);

When	we	perform	an	operation	such	as	step()	on	the	controller,	it	notifies	all	notifyees,	issues	an	alarm,	and	actually
performs	the	stepping	action.	That	latter	part,	actually	performing	the	step	action,	happens	in	ACMEController,	which	is	a
concrete	subclass	of	ToolController,	not	ToolControllerDecorator.	It	doesn’t	pass	the	buck	to	anyone	else;	it	just	does	each
of	the	tool	controller	actions.	When	you	are	using	the	decorator	pattern,	you	need	to	have	at	least	one	of	these	“basic”
classes	that	you	wrap	around.

Decorator	is	a	nice	pattern,	but	it	is	good	to	use	it	sparingly.	Navigating	through	code	that	contains	decorators	that
decorate	other	decorators	is	a	lot	like	peeling	away	the	layers	of	an	onion.	It	is	necessary	work,	but	it	does	make	your
eyes	water.

This	is	a	fine	way	of	adding	functionality	when	you	have	many	existing	callers	for	a
method	like	pay().	However,	there	is	another	way	of	wrapping	that	is	not	so	decorator-ish.
Let’s	look	at	a	case	where	we	need	to	log	calls	to	pay()	in	only	one	place.	Instead	of
wrapping	in	the	functionality	as	a	decorator,	we	can	put	it	in	another	class	that	accepts	an
employee,	does	payment,	and	then	logs	information	about	it.

Here	is	a	little	class	that	does	this:
class	LoggingPayDispatcher
{
				private	Employee	e;
				public	LoggingPayDispatcher(Employee	e)	{
								this.e	=	e;
				}

				public	void	pay()	{

								employee.pay();
								logPayment();
				}

				private	void	logPayment()	{
								…
				}
				…
}

Now	we	can	create	LogPayDispatcher	in	the	one	place	where	we	need	to	log	payments.

The	key	to	Wrap	Class	is	that	you	are	able	to	add	new	behavior	into	a	system	without
adding	it	to	an	existing	class.	When	there	are	many	calls	to	the	code	you	want	to	wrap,	it
often	pays	to	move	toward	a	decorator-ish	wrapper.	When	you	use	the	decorator	pattern,
you	can	transparently	add	new	behavior	to	a	set	of	existing	calls	like	pay()	all	at	once.	On
the	other	hand,	if	the	new	behavior	only	has	to	happen	in	a	couple	of	places,	creating	a
wrapper	that	isn’t	decorator-ish	can	be	very	useful.	Over	time,	you	should	pay	attention	to
the	responsibilities	of	the	wrapper	and	see	if	the	wrapper	can	become	another	high-level
concept	in	your	system.

Here	are	the	steps	for	Wrap	Class:

1.	Identify	a	method	where	you	need	to	make	a	change.

2.	If	the	change	can	be	formulated	as	a	single	sequence	of	statements	in	one	place,
create	a	class	that	accepts	the	class	you	are	going	to	wrap	as	a	constructor	argument.
If	you	have	trouble	creating	a	class	that	wraps	the	original	class	in	a	test	harness,
you	might	have	to	use	Extract	Implementer	(356)	or	Extract	Interface	(362)	on	the
wrapped	class	so	that	you	can	instantiate	your	wrapper.

3.	Create	a	method	on	that	class,	using	test-driven	development	(88),	that	does	the	new
work.	Write	another	method	that	calls	the	new	method	and	the	old	method	on	the
wrapped	class.

4.	Instantiate	the	wrapper	class	in	your	code	in	the	place	where	you	need	to	enable	the
new	behavior.

The	difference	between	Sprout	Method	and	Wrap	Method	is	pretty	trivial.	You	are	using
Sprout	Method	when	you	choose	to	write	a	new	method	and	call	it	from	an	existing
method.	You	are	using	Wrap	Method	when	you	choose	to	rename	a	method	and	replace	it
with	a	new	one	that	does	the	new	work	and	calls	the	old	one.	I	usually	use	Sprout	Method
when	the	code	I	have	in	the	existing	method	communicates	a	clear	algorithm	to	the	reader.
I	move	toward	Wrap	Method	when	I	think	that	the	new	feature	I’m	adding	is	as	important
as	the	work	that	was	there	before.	In	that	case,	after	I’ve	wrapped,	I	often	end	up	with	a
new	high-level	algorithm,	something	like	this:
public	void	pay()	{
				logPayment();
				Money	amount	=	calculatePay();
				dispatchPayment(amount);
}

Choosing	to	use	Wrap	Class	is	a	whole	other	issue.	There	is	a	higher	threshold	for	this
pattern.	Generally	two	cases	tip	me	toward	using	Wrap	Class:

1.	The	behavior	that	I	want	to	add	is	completely	independent,	and	I	don’t	want	to
pollute	the	existing	class	with	behavior	that	is	low	level	or	unrelated.

2.	The	class	has	grown	so	large	that	I	really	can’t	stand	to	make	it	worse.	In	a	case	like
this,	I	wrap	just	to	put	a	stake	in	the	ground	and	provide	a	roadmap	for	later
changes.

The	second	case	is	pretty	hard	to	do	and	get	used	to.	If	you	have	a	very	large	class	that
has,	say,	10	or	15	different	responsibilities,	it	might	seem	a	little	odd	to	wrap	it	just	to	add
some	trivial	functionality.	In	fact,	if	you	can’t	present	a	compelling	case	to	your
coworkers,	you	might	get	beat	up	in	the	parking	lot	or,	worse,	ignored	for	the	rest	of	your
workdays,	so	let	me	help	you	make	that	case.

The	biggest	obstacle	to	improvement	in	large	code	bases	is	the	existing	code.	“Duh,”	you
might	say.	But	I’m	not	talking	about	how	hard	it	is	to	work	in	difficult	code;	I’m	talking
about	what	that	code	leads	you	to	believe.	If	you	spend	most	of	your	day	wading	through
ugly	code,	it’s	very	easy	to	believe	that	it	will	always	be	ugly	and	that	any	little	thing	that
you	do	to	make	it	better	is	simply	not	worth	it.	You	might	think,	“What	does	it	matter
whether	I	make	this	little	piece	nicer	if	90	percent	of	the	time	I’ll	still	being	working	with
murky	slime?	Sure,	I	can	make	this	piece	better,	but	what	will	that	do	for	me	this
afternoon?	Tomorrow?”	Well,	if	you	look	at	it	that	way,	I’d	have	to	agree	with	you.	Not
much.	But	if	you	consistently	do	these	little	improvements,	your	system	will	start	to	look
significantly	different	over	the	course	of	a	couple	of	months.	At	some	point,	you’ll	come
to	work	in	the	morning	expecting	to	sink	your	hands	into	some	slime	and	discover,	“Huh,
this	code	looks	pretty	good.	It	looks	like	someone	was	in	here	refactoring	recently.”	At
that	point,	when	you	feel	the	difference	between	good	code	and	bad	code	in	your	gut,	you
are	a	changed	person.	You	might	even	find	yourself	wanting	to	refactor	far	in	excess	of
what	you	need	to	get	the	job	done,	just	to	make	your	life	easier.	It	probably	sounds	silly	to
you	if	you	haven’t	experienced	it,	but	I’ve	seen	it	happen	to	teams	over	and	over	again.
The	hard	part	is	the	initial	set	of	steps	because	sometimes	they	look	silly.	“What?	Wrap	a
class	just	to	add	this	little	feature?	It	looks	worse	than	it	did	before.	It’s	more
complicated.”	Yes,	it	is,	for	now.	But	when	you	really	start	to	break	out	those	10	or	15
responsibilities	in	that	wrapped	class,	it	will	look	far	more	appropriate.

Summary
In	this	chapter,	I	outlined	a	set	of	techniques	you	can	use	to	make	changes	without	getting
existing	classes	under	test.	From	a	design	point	of	view,	it	is	hard	to	know	what	to	think
about	them.	In	many	cases,	they	allow	us	to	put	some	distance	between	distinct	new
responsibilities	and	old	ones.	In	other	words,	we	start	to	move	toward	better	design.	But	in
other	cases,	we	know	that	the	only	reason	we’ve	created	a	class	is	because	we	wanted	to
write	new	code	with	tests	and	we	weren’t	prepared	to	take	the	time	to	get	the	existing	class
under	test.	This	is	a	very	real	situation.	When	people	do	this	in	projects,	you	start	to	see
new	classes	and	methods	sprouting	around	the	carcasses	of	the	old	big	classes.	But	then	an
interesting	thing	happens.	After	a	while,	people	get	tired	of	side-stepping	the	old
carcasses,	and	they	start	to	get	them	under	test.	Part	of	this	is	familiarity.	If	you	have	to
look	at	this	big,	untested	class	repeatedly	to	figure	out	where	to	sprout	from	it,	you	get	to
know	it	better.	It	gets	less	scary.	The	other	part	of	it	is	sheer	tiredness.	You	get	tired	of
looking	at	the	trash	in	your	living	room,	and	you	want	to	take	it	out.	Chapter	9,	I	Can’t	Get

This	Class	into	a	Test	Harness,	and	Chapter	20,	This	Class	Is	Too	Big	and	I	Don’t	Want	It
to	Get	Any	Bigger,	are	good	places	to	start.

Chapter	7:	It	Takes	Forever	to	Make	a	Change

How	long	does	it	take	to	make	changes?	The	answer	varies	widely.	On	projects	with
terribly	unclear	code,	many	changes	take	a	long	time.	We	have	to	hunt	through	the	code,
understand	all	of	the	ramifications	of	a	change,	and	then	make	the	change.	In	clearer	areas
of	the	code,	this	can	be	very	quick,	but	in	really	tangled	areas,	it	can	take	a	very	long	time.
Some	teams	have	it	far	worse	than	others.	For	them,	even	the	simplest	code	changes	take	a
long	time	to	implement.	People	on	those	teams	can	find	out	what	feature	they	need	to	add,
visualize	exactly	where	to	make	the	change,	go	into	the	code	and	make	the	change	in	five
minutes,	and	still	not	be	able	to	release	their	change	for	several	hours.

Let’s	look	at	the	reasons	and	some	of	the	possible	solutions.

Understanding
As	the	amount	of	code	in	a	project	grows,	it	gradually	surpasses	understanding.	The
amount	of	time	it	takes	to	figure	out	what	to	change	just	keeps	increasing.

Part	of	this	is	unavoidable.	When	we	add	code	to	a	system,	we	can	add	it	to	existing
classes,	methods,	or	functions,	or	we	can	add	new	ones.	In	either	case,	it	is	going	to	take	a
while	to	figure	out	how	to	make	a	change	if	we	are	unfamiliar	with	the	context.

However,	there	is	one	key	difference	between	a	well-maintained	system	and	a	legacy
system.	In	a	well-maintained	system,	it	might	take	a	while	to	figure	out	how	to	make	a
change,	but	once	you	do,	the	change	is	usually	easy	and	you	feel	much	more	comfortable
with	the	system.	In	a	legacy	system,	it	can	take	a	long	time	to	figure	out	what	to	do,	and
the	change	is	difficult	also.	You	might	also	feel	like	you	haven’t	learned	much	beyond	the
narrow	understanding	you	had	to	acquire	to	make	the	change.	In	the	worst	cases,	it	seems
like	no	amount	of	time	will	be	enough	to	understand	everything	you	need	to	do	to	make	a
change,	and	you	have	to	walk	blindly	into	the	code	and	start,	hoping	that	you’ll	be	able	to
tackle	all	the	problems	that	you	encounter.

Systems	that	are	broken	up	into	small,	well-named,	understandable	pieces	enable	faster
work.	If	understanding	is	a	big	issue	on	your	project,	take	a	look	at	Chapter	16,	I	Don’t
Understand	the	Code	Well	Enough	to	Change	It,	and	Chapter	17,	My	Application	Has	No
Structure,	to	get	some	ideas	about	how	to	proceed.

Lag	Time
Changes	often	take	a	long	time	for	another	very	common	reason:	lag	time.	Lag	time	is	the
amount	of	time	that	passes	between	a	change	that	you	make	and	the	moment	that	you	get
real	feedback	about	the	change.	At	the	time	of	this	writing,	the	Mars	rover	Spirit	is
crawling	across	the	surface	of	Mars	taking	pictures.	It	takes	about	seven	minutes	for
signals	to	get	from	Earth	to	Mars.	Luckily,	Spirit	has	some	onboard	guidance	software	that
helps	it	move	around	on	its	own.	Imagine	what	it	would	be	like	to	drive	it	manually	from
Earth.	You	operate	the	controls	and	find	out	14	minutes	later	how	far	the	rover	moved.
Then	you	decide	what	you	want	to	do	next,	do	it,	and	wait	another	14	minutes	to	find	out
what	happened.	It	seems	ridiculously	inefficient,	right?	Yet,	when	you	think	about	it,	that
is	exactly	the	way	most	of	us	work	right	now	when	we	develop	software.	We	make	some

changes,	start	a	build,	and	then	find	out	what	happened	later.	Unfortunately,	we	don’t	have
software	that	knows	how	to	navigate	around	obstacles	in	the	build,	things	such	as	test
failures.	What	we	try	to	do	instead	is	bundle	a	bunch	of	changes	and	make	them	all	at	once
so	that	we	don’t	have	to	build	too	often.	If	our	changes	are	good,	we	move	along,	albeit	as
slow	as	the	Mars	rover.	If	we	hit	an	obstacle,	we	go	even	slower.

The	sad	thing	about	this	way	of	working	is	that,	in	most	languages,	it	is	completely
unnecessary.	It’s	a	complete	waste	of	time.	In	most	mainstream	languages,	you	can	always
break	dependencies	in	a	way	that	lets	you	recompile	and	run	tests	against	whatever	code
you	are	working	on	in	less	than	10	seconds.	If	a	team	is	really	motivated,	its	members	can
get	it	down	to	less	than	five	seconds,	in	most	cases.	What	it	comes	down	to	is	this:	You
should	be	able	to	compile	every	class	or	module	in	your	system	separately	from	the	others
and	in	its	own	test	harness.	When	you	have	that,	you	can	get	very	rapid	feedback,	and	that
just	helps	development	go	faster.

The	human	mind	has	some	interesting	qualities.	If	we	have	to	perform	a	short	task	(5-10
seconds	long)	and	we	can	only	take	a	step	once	every	minute,	we	usually	do	it	and	then
pause.	If	we	have	to	do	some	work	to	figure	out	what	to	do	at	the	next	step,	we	start	to
plan.	After	we	plan,	our	minds	wander	until	we	can	do	the	next	step.	If	we	compress	the
time	between	steps	down	from	a	minute	to	a	few	seconds,	the	quality	of	the	mental	work
becomes	different.	We	can	use	feedback	to	try	out	approaches	quickly.	Our	work	becomes
more	like	driving	than	like	waiting	at	a	bus	stop.	Our	concentration	is	more	intense
because	we	aren’t	constantly	waiting	for	the	next	chance	to	do	something.	Most	important,
the	amount	of	time	that	it	takes	us	to	notice	and	correct	mistakes	is	much	smaller.

What	keeps	us	from	being	able	to	work	this	way	all	the	time?	Some	people	can.	People
who	program	in	interpreted	languages	can	often	get	near-instantaneous	feedback	when
they	work.	For	the	rest	of	us,	who	work	in	compiled	languages,	the	main	impediment	is
dependency,	the	need	to	compile	something	that	we	don’t	care	about	just	because	we	want
to	compile	something	else.

Breaking	Dependencies
Dependencies	can	be	problematic,	but,	fortunately,	we	can	break	them.	In	object-oriented
code,	often	the	first	step	is	to	attempt	to	instantiate	the	classes	that	we	need	in	a	test
harness.	In	the	easiest	cases,	we	can	do	this	just	by	importing	or	including	the	declaration
of	the	classes	we	depend	upon.	In	harder	cases,	try	the	techniques	in	Chapter	9,	I	Can’t
Get	This	Class	into	a	Test	Harness.	When	you	are	able	to	create	an	object	of	a	class	in	a
test	harness,	you	might	have	other	dependencies	to	break	if	you	want	to	test	individual
methods.	In	those	cases,	see	Chapter	10,	I	Can’t	Run	This	Method	in	a	Test	Harness.

When	you	have	a	class	that	you	need	to	change	in	a	test	harness,	generally,	you	can	take
advantage	of	very	fast	edit-compile-link-test	times.	Usually,	the	execution	cost	for	most
methods	is	relatively	low	compared	to	the	costs	of	the	methods	that	they	call,	particularly
if	the	calls	are	calls	to	external	resources	such	as	the	database,	hardware,	or	the
communications	infrastructure.	The	times	when	this	doesn’t	happen	are	usually	cases	in
which	the	methods	are	very	calculation-intensive.	The	techniques	I’ve	outlined	in	Chapter
22,	I	Need	to	Change	a	Monster	Method	and	I	Can’t	Write	a	Test	for	It,	can	help.

In	many	cases,	change	can	be	this	straightforward,	but	often	people	working	in	legacy

code	are	stopped	dead	in	their	tracks	by	the	first	step:	attempting	to	get	a	class	into	a	test
harness.	This	can	be	a	very	large	effort	in	some	systems.	Some	classes	are	very	huge;
others	have	so	many	dependencies	that	they	seem	to	overwhelm	the	functionality	that	you
want	to	work	on	entirely.	In	cases	like	these,	it	pays	to	see	if	you	can	cut	out	a	larger
chunk	of	the	code	and	put	it	under	test.	See	Chapter	12,	I	Need	to	Make	Many	Changes	in
One	Area.	Do	I	Have	to	Break	Dependencies	for	All	the	Classes	Involved?	That	chapter
contains	a	set	of	techniques	that	you	can	use	to	find	pinch	points	(180),	places	where	test
writing	is	easier.

In	the	rest	of	this	chapter,	I	describe	how	you	can	go	about	changing	the	way	that	your
code	is	organized	to	make	builds	easier.

Build	Dependencies

In	an	object-oriented	system,	if	you	have	a	cluster	of	classes	that	you	want	to	build	more
quickly,	the	first	thing	that	you	have	to	figure	out	is	which	dependencies	will	get	in	the
way.	Generally,	that	is	rather	easy:	You	just	attempt	to	use	the	classes	in	a	test	harness.
Nearly	every	problem	that	you	run	into	will	be	the	result	of	some	dependency	that	you
should	break.	After	the	classes	run	in	a	test	harness,	there	are	still	some	dependencies	that
can	affect	compile	time.	It	pays	to	look	at	everything	that	depends	upon	what	you’ve	been
able	to	instantiate.	Those	things	will	have	to	recompile	when	you	rebuild	the	system.	How
can	you	minimize	this?

The	way	to	handle	this	is	to	extract	interfaces	for	the	classes	in	your	cluster	that	are	used
by	classes	outside	the	cluster.	In	many	IDEs,	you	can	extract	an	interface	by	selecting	a
class	and	making	a	menu	selection	that	shows	you	a	list	of	all	of	the	methods	in	the	class
and	allows	you	to	choose	which	ones	you	want	to	be	part	of	the	new	interface.	Afterward,
the	tools	allow	you	to	provide	the	name	of	the	new	interface.	They	also	give	you	the
option	of	letting	it	replace	references	to	the	class	with	references	to	the	interface
everywhere	it	can	in	the	code	base.	It’s	an	incredibly	useful	feature.	In	C++,	Extract
Implementer	(356)	is	a	little	easier	than	Extract	Interface	(362).	You	don’t	have	to	change
the	names	of	references	all	over	the	place,	but	you	do	have	to	change	the	places	that	create
instances	of	the	old	class	(see	Extract	Implementer	(356)	for	details).

When	we	have	these	clusters	of	classes	under	test,	we	have	the	option	of	changing	the
physical	structure	of	our	project	to	make	builds	easier.	We	do	this	by	moving	the	clusters
off	to	a	new	package	or	library.	Builds	do	become	more	complex	when	we	do	this,	but
here	is	the	key:	As	we	break	dependencies	and	section	off	classes	into	new	packages	or
libraries,	the	overall	cost	of	a	rebuild	of	the	entire	system	grows,	but	the	average	time	for	a
build	can	decrease.

Let’s	look	at	an	example.	Figure	7.1	shows	a	small	set	of	collaborating	classes,	all	in	the
same	package.

Figure	7.1	Opportunity	handling	classes.

We	want	to	make	some	changes	to	the	AddOpportunityFormHandler	class,	but	it	would	be	nice	if	we
could	make	our	build	faster,	too.	The	first	step	is	to	try	to	instantiate	an	AddOpportunityFormHandler.
Unfortunately,	all	of	the	classes	it	depends	upon	are	concrete.	AddOpportunityFormHandler	needs	a
ConsultantSchedulerDB	and	an	AddOpportunityXMLGenerator.	It	could	very	well	be	the	case	that	both	of	those
classes	depend	on	other	classes	that	aren’t	in	the	diagram.

If	we	attempt	to	instantiate	an	AddOpportunityFormHandler,	who	knows	how	many	classes	we’ll	end
up	using?	We	can	get	past	this	by	starting	to	break	dependencies.	The	first	dependency	we
encounter	is	ConsultantSchedulerDB.	We	need	to	create	one	to	pass	to	the	AddOpportunityFormHandler
constructor.	It	would	be	awkward	to	use	that	class	because	it	connects	to	the	database,	and
we	don’t	want	to	do	that	during	testing.	However,	we	could	use	Extract	Implementer	(356)
and	break	the	dependency	as	shown	in	Figure	7.2.

Figure	7.2	Extracting	an	implementer	on	ConsultantSchedulerDB.

Now	that	ConsultantSchedulerDB	is	an	interface,	we	can	create	an	AddOpportunityFormHandler	using	a	fake
object	that	implements	the	ConsultantSchedulerDB	interface.	Interestingly,	by	breaking	that
dependency,	we’ve	made	our	build	faster	under	some	conditions.	The	next	time	that	we
make	a	modification	to	ConsultantSchedulerDBImpl,	AddOpportunityFormHandler	doesn’t	have	to	recompile.
Why?	Well,	it	doesn’t	directly	depend	on	the	code	in	ConsultantSchedulerDBImpl	anymore.	We	can
make	as	many	changes	as	we	want	to	the	ConsultantSchedulerDBImpl	file,	but	unless	we	do
something	that	forces	us	to	change	the	ConsultantSchedulerDB	interface,	we	won’t	have	to	rebuild
the	AddOpportunityFormHandler	class.

If	we	want,	we	can	isolate	ourselves	from	forced	recompilation	even	further,	as	shown	in
Figure	7.3.	Here	is	another	design	for	the	system	that	we	arrive	at	by	using	Extract
Implementer	(356)	on	the	OpportunityItem	class.

Figure	7.3	Extracting	an	implementer	on	OpportunityItem.

Now	AddOpportunityFormHandler	doesn’t	depend	on	the	original	code	in	OpportunityItem	at	all.	In	a	way,
we’ve	put	a	“compilation	firewall”	in	the	code.	We	can	make	as	many	changes	as	we	want
to	ConsultantSchedulerDBImpl	and	OpportunityItemImpl,	but	that	won’t	force	AddOpportunityFormHandler	to	recompile,
and	it	won’t	force	any	users	of	AddOpportunityFormHandler	to	recompile.	If	we	wanted	to	make	this
very	explicit	in	the	package	structure	of	the	application,	we	could	break	up	our	design	into
the	separate	packages	shown	in	Figure	7.4.

Figure	7.4	Refactored	package	structure.

Now	we	have	a	package,	OpportunityProcessing,	that	really	has	no	dependencies	on	the	database
implementation.	Whatever	tests	we	write	and	place	in	the	package	should	compile	quickly,
and	the	package	itself	doesn’t	have	to	recompile	when	we	change	code	in	the	database
implementation	classes.

The	Dependency	Inversion	Principle
When	your	code	depends	on	an	interface,	that	dependency	is	usually	very	minor	and	unobtrusive.	Your	code	doesn’t
have	to	change	unless	the	interface	changes,	and	interfaces	typically	change	far	less	often	than	the	code	behind	them.

When	you	have	an	interface,	you	can	edit	classes	that	implement	that	interface	or	add	new	classes	that	implement	the
interface,	all	without	impacting	code	that	uses	the	interface.

For	this	reason,	it	is	better	to	depend	on	interfaces	or	abstract	classes	than	it	is	to	depend	on	concrete	classes.	When
you	depend	on	less	volatile	things,	you	minimize	the	chance	that	particular	changes	will	trigger	massive
recompilation.

So	far,	we’ve	done	a	few	things	to	prevent	AddOpportunityFormHandler	from	being	recompiled	when
we	modify	classes	it	depends	upon.	That	does	make	builds	faster,	but	it	is	only	half	of	the
issue.	We	can	also	make	builds	faster	for	code	that	depends	on	AddOpportunityFormHandler.	Let’s
look	at	the	package	design	again,	in	Figure	7.5.

Figure	7.5	Package	structure.

AddOpportunityFormHandler	is	the	only	public	production	(non-test)	class	in	OpportunityProcessing.	Any
classes	in	other	packages	that	depend	on	it	have	to	recompile	when	we	change	it.	We	can
break	that	dependency	also	by	using	Extract	Interface	(362)	or	Extract	Implementer	(356)
on	AddOpportunityFormHandler.	Then,	classes	in	other	packages	can	depend	on	the	interfaces.	When
we	do	that,	we’ve	effectively	shielded	all	of	the	users	of	this	package	from	recompilation
when	we	make	most	changes.

We	can	break	dependencies	and	allocate	classes	across	different	packages	to	make	build
time	faster,	and	doing	it	is	very	worthwhile.	When	you	can	rebuild	and	run	your	tests	very
quickly,	you	can	get	greater	feedback	as	you	develop.	In	most	cases,	that	means	fewer
errors	and	less	aggravation.	But	it	isn’t	free.	There	is	some	conceptual	overhead	in	having
more	interfaces	and	packages.	Is	that	a	fair	price	to	pay	compared	to	the	alternative?	Yes.
At	times,	it	can	take	a	little	longer	to	find	things	when	you	have	more	packages	and
interfaces,	but	when	you	do,	you	can	work	with	them	very	easily.

When	you	introduce	more	interfaces	and	packages	into	your	design	to	break	dependencies,	the	amount	of	time	it
takes	to	rebuild	the	entire	system	goes	up	slightly.	There	are	more	files	to	compile.	But	the	average	time	for	a	make,	a
build	based	on	what	needs	to	be	recompiled,	can	go	down	dramatically.

When	you	start	to	optimize	your	average	build	time,	you	end	up	with	areas	of	code	that
are	very	easy	to	work	with.	It	might	be	a	bit	of	a	pain	to	get	a	small	set	of	classes
compiling	separately	and	under	test,	but	the	important	thing	to	remember	is	that	you	have
to	do	it	only	once	for	that	set	of	classes;	afterward,	you	get	to	reap	the	benefits	forever.

Summary

The	techniques	I’ve	shown	in	this	chapter	can	be	used	to	speed	up	build	time	for	small
clusters	of	classes,	but	this	is	only	a	small	portion	of	what	you	can	do	using	interfaces	and
packages	to	manage	dependencies.	Robert	C.	Martin’s	book	Agile	Software	Development:
Principles,	Patterns,	and	Practices	(Pearson	Education,	2002)	presents	more	techniques
along	these	lines	that	every	software	developer	should	know.

Chapter	8:	How	Do	I	Add	a	Feature?

This	has	to	be	the	most	abstract	and	problem-domain-specific	question	in	the	book.	I
almost	didn’t	add	it	because	of	that.	But	the	fact	is,	regardless	of	our	design	approach	or
the	particular	constraints	we	face,	there	are	some	techniques	that	we	can	use	to	make	the
job	easier.

Let’s	talk	about	context.	In	legacy	code,	one	of	the	most	important	considerations	is	that
we	don’t	have	tests	around	much	of	our	code.	Worse,	getting	them	in	place	can	be
difficult.	People	on	many	teams	are	tempted	to	fall	back	on	the	techniques	in	Chapter	6,	I
Don’t	Have	Much	Time	and	I	Have	to	Change	It,	because	of	this.	We	can	use	the
techniques	described	there	(sprouting	and	wrapping)	to	add	to	code	without	tests,	but	there
are	some	hazards	aside	from	the	obvious	ones.	For	one	thing,	when	we	sprout	or	wrap,	we
don’t	significantly	modify	the	existing	code,	so	it	isn’t	going	to	get	any	better	for	a	while.
Duplication	is	another	hazard.	If	the	code	that	we	add	duplicates	code	that	exists	in	the
untested	areas,	it	might	just	lie	there	and	fester.	Worse,	we	might	not	realize	that	we	are
going	to	have	duplication	until	we	get	far	along	making	our	changes.	The	last	hazards	are
fear	and	resignation:	fear	that	we	can’t	change	a	particular	piece	of	code	and	make	it	easier
to	work	with,	and	resignation	because	whole	areas	of	the	code	just	aren’t	getting	any
better.	Fear	gets	in	the	way	of	good	decision	making.	The	sprouts	and	wraps	left	in	the
code	are	little	reminders	of	it.

In	general,	it’s	better	to	confront	the	beast	than	hide	from	it.	If	we	can	get	code	under	test,
we	can	use	the	techniques	in	this	chapter	to	move	forward	in	a	good	way.	If	you	need	to
find	ways	to	get	tests	in	place,	look	at	Chapter	13,	I	Need	to	Make	a	Change,	but	I	Don’t
Know	What	Tests	to	Write.	If	dependencies	are	getting	in	your	way,	look	at	Chapter	9,	I
Can’t	Get	This	Class	into	a	Test	Harness,	and	Chapter	10,	I	Can’t	Run	This	Method	in	a
Test	Harness.

Once	we	have	tests	in	place,	we	are	in	a	better	position	to	add	new	features.	We	have	a
solid	foundation.

Test-Driven	Development	(TDD)
The	most	powerful	feature-addition	technique	I	know	of	is	test-driven	development
(TDD).	In	a	nutshell,	it	works	like	this:	We	imagine	a	method	that	will	help	us	solve	some
part	of	a	problem,	and	then	we	write	a	failing	test	case	for	it.	The	method	doesn’t	exist	yet,
but	if	we	can	write	a	test	for	it,	we’ve	solidified	our	understanding	of	what	the	code	we	are
about	to	write	should	do.

Test-driven	development	uses	a	little	algorithm	that	goes	like	this:

1.	Write	a	failing	test	case.

2.	Get	it	to	compile.

3.	Make	it	pass.

4.	Remove	duplication.

5.	Repeat.

Here	is	an	example.	We’re	working	on	a	financial	application,	and	we	need	a	class	that	is
going	to	use	some	high-powered	mathematics	to	verify	whether	certain	commodities
should	be	traded.	We	need	a	Java	class	that	calculates	something	called	the	first	statistical
moment	about	a	point.	We	don’t	have	a	method	that	does	that	yet,	but	we	do	know	that	we
can	write	a	test	case	for	the	method.	We	know	the	math,	so	we	know	that	the	answer
should	be	-0.5	for	the	data	we	code	in	the	test.

Write	a	Failing	Test	Case

Here	is	a	test	case	for	the	functionality	we	need.
public	void	testFirstMoment()	{
				InstrumentCalculator	calculator	=	new	InstrumentCalculator();
				calculator.addElement(1.0);
				calculator.addElement(2.0);

				assertEquals(-0.5,	calculator.firstMomentAbout(2.0),	TOLERANCE);
}

Get	It	to	Compile

The	test	we	just	wrote	is	nice,	but	it	doesn’t	compile.	We	don’t	have	a	method	named
firstMomentAbout	on	InstrumentCalculator.	But	we	add	it	as	an	empty	method.	We	want	the	test	to	fail,
so	we	have	it	return	the	double	value	NaN	(which	definitely	is	not	the	expected	value	of	-0.5).
public	class	InstrumentCalculator
{
				double	firstMomentAbout(double	point)	{
								return	Double.NaN;
				}
				…
}

Make	It	Pass

With	that	test	in	place,	we	write	the	code	that	makes	it	pass.
public	double	firstMomentAbout(double	point)	{
				double	numerator	=	0.0;
				for	(Iterator	it	=	elements.iterator();	it.hasNext();)	{
								double	element	=	((Double)(it.next())).doubleValue();
								numerator	+=	element	-	point;
				}
				return	numerator	/	elements.size();
}

This	is	an	abnormally	large	amount	of	code	to	write	in	response	to	a	test	in	TDD.	Typically,	steps	are	much	smaller,
although	they	can	be	this	large	if	you	are	certain	of	the	algorithm	you	need	to	use.

Remove	Duplication

Do	we	have	any	duplication	here?	Not	really.	We	can	go	on	to	the	next	case.

Write	a	Failing	Test	Case

The	code	we	just	wrote	makes	the	test	pass,	but	it	definitely	won’t	be	good	for	all	cases.	In
the	return	statement,	we	could	accidentally	divide	by	0.	What	should	we	do	in	that	case?
What	do	we	return	when	we	have	no	elements?	In	this	case,	we	want	to	throw	an
exception.	The	results	will	be	meaningless	for	us	unless	we	have	data	in	our	elements	list.

This	next	test	is	special.	It	fails	if	an	InvalidBasisException	isn’t	thrown,	and	it	passes	if	no
exceptions	are	thrown	or	any	other	exception	is	thrown.	When	we	run	it,	it	fails	because
an	ArithmeticException	is	thrown	when	we	divide	by	0	in	firstMomentAbout.
public	void	testFirstMoment()	{
				try	{
								new	InstrumentCalculator().firstMomentAbout(0.0);
								fail(“expected	InvalidBasisException”);
				}
				catch	(InvalidBasisException	e)	{
				}
}

Get	It	to	Compile

To	do	this,	we	have	to	alter	the	declaration	of	firstMomentAbout	so	that	it	throws	an
InvalidBasisException.
public	double	firstMomentAbout(double	point)
								throws	InvalidBasisException	{

				double	numerator	=	0.0;
				for	(Iterator	it	=	elements.iterator();	it.hasNext();)	{
								double	element	=	((Double)(it.next())).doubleValue();
								numerator	+=	element	-	point;
				}
				return	numerator	/	elements.size();
}

But	that	doesn’t	compile.	The	compiler	errors	tell	us	that	we	have	to	actually	throw	the
exception	if	it	is	listed	in	the	declaration,	so	we	go	ahead	and	write	the	code.
public	double	firstMomentAbout(double	point)
												throws	InvalidBasisException		{

				if	(element.size()	==	0)
								throw	new	InvalidBasisException(“no	elements”);

				double	numerator	=	0.0;
				for	(Iterator	it	=	elements.iterator();	it.hasNext();)	{
								double	element	=	((Double)(it.next())).doubleValue();
								numerator	+=	element	-	point;
				}
				return	numerator	/	elements.size();
}

Make	It	Pass

Now	our	tests	pass.

Remove	Duplication

There	isn’t	any	duplication	in	this	case.

Write	a	Failing	Test	Case

The	next	piece	of	code	that	we	have	to	write	is	a	method	that	calculates	the	second
statistical	moment	about	a	point.	Actually,	it	is	just	a	variation	of	the	first.	Here	is	a	test
that	moves	us	toward	writing	that	code.	In	this	case,	the	expected	value	is	0.5	rather	than
-0.5.	We	write	a	new	test	for	a	method	that	doesn’t	exist	yet:	secondMomentAbout.

public	void	testSecondMoment()	throws	Exception	{
				InstrumentCalculator	calculator	=	new	InstrumentCalculator();
				calculator.addElement(1.0);
				calculator.addElement(2.0);

				assertEquals(0.5,	calculator.secondMomentAbout(2.0),	TOLERANCE);
}

Get	It	to	Compile

To	get	it	to	compile,	we	have	to	add	a	definition	for	secondMomentAbout.	We	can	use	the	same	trick
we	used	for	the	firstMomentAbout	method,	but	it	turns	out	that	the	code	for	the	second	moment	is
only	a	slight	variation	of	the	code	for	the	first	moment.

This	line	in	firstMoment:
numerator	+=	element	-	point;

has	to	become	this	in	the	case	of	the	second	moment:
numerator	+=	Math.pow(element	–	point,	2.0);

And	there	is	a	general	pattern	for	this	sort	of	thing.	The	nth	statistic	moment	is	calculated
using	this	expression:
numerator	+=	Math.pow(element	–	point,	N);

The	code	in	firstMomentAbout	works	because	element	–	point	is	the	same	as	Math.pow(element	–	point,	1.0).

At	this	point,	we	have	a	couple	of	choices.	We	can	notice	the	generality	and	write	a
general	method	that	accepts	an	“about”	point	and	a	value	for	N.	Then	we	can	replace	every
use	of	firstMomentAbout(double)	with	a	call	to	that	general	method.	We	can	do	that,	but	it	would
burden	the	callers	with	the	need	to	supply	an	N	value,	and	we	don’t	want	to	allow	clients	to
supply	an	arbitrary	value	for	N.	It	seems	like	we	are	getting	lost	in	thought	here.	We	should
put	this	on	hold	and	finish	what	we’ve	started	so	far.	Our	only	job	right	now	is	to	make	it
compile.	We	can	generalize	later	if	we	find	that	we	still	want	to.

To	make	it	compile,	we	can	make	a	copy	of	the	firstMomentAbout	method	and	rename	it	so	that	it
is	now	called	secondMomentAbout:
public	double	secondMomentAbout(double	point)
								throws	InvalidBasisException	{

				if	(elements.size()	==	0)
								throw	new	InvalidBasisException(“no	elements”);

				double	numerator	=	0.0;
				for	(Iterator	it	=	elements.iterator();	it.hasNext();)	{
								double	element	=	((Double)(it.next())).doubleValue();
								numerator	+=	element	-	point;
				}
				return	numerator	/	elements.size();
}

Make	It	Pass

This	code	fails	the	test.	When	it	fails,	we	can	go	back	and	make	it	pass	by	changing	the
code	to	this:
public	double	secondMomentAbout(double	point)
								throws	InvalidBasisException	{

				if	(elements.size()	==	0)
								throw	new	InvalidBasisException(“no	elements”);

				double	numerator	=	0.0;
				for	(Iterator	it	=	elements.iterator();	it.hasNext();)	{
								double	element	=	((Double)(it.next())).doubleValue();
								numerator	+=	Math.pow(element	–	point,	2.0);
				}
				return	numerator	/	elements.size();
}

You	might	be	shocked	by	the	cut/copy/paste	we	just	did,	but	we’re	going	to	remove
duplication	in	a	second.	This	code	that	we	are	writing	is	fresh	code.	But	the	trick	of	just
copying	the	code	that	we	need	and	modifying	it	in	a	new	method	is	pretty	powerful	in	the
context	of	legacy	code.	Often	when	we	want	to	add	features	to	particularly	awful	code,	it’s
easier	to	understand	our	modifications	if	we	put	them	in	some	new	place	and	can	see	them
side	by	side	with	the	old	code.	We	can	remove	duplication	later	to	fold	the	new	code	into
the	class	in	a	nicer	way,	or	we	can	just	get	rid	of	the	modification	and	try	it	in	a	different
way,	knowing	that	we	still	have	the	old	code	to	look	at	and	learn	from.

Remove	Duplication

Now	that	we	have	both	tests	passing,	we	have	to	do	the	next	step:	remove	duplication.
How	do	we	do	it?

One	way	to	do	it	is	to	extract	the	entire	body	of	secondMomentAbout,	call	it	nthMomentAbout	and	give	it	a
parameter,	N:
public	double	secondMomentAbout(double	point)
								throws	InvalidBasisException	{
				return	nthMomentAbout(point,	2.0);
}

private	double	nthMomentAbout(double	point,	double	n)
								throws	InvalidBasisException	{

				if	(elements.size()	==	0)
								throw	new	InvalidBasisException(“no	elements”);

				double	numerator	=	0.0;
				for	(Iterator	it	=	elements.iterator();	it.hasNext();)	{
								double	element	=	((Double)(it.next())).doubleValue();
								numerator	+=	Math.pow(element	–	point,	n);
				}
				return	numerator	/	elements.size();
}

If	we	run	our	tests	now,	we’ll	see	that	they	pass.	We	can	go	back	to	firstMomentAbout	and	replace
its	body	with	a	call	to	nthMomentAbout:
public	double	firstMomentAbout(double	point)
								throws	InvalidBasisException	{
				return	nthMomentAbout(point,	1.0);
}

This	final	step,	removing	duplication,	is	very	important.	We	can	quickly	and	brutally	add
features	to	code	by	doing	things	such	as	copy	whole	blocks	of	code,	but	if	we	don’t
remove	the	duplication	afterward,	we	are	just	causing	trouble	and	making	a	maintenance

burden.	On	the	other	hand,	if	we	have	tests	in	place,	we	are	able	to	remove	duplication
easily.	We	definitely	saw	this	here,	but	the	only	reason	we	had	tests	is	because	we	used
TDD	from	the	start.	In	legacy	code,	the	tests	that	we	write	around	existing	code	when	we
use	TDD	are	very	important.	When	we	have	them	in	place,	we	have	a	free	hand	to	write
whatever	code	we	need	to	add	a	feature,	and	we	know	that	we’ll	be	able	to	fold	it	into	the
rest	of	the	code	without	making	things	worse.

TDD	and	Legacy	Code
One	of	the	most	valuable	things	about	TDD	is	that	it	lets	us	concentrate	on	one	thing	at	a	time.	We	are	either	writing
code	or	refactoring;	we	are	never	doing	both	at	once.

That	separation	is	particularly	valuable	in	legacy	code	because	it	lets	us	write	new	code	independently	of	new	code.

After	we	have	written	some	new	code,	we	can	refactor	to	remove	any	duplication	between	it	and	the	old	code.

For	legacy	code,	we	can	extend	the	TDD	algorithm	this	way:

0.	Get	the	class	you	want	to	change	under	test.

1.	Write	a	failing	test	case.

2.	Get	it	to	compile.

3.	Make	it	pass.	(Try	not	to	change	existing	code	as	you	do	this.)

4.	Remove	duplication.

5.	Repeat.

Programming	by	Difference
Test-driven	development	isn’t	tied	to	object	orientation.	In	fact,	the	example	in	the
previous	section	is	really	just	a	piece	of	procedural	code	wrapped	up	in	a	class.	In	OO,	we
have	another	option.	We	can	use	inheritance	to	introduce	features	without	modifying	a
class	directly.	After	we’ve	added	the	feature,	we	can	figure	out	exactly	how	we	really	want
the	feature	integrated.

The	key	technique	for	doing	this	is	something	called	programming	by	difference.	It	is	a
rather	old	technique	that	was	discussed	and	used	quite	a	bit	in	the	1980s,	but	it	fell	out	of
favor	in	the	1990s	when	many	people	in	the	OO	community	noticed	that	inheritance	can
be	rather	problematic	if	it	is	overused.	But	just	because	we	use	inheritance	initially	doesn’t
mean	that	we	have	to	keep	it	in	place.	With	the	help	of	the	tests,	we	can	move	easily	to
other	structures	if	the	inheritance	becomes	problematic.

Here’s	an	example	that	shows	how	it	works.	We	have	a	tested	Java	class	called	MailForwarder
that	is	part	of	a	Java	program	that	manages	mailing	lists.	It	has	a	method	named	getFromAddress.
This	is	what	it	looks	like:
private	InternetAddress	getFromAddress(Message	message)
								throws	MessagingException	{

				Address	[]	from	=	message.getFrom	();
				if	(from	!=	null	&&	from.length	>	0)
								return	new	InternetAddress	(from	[0].toString	());
				return	new	InternetAddress	(getDefaultFrom());
}

The	purpose	of	this	method	is	to	strip	out	the	“from”	address	of	a	received	mail	message
and	return	it	so	that	it	can	be	used	as	the	“from”	address	of	the	message	that	is	forwarded
to	list	recipients.

It’s	used	in	only	one	place,	these	lines	in	a	method	named	forwardMessage:
MimeMessage	forward	=	new	MimeMessage	(session);
forward.setFrom	(getFromAddress	(message));

Now,	what	do	we	need	to	do	if	we	have	a	new	requirement?	What	if	we	need	to	support
mailing	lists	that	are	anonymous?	Members	of	these	lists	can	post,	but	the	“from”	address
of	their	messages	should	be	set	to	a	particular	e-mail	address	based	upon	the	value	of	domain
(an	instance	variable	of	the	MessageFowarder	class).	Here	is	a	failing	test	case	for	that	change
(when	the	test	executes,	the	expectedMessage	variable	is	set	to	the	message	that	the	MessageFowarder
forwards):
public	void	testAnonymous	()	throws	Exception	{
				MessageForwarder	forwarder	=	new	MessageForwarder();
				forwarder.forwardMessage	(makeFakeMessage());
				assertEquals	(“anon-members@”	+	forwarder.getDomain(),
								expectedMessage.getFrom	()[0].toString());
}

Do	we	have	to	modify	MessageForwarder	to	add	this	functionality?	Not	really—we	could	just
subclass	MessageForwarder	and	make	a	class	called	AnonymousMessageForwarder.	We	can	use	it	in	the	test
instead.
public	void	testAnonymous	()	throws	Exception	{
				MessageForwarder	forwarder	=	new	AnonymousMessageForwarder();
				forwarder.forwardMessage	(makeFakeMessage());
				assertEquals	(“anon-members@”	+	forwarder.getDomain(),
								expectedMessage.getFrom	()[0].toString());
}

Then	we	subclass	(see	Figure	8.1).

Figure	8.1	Subclassing	MessageForwarder.

Here	we’ve	made	the	getFromAddress	method	protected	in	MessageForwarder	rather	than	private.	Then
we	overrode	it	in	AnonymousMessageForwarder.	In	that	class,	it	looks	like	this:
protected	InternetAddress	getFromAddress(Message	message)
								throws	MessagingException	{
				String	anonymousAddress	=	“anon-”	+	listAddress;

				return	new	InternetAddress(anonymousAddress);
}

What	does	that	get	us?	Well,	we’ve	solved	the	problem,	but	we’ve	added	a	new	class	to
our	system	for	some	very	simple	behavior.	Does	it	make	sense	to	subclass	a	whole
message-forwarding	class	just	to	change	its	“from”	address?	Not	in	the	long	term,	but	the
thing	that	is	nice	is	that	it	allows	us	to	pass	our	test	quickly.	And	when	we	have	that	test
passing,	we	can	use	it	to	make	sure	that	we	preserve	this	new	behavior	when	we	decide
that	we	want	to	change	the	design.
public	void	testAnonymous	()	throws	Exception	{
				MessageForwarder	forwarder	=	new	AnonymousMessageForwarder();
				forwarder.forwardMessage	(makeFakeMessage());
				assertEquals	(“anon-members@”	+	forwarder.getDomain(),
								expectedMessage.getFrom	()[0].toString());
}

That	almost	seemed	too	easy.	What’s	the	catch?	Well,	here	it	is:	If	we	use	this	technique
repeatedly	and	we	don’t	pay	attention	to	some	key	aspects	of	our	design,	it	starts	to
degrade	rapidly.	To	see	what	can	happen,	let’s	consider	another	change.	We	want	to
forward	messages	to	the	mailing	list	recipients,	but	we	also	want	to	send	them	via	blind
carbon	copy	(bcc)	to	some	other	people	who	can’t	be	on	the	official	mailing	list.	We	can
call	them	off-list	recipients.

It	looks	easy	enough;	we	could	subclass	MessageForwarder	again	and	override	its	process	method
so	that	it	sends	messages	to	that	destination,	as	in	Figure	8.2.

Figure	8.2	Subclassing	for	two	differences.

That	could	work	fine	except	for	one	thing.	What	if	we	need	a	MessageForwarder	that	does	both
things:	send	all	messages	to	off-list	recipients	and	do	all	forwarding	anonymously?

This	is	one	of	the	big	problems	with	using	inheritance	extensively.	If	we	put	features	into
distinct	subclasses,	we	can	only	have	one	of	those	features	at	a	time.

How	can	we	get	out	of	this	bind?	One	way	is	to	stop	before	adding	the	off-list	recipients
feature	and	refactor	so	that	it	can	go	in	cleanly.	Luckily,	we	have	that	test	in	place	that	we
wrote	earlier.	We	can	use	it	to	verify	that	we	preserve	behavior	as	we	move	to	another
scheme.

For	the	anonymous	forwarding	feature,	there	is	a	way	that	we	could’ve	implemented	it
without	subclassing.	We	could	have	chosen	to	make	anonymous	forwarding	a

configuration	option.	One	way	of	doing	this	is	to	change	the	constructor	of	the	class	so
that	it	accepts	a	collection	of	properties:

Properties	configuration	=	new	Properties();
				configuration.setProperty(“anonymous”,	“true”);
				MessageForwarder	forwarder	=	new	MessageForwarder(configuration);

Can	we	make	our	test	pass	when	we	do	that?	Let’s	look	at	the	test	again:
public	void	testAnonymous	()	throws	Exception	{
				MessageForwarder	forwarder	=	new	AnonymousMessageForwarder();
				forwarder.forwardMessage	(makeFakeMessage());
				assertEquals	(“anon-members@”	+	forwarder.getDomain(),
								expectedMessage.getFrom	()[0].toString());
}

Currently,	this	test	passes.	AnonymousMessageForwarder	overrides	the	getFrom	method	from	MessageForwarder.
What	if	we	alter	the	getFrom	method	in	MessageForwarder	like	this?
private	InternetAddress	getFromAddress(Message	message)
								throws	MessagingException	{

				String	fromAddress	=	getDefaultFrom();
				if	(configuration.getProperty(“anonymous”).equals(“true”))	{
								fromAddress	=	“anon-members@”	+	domain;
				}
				else	{
								Address	[]	from	=	message.getFrom	();
								if	(from	!=	null	&&	from.length	>	0)	{
												fromAddress	=	from	[0].toString	();
								}
				}
				return	new	InternetAddress	(fromAddress);
}

Now	we	have	a	getFrom	method	in	MessageFowarder	that	should	be	able	to	handle	the	anonymous
case	and	the	regular	case.	We	can	verify	this	by	commenting	out	the	override	of	getFrom	in
AnonymousMessageForwarder	and	seeing	if	the	tests	pass:
public	class	AnonymousMessageForwarder	extends	MessageForwarder
{
/*
				protected	InternetAddress	getFromAddress(Message	message)
												throws	MessagingException	{
								String	anonymousAddress	=	“anon-”	+	listAddress;
								return	new	InternetAddress(anonymousAddress);
				}
*/
}

Sure	enough,	they	do.

We	don’t	need	the	AnonymousMessageForwarder	class	any	longer,	so	we	can	delete	it.	Then	we	have	to
find	each	place	that	we	create	an	AnonymousMessageForwarder	and	replace	its	constructor	call	with	a
call	to	the	constructor	that	accepts	a	properties	collection.

We	can	use	the	properties	collection	to	add	the	new	feature	also.	We	can	have	a	property
that	enables	the	off-list	recipient	feature.

Are	we	done?	Not	really.	We’ve	made	the	getFrom	method	on	MessageForwarder	a	little	messy,	but
because	we	have	tests,	we	can	very	quickly	do	an	extract	method	to	clean	it	up	a	little.

Right	now	it	looks	like	this:
private	InternetAddress	getFromAddress(Message	message)
								throws	MessagingException	{

				String	fromAddress	=	getDefaultFrom();
				if	(configuration.getProperty(“anonymous”).equals(“true”))	{
								fromAddress	=	“anon-members@”	+	domain;
				}
				else	{
								Address	[]	from	=	message.getFrom	();
								if	(from	!=	null	&&	from.length	>	0)
								fromAddress	=	from	[0].toString	();
				}
				return	new	InternetAddress	(fromAddress);
}

After	some	refactoring,	it	looks	like	this:
private	InternetAddress	getFromAddress(Message	message)
								throws	MessagingException	{

				String	fromAddress	=	getDefaultFrom();
				if	(configuration.getProperty(“anonymous”).equals(“true”))	{
								from	=	getAnonymousFrom();
				}
				else	{
								from	=	getFrom(Message);
				}
				return	new	InternetAddress	(from);
}

That’s	a	little	cleaner	but	the	anonymous	mailing	and	off-list	recipient	features	are	folded
into	the	MessageForwarder	now.	Is	this	bad	in	light	of	the	Single	Responsibility	Principle	(246)?	It
can	be.	It	depends	on	how	large	the	code	related	to	a	responsibility	gets	and	how	tangled	it
is	with	the	rest	of	the	code.	In	this	case,	determining	whether	the	list	is	anonymous	isn’t
that	big	of	a	deal.	The	property	approach	allows	us	to	move	on	in	a	nice	way.	What	can	we
do	when	there	are	many	properties	and	the	code	of	the	MessageForwarder	starts	to	get	littered	with
conditional	statements?	One	thing	we	can	do	is	start	to	use	a	class	rather	than	a	properties
collection.	What	if	we	created	a	class	called	Mailing-Configuration	and	let	it	hold	the	properties
collection?	(See	Figure	8.3.)

Figure	8.3	Delegating	to	MailingConfiguration.

Looks	nice,	but	isn’t	this	overkill?	It	looks	like	the	MailingConfiguration	just	does	the	same	things
that	a	properties	collection	does.

What	if	we	decided	to	move	getFromAddress	to	the	MailingConfiguration	class?	The	MailingConfiguration	class
could	accept	a	message	and	decide	what	“from”	address	to	return.	If	the	configuration	is
set	up	for	anonymity,	it	would	return	the	anonymous	mailing	“from”	address.	If	it	isn’t,	it
could	take	the	first	address	from	the	message	and	return	it.	Our	design	would	be	as	it

appears	in	Figure	8.4.	Notice	that	we	don’t	have	to	have	method	to	get	and	set	properties
any	longer.	MailingConfiguration	now	supports	higher-level	functionality.

Figure	8.4	Moving	behavior	to	MailingConfiguration.

We	could	also	start	to	add	other	methods	to	MailingConfiguration.	For	instance,	if	we	want	to
implement	that	off-list	recipients	feature,	we	can	add	a	method	named	buildRecipientList	on	the
MailingConfiguration	and	let	the	MessageForwarder	use	it,	as	shown	in	Figure	8.5.

Figure	8.5	Moving	more	behavior	to	MailingConfiguration.

With	these	changes,	the	name	of	the	class	isn’t	as	nice	as	it	was.	A	configuration	is	usually
a	rather	passive	thing.	This	class	actively	builds	and	modifies	data	for	MessageFowarders	at	their
request.	If	there	isn’t	another	class	with	the	same	name	in	the	system	already,	the	name
MailingList	might	be	a	good	fit.	MessageForwarders	ask	mailing	lists	to	calculate	from	addresses	and
build	recipient	lists.	We	can	say	that	it	is	the	responsibility	of	a	mailing	list	to	determine
how	messages	are	altered.	Figure	8.6	shows	our	design	after	the	renaming.

Figure	8.6	MailingConfiguration	renamed	as	MailingList.

There	are	many	powerful	refactorings,	but	Rename	Class	is	the	most	powerful.	It	changes	the	way	people	see	code	and
lets	them	notice	possibilities	that	they	might	not	have	considered	before.

Programming	by	Difference	is	a	useful	technique.	It	allows	us	to	make	changes	quickly,
and	we	can	use	tests	to	move	to	a	cleaner	design.	But	to	do	it	well,	we	have	to	look	out	for
a	couple	of	“gotchas.”	One	of	them	is	Liskov	substitution	principle	(LSP)	violation.

The	Liskov	Substitution	Principle
There	are	some	subtle	errors	that	we	can	cause	when	we	use	inheritance.	Consider	the	following	code:
public	class	Rectangle
{
				…
				public	Rectangle(int	x,	int	y,	int	width,	int	height)	{	…	}
				public	void	setWidth(int	width)	{	…	}

				public	void	setHeight(int	height)	{	…	}
				public	int	getArea()	{	…	}
}

We	have	a	Rectangle	class.	Can	we	create	a	subclass	named	Square?
public	class	Square	extends	Rectangle
{
				…
				public	Square(int	x,	int	y,	int	width)	{	…	}
				…
}

Square	inherits	the	setWidth	and	setHeight	methods	of	Rectangle.	What	should	the	area	be	when	we	execute	this	code?
Rectangle	r	=	new	Square();
r.setWidth(3);
r.setHeight(4);

If	the	area	is	12,	the	Square	really	isn’t	a	square	is	it?	We	could	override	setWidth	and	setHeight	so	that	they	can	keep	the
Square	“square”.	We	could	have	setWidth	and	setHeight	both	modify	the	width	variable	in	squares,	but	that	could	lead	to
some	counterintuitive	results.	Anyone	who	expects	that	all	rectangles	will	have	an	area	of	12	when	their	width	is	set
to	3	and	their	height	is	set	to	4	is	in	for	a	surprise.	They’d	get	16	instead.

This	is	a	classic	example	of	a	Liskov	Substitution	Principle	(LSP)	violation.	Objects	of	subclasses	should	be
substitutable	for	objects	of	their	superclasses	throughout	our	code.	If	they	aren’t	we	could	have	silent	errors	in	our
code.

The	LSP	implies	that	clients	of	a	class	should	be	able	to	use	objects	of	a	subclass	without
having	to	know	that	they	are	objects	of	a	subclass.	There	aren’t	any	mechanical	ways	to
completely	avoid	LSP	violations.	Whether	a	class	is	LSP	conformant	depends	upon	the
clients	that	it	has	and	what	they	expect.	However,	some	rules	of	thumb	help:

1.	Whenever	possible,	avoid	overriding	concrete	methods.

2.	If	you	do,	see	if	you	can	call	the	method	you	are	overriding	in	the	overriding
method.

Wait,	we	didn’t	do	those	things	in	the	MessageForwarder.	In	fact,	we	did	the	opposite.	We
overrode	a	concrete	method	in	a	subclass	(AnonymousMessage-Forwarder).	What’s	the	big	deal?

Here’s	the	issue:	When	we	override	concrete	methods	as	we	did	when	we	overrode	the
getFromAddress	of	MessageForwarder	in	AnonymousMessageForwarder,	we	could	be	changing	the	meaning	of	some
of	the	code	that	uses	MessageFowarders.	If	there	are	references	to	MessageForwarder	scattered	throughout
our	application	and	we	set	one	of	them	to	an	AnonymousMessageForwarder,	people	who	are	using	it
might	think	that	it	is	a	simple	MessageFowarder	and	that	it	gets	the	“from”	address	from	the
message	it’s	processing	and	uses	it	when	it	processes	messages.	Would	it	matter	to	people
who	use	this	class	whether	it	does	that	or	uses	another	special	address	as	the	“from”
address?	That	depends	on	the	application.	In	general,	code	gets	confusing	when	we
override	concrete	methods	too	often.	Someone	can	notice	a	MessageForwarder	reference	in	code,
take	a	look	at	the	MessageFowarder	class,	and	think	that	the	code	it	has	for	getFromAddress	is	executed.
They	might	have	no	idea	that	the	reference	is	pointing	to	an	AnonymousMessageForwarder	and	that	its
getFromAddress	method	is	the	one	that	is	used.	If	we	really	wanted	to	keep	the	inheritance
around,	we	could	have	made	MessageForwarder	abstract,	given	it	an	abstract	method	for
getFromAddress,	and	let	the	subclasses	provide	concrete	bodies.	Figure	8.7	shows	what	the
design	would	look	like	after	these	changes.

Figure	8.7	Normalized	hierarchy.

I	call	this	sort	of	hierarchy	a	normalized	hierarchy.	In	a	normalized	hierarchy,	no	class	has
more	than	one	implementation	of	a	method.	In	other	words,	none	of	the	classes	has	a
method	that	overrides	a	concrete	method	it	inherited	from	a	superclass.	When	you	ask	the
question	“How	does	this	class	do	X?”	you	can	answer	it	by	going	to	class	X	and	looking.
Either	the	method	is	there	or	it	is	abstract	and	implemented	in	one	of	the	subclasses.	In	a
normalized	hierarchy	you	don’t	have	to	worry	about	subclasses	overriding	behavior	they
inherited	from	their	superclasses.

Is	it	worth	doing	this	all	of	the	time?	A	few	concrete	overrides	every	once	in	a	while	don’t
hurt,	as	long	as	it	doesn’t	cause	a	Liskov	substitution	principle	violation.	However,	it’s
good	to	think	about	how	far	classes	are	from	normalized	form	every	once	in	a	while	and	at
times	to	move	toward	it	when	we	prepare	to	separate	out	responsibilities.

Programming	by	Difference	lets	us	introduce	variations	quickly	in	systems.	When	we	do,
we	can	use	our	tests	to	pin	down	the	new	behavior	and	move	to	more	appropriate
structures	when	we	need	to.	Tests	can	make	the	move	very	rapid.

Summary
You	can	use	the	techniques	in	this	chapter	to	add	features	to	any	code	that	you	can	get
under	test.	The	literature	on	test-driven	development	has	grown	in	recent	years.	In
particular,	I	recommend	Kent	Beck’s	book	Test-Driven	Development	by	Example
(Addison-Wesley,	2002),	and	Dave	Astel’s	Test-Driven	Development:	A	Practical	Guide
(Prentice	Hall	Professional	Technical	Reference,	2003).

Chapter	9:	I	Can’t	Get	This	Class	into	a	Test	Harness

This	is	the	hard	one.	If	it	were	always	easy	to	instantiate	a	class	in	a	test	harness,	this	book
would	be	a	lot	shorter.	Unfortunately,	it’s	often	hard	to	do.

Here	are	the	four	most	common	problems	we	encounter:

1.	Objects	of	the	class	can’t	be	created	easily.

2.	The	test	harness	won’t	easily	build	with	the	class	in	it.

3.	The	constructor	we	need	to	use	has	bad	side	effects.

4.	Significant	work	happens	in	the	constructor,	and	we	need	to	sense	it.

In	this	chapter,	we	go	through	a	series	of	examples	that	highlight	these	problems	in
different	languages.	There	is	more	than	one	way	to	tackle	each	of	these	problems.
However,	reading	through	these	examples	is	a	great	way	of	becoming	familiar	with	the
arsenal	of	dependency	breaking	techniques	and	learning	how	to	trade	them	off	and	apply
them	in	particular	situations.

The	Case	of	the	Irritating	Parameter
When	I	need	to	make	a	change	in	a	legacy	system,	I	usually	start	out	buoyantly	optimistic.
I	don’t	know	why	I	do.	I	try	to	be	a	realist	as	much	as	I	can,	but	the	optimism	is	always
there.	“Hey,”	I	say	to	myself	(or	a	partner),	“this	sounds	like	it	will	be	easy.	We	just	have
to	make	the	Floogle	flumoux	a	bit,	and	then	we’ll	be	done.”	It	all	sounds	so	easy	in	words	until
we	get	to	the	Floogle	class	(whatever	that	is)	and	look	at	it	a	bit.	“Okay,	so	we	need	to	add	a
method	here,	and	change	this	other	method,	and,	of	course	we’ll	need	to	get	it	in	a	testing
harness.”	At	this	point,	I	start	to	doubt	a	little.	“Gee,	it	looks	like	the	simplest	constructor
on	this	class	accepts	three	parameters.	But,”	I	say	optimistically,	“maybe	it	won’t	be	too
hard	to	construct	it.”

Let’s	take	a	look	at	an	example	and	see	whether	my	optimism	is	appropriate	or	just	a
defense	mechanism.

In	the	code	for	a	billing	system,	we	have	an	untested	Java	class	named	CreditValidator.
public	class	CreditValidator
{
				public	CreditValidator(RGHConnection	connection,
																											CreditMaster	master,
																											String	validatorID)	{
								…
				}

				Certificate	validateCustomer(Customer	customer)
												throws	InvalidCredit	{
								…
				}

				…
}

One	of	the	many	responsibilities	of	this	class	is	to	tell	us	whether	customers	have	valid
credit.	If	they	do,	we	get	back	a	certificate	that	tells	us	how	much	credit	they	have.	If	they

don’t,	the	class	throws	an	exception.

Our	mission,	should	we	choose	to	accept	it,	it	is	to	add	a	new	method	to	this	class.	The
method	will	be	named	getValidationPercent,	and	its	job	will	be	to	tell	us	the	percentage	of
successful	validateCustomer	calls	we’ve	made	over	the	life	of	the	validator.

How	do	we	get	started?

When	we	need	to	create	an	object	in	a	test	harness,	often	the	best	approach	is	to	just	try	to
do	it.	We	could	do	a	lot	of	analysis	to	find	out	why	it	would	or	would	not	be	easy	or	hard,
but	it	is	just	as	easy	to	create	a	JUnit	test	class,	type	this	into	it,	and	compile	the	code:
public	void	testCreate()	{
					CreditValidator	validator	=	new	CreditValidator();
}

The	best	way	to	see	if	you	will	have	trouble	instantiating	a	class	in	a	test	harness	is	to	just	try	to	do	it.	Write	a	test
case	and	attempt	to	create	an	object	in	it.	The	compiler	will	tell	you	what	you	need	to	make	it	really	work.

This	test	is	a	construction	test.	Construction	tests	do	look	a	little	weird.	When	I	write	one,
I	usually	don’t	put	an	assertion	in	it.	I	just	try	to	create	the	object.	Later,	when	I’m	finally
able	to	construct	an	object	in	the	test	harness,	I	usually	get	rid	of	the	test	or	rename	it	so
that	I	can	use	it	to	test	something	more	substantial.

Back	to	our	example:

We	haven’t	added	any	of	the	arguments	to	the	constructor	yet,	so	the	compiler	complains.
It	tells	us	that	there	is	no	default	constructor	for	CreditValidator.	Hunting	through	the	code,	we
discover	that	we	need	an	RGHConnection,	a	CreditMaster,	and	a	password.	Each	of	these	classes	has
only	one	constructor.	This	is	what	they	look	like:
public	class	RGHConnection
{
				public	RGHConnection(int	port,	String	Name,	string	passwd)
												throws	IOException	{
								…
				}
}

public	class	CreditMaster
{
				public	CreditMaster(String	filename,	boolean	isLocal)	{
								…
				}
}

When	an	RGHConnection	is	constructed,	it	connects	with	a	server.	The	connection	uses	that
server	to	get	all	of	the	reports	it	needs	to	validate	a	customer’s	credit.

The	other	class,	CreditMaster,	gives	us	some	policy	information	that	we	use	in	our	credit
decisions.	On	construction,	a	CreditMaster	loads	the	information	from	a	file	and	holds	it	in
memory	for	us.

So,	it	does	seem	pretty	easy	to	get	this	class	in	a	testing	harness,	right?	Not	so	fast.	We	can
write	the	test,	but	can	we	live	with	it?
public	void	testCreate()	throws	Exception	{
				RGHConnection	connection	=	new	RGHConnection(DEFAULT_PORT,

																																																	“admin”,	“rii8ii9s”);
				CreditMaster	master	=	new	CreditMaster(“crm2.mas”,	true);
				CreditValidator	validator	=	new	CreditValidator(
																																											connection,	master,	“a”);
}

It	turns	out	that	establishing	RGHConnections	to	the	server	in	a	test	is	not	a	good	idea.	It	takes	a
long	time,	and	the	server	isn’t	always	up.	On	the	other	hand,	the	CreditMaster	is	not	really	a
problem.	When	we	create	a	CreditMaster,	it	loads	its	file	quickly.	In	addition,	the	file	is	read-
only,	so	we	don’t	have	to	worry	about	our	tests	corrupting	it.

The	thing	that	is	really	getting	in	our	way	when	we	want	to	create	the	validator	is	the
RGHConnection.	It	is	an	irritating	parameter.	If	we	can	create	some	sort	of	a	fake	RGHConnection	object
and	make	CreditValidator	believe	that	it’s	talking	to	a	real	one,	we	can	avoid	all	sorts	of
connection	trouble.	Let’s	take	a	look	at	the	methods	that	RGHConnection	provides	(see	Figure
9.1).

Figure	9.1	RGHConnection.

It	looks	like	RGHConnection	has	a	set	of	methods	that	deal	with	the	mechanics	of	forming	a
connection:	connect,	disconnect,	and	retry,	as	well	as	more	business-specific	methods	such	as
RFDIReportFor	and	ACTIOReportFor.	When	we	write	our	new	method	on	CreditValidator,	we	are	going	to
have	to	call	RFDIReportFor	to	get	all	of	the	information	that	we	need.	Normally,	all	of	that
information	comes	from	the	server,	but	because	we	want	to	avoid	using	a	real	connection,
we’ll	have	to	find	some	way	to	supply	it	ourselves.

In	this	case,	the	best	way	to	make	a	fake	object	is	to	use	Extract	Interface	(362)	on	the
RGHConnection	class.	If	you	have	a	tool	with	refactoring	support,	chances	are	good	that	it
supports	Extract	Interface.	If	you	don’t	have	a	tool	that	supports	Extract	Interface,
remember	that	it	is	easy	enough	to	do	by	hand.

After	we	do	Extract	Interface	(362),	we	end	up	with	a	structure	like	the	one	shown	in
Figure	9.2.

Figure	9.2	RGHConnection	after	extracting	an	interface

We	can	start	to	write	tests	by	creating	a	little	fake	class	that	provides	the	reports	that	we
need:
public	class	FakeConnection	implements	IRGHConnection
{
				public	RFDIReport	report;

				public	void	connect()	{}
				public	void	disconnect()	{}
				public	RFDIReport	RFDIReportFor(int	id)	{	return	report;	}
				public	ACTIOReport	ACTIOReportFor(int	customerID)	{	return	null;	}
}

With	that	class,	we	can	start	to	write	tests	like	this:
void	testNoSuccess()	throws	Exception	{
				CreditMaster	master	=	new	CreditMaster(“crm2.mas”,	true);
				IRGHConnection	connection	=	new	FakeConnection();
				CreditValidator	validator	=	new	CreditValidator(
																																								connection,	master,	“a”);
				connection.report	=	new	RFDIReport(…);

				Certificate	result	=	validator.validateCustomer(new	Customer(…));

				assertEquals(Certificate.VALID,	result.getStatus());
}

The	FakeConnection	class	is	a	little	weird.	How	often	do	we	ever	write	methods	that	don’t	have
any	bodies	or	that	just	return	null	to	callers?	Worse,	it	has	a	public	variable	that	anyone
can	set	whenever	they	want	to.	It	seems	like	the	class	violates	all	of	the	rules.	Well,	it
doesn’t	really.	The	rules	are	different	for	classes	that	we	use	to	make	testing	possible.	The
code	in	FakeConnection	isn’t	production	code.	It	won’t	ever	run	in	our	full	working	application
—just	in	the	test	harness.

Now	that	we	can	create	a	validator,	we	can	write	our	getValidationPercent	method.	Here	is	a	test
for	it.
void	testAllPassed100Percent()	throws	Exception	{

				CreditMaster	master	=	new	CreditMaster(“crm2.mas”,	true);
				IRGHConnection	connection	=	new	FakeConnection(“admin”,	“rii8ii9s”);
				CreditValidator	validator	=	new	CreditValidator(
																																								connection,	master,	“a”);

				connection.report	=	new	RFDIReport(…);
				Certificate	result	=	validator.validateCustomer(new	Customer(…));
				assertEquals(100.0,	validator.getValidationPercent(),	THRESHOLD);
}

Test	Code	vs.	Production	Code
Test	code	doesn’t	have	to	live	up	to	the	same	standards	as	production	code.	In	general,	I	don’t	mind	breaking
encapsulation	by	making	variables	public	if	it	makes	it	easier	to	write	tests.	However,	test	code	should	be	clean.	It
should	be	easy	to	understand	and	change.

Take	a	look	at	the	testNoSuccess	and	testAllPassed100Percent	tests	in	the	example.	Do	they	have	any	duplicate	code?	Yes.
The	first	three	lines	are	duplicated.	They	should	be	extracted	and	placed	in	a	common	place,	the	setUp()	method	for
this	test	class.

The	test	checks	to	see	if	the	validation	percent	is	roughly	100.0	when	we	get	a	single	valid
credit	certificate.

The	test	works	fine,	but	as	we	write	the	code	for	getValidationPercent,	we	notice	something
interesting.	It	turns	out	that	getValidationPercent	isn’t	going	to	use	the	CreditMaster	at	all,	so	why	are
we	making	one	and	passing	it	into	the	CreditValidator?	Maybe	we	don’t	need	to.	We	could
create	the	CreditValidator	like	this	in	our	test:
CreditValidator	validator	=	new	CreditValidator(connection,	null,	“a”);

Are	you	still	there?

The	way	people	react	to	lines	of	code	like	that	often	says	a	lot	about	the	kind	of	system
they	work	on.	If	you	looked	at	it	and	said,	“Oh,	fine,	so	he’s	passing	a	null	into	the
constructor—we	do	that	all	the	time	in	our	system,”	chances	are,	you’ve	got	a	pretty	nasty
system	on	your	hands.	You	probably	have	checks	for	null	all	over	the	place	and	a	lot	of
conditional	code	that	you	use	to	figure	out	what	you	have	and	what	you	can	do	with	it.	On
the	other	hand,	if	you	looked	at	it	and	said,	“What	is	wrong	with	this	guy?!	Passing	null
around	in	a	system?	Doesn’t	he	know	anything	at	all?”,	well,	for	those	of	you	in	the	latter
group	(at	least	those	who	are	still	reading	and	haven’t	slammed	the	book	shut	in	the
bookstore),	I	just	have	this	to	say:	Remember,	we’re	only	doing	this	in	the	tests.	The	worst
that	can	happen	is	that	some	code	will	attempt	to	use	the	variable.	In	that	case,	the	Java
runtime	will	throw	an	exception.	Because	the	harness	catches	all	exceptions	thrown	in
tests,	we’ll	find	out	pretty	quickly	whether	the	parameter	is	being	used	at	all.

Pass	Null
When	you	are	writing	tests	and	an	object	requires	a	parameter	that	is	hard	to	construct,	consider	just	passing	null
instead.	If	the	parameter	is	used	in	the	course	of	your	test	execution,	the	code	will	throw	an	exception	and	the	test
harness	will	catch	the	exception.	If	you	need	behavior	that	really	requires	an	object,	you	can	construct	it	and	pass	it	as
a	parameter	at	that	point.

Pass	Null	is	a	very	handy	technique	in	some	languages.	It	works	well	in	Java	and	C#	and	in	just	about	every	language
that	throws	an	exception	when	null	references	are	used	at	runtime.	This	implies	that	it	really	isn’t	a	great	idea	to	do
this	in	C	and	C++	unless	you	know	that	the	runtime	will	detect	null	pointer	errors.	If	it	doesn’t,	you’ll	just	end	up
with	tests	that	will	crash	mysteriously,	if	you	are	lucky.	If	you	are	unlucky,	your	tests	will	just	be	silently	and
hopelessly	wrong.	They	will	corrupt	memory	as	they	run,	and	you’ll	never	know.

When	I	work	in	Java,	I	often	start	with	a	test	like	this	in	the	beginning	and	fill	in	the
parameters	as	I	need	them.
public	void	testCreate()	{
				CreditValidator	validator	=	new	CreditValidator(null,	null,	“a”);
}

The	important	thing	to	remember	is	this:	Don’t	pass	null	in	production	code	unless	you
have	no	other	choice.	I	know	that	some	libraries	out	there	expect	you	to,	but	when	you
write	fresh	code	there	are	better	alternatives.	If	you	are	tempted	to	use	null	in	production
code,	find	the	places	where	you	are	returning	nulls	and	passing	nulls,	and	consider	a
different	protocol.	Consider	using	the	Null	Object	Pattern	instead.

Null	Object	Pattern
The	Null	Object	Pattern	is	a	way	of	avoiding	the	use	of	null	in	programs.	For	example,	if	we	have	a	method	that	is
going	to	return	an	employee	given	an	ID,	what	should	we	return	if	there	is	no	employee	with	that	ID?
for(Iterator	it	=	idList.iterator();	it.hasNext();)	{
							EmployeeID	id	=	(EmployeeID)it.next();
							Employee	e	=	finder.getEmployeeForID(id);
							e.pay();
}

We	have	a	couple	of	choices.	We	could	just	decide	to	throw	an	exception	so	that	we	don’t	have	to	return	anything,	but
that	would	force	clients	to	deal	with	the	error	explicitly.	We	could	also	return	null,	but	then	clients	would	have	to
check	for	null	explicitly.

There	is	a	third	alternative.	Does	the	previous	code	really	care	whether	there	is	an	employee	to	pay?	Does	it	have	to?
What	if	we	had	a	class	called	NullEmployee?	An	instance	of	NullEmployee	has	no	name	and	no	address,	and	when	you	tell
it	to	pay,	it	just	does	nothing.

Null	objects	can	be	useful	in	contexts	like	this;	they	can	shield	clients	from	explicit	error	checking.	As	nice	as	null
objects	are,	you	have	to	be	cautious	when	you	use	them.	For	instance,	here	is	a	very	bad	way	of	counting	the	number
of	paid	employees:
int	employeesPaid	=	0;
for(Iterator	it	=	idList.iterator();	it.hasNext();)	{
			EmployeeID	id	=	(EmployeeID)it.next();
			Employee	e	=	finder.getEmployeeForID(id);
			e.pay();
			mployeesPaid++;								//	bug!
}

If	any	of	the	returned	employees	are	null	employees,	the	count	will	be	wrong.

Null	objects	are	useful	specifically	when	a	client	doesn’t	have	to	care	whether	an	operation	is	successful.	In	many
cases,	we	can	finesse	our	design	so	that	this	is	the	case.

Pass	Null	and	Extract	Interface	(362)	are	two	ways	of	approaching	irritating	parameters.
But	another	alternative	can	be	used	at	times.	If	the	problematic	dependency	in	a	parameter
isn’t	hard-coded	into	its	constructor,	we	can	use	Subclass	and	Override	Method	(401)	to
get	rid	of	the	dependency.	That	could	be	possible	in	this	case.	If	the	constructor	of
RGHConnection	uses	its	connect	method	to	form	a	connection,	we	could	break	the	dependency	by
overriding	connect()	in	a	testing	subclass.	Subclass	and	Override	Method	(401)	can	be	a	very
useful	way	of	breaking	dependencies,	but	we	have	to	be	sure	that	we	aren’t	altering	the
behavior	we	want	to	test	when	we	use	it.

The	Case	of	the	Hidden	Dependency

Some	classes	are	deceptive.	We	look	at	them,	we	find	a	constructor	that	we	want	to	use,
and	we	try	to	call	it.	Then,	bang!	We	run	into	an	obstacle.	One	of	the	most	common
obstacles	is	hidden	dependency;	the	constructor	uses	some	resource	that	we	just	can’t
access	nicely	in	our	test	harness.	We	run	into	this	situation	in	this	next	example,	a	poorly
designed	C++	class	that	manages	a	mailing	list:
class	mailing_list_dispatcher
{
public:
																		mailing_list_dispatcher	();
				virtual							~mailing_list_dispatcher;

				void										send_message(const	std::string&	message);
				void										add_recipient(const	mail_txm_id	id,
																														const	mail_address&	address);
				…

private:
				mail_service		*service;
				int											status;
};

Here	is	part	of	the	constructor	of	the	class.	It	allocates	a	mail_service	object	using	new	in	the
constructor	initializer	list.	That	is	poor	style,	and	it	gets	worse.	The	constructor	does	a	lot
of	detailed	work	with	the	mail_service.	It	also	uses	a	magic	number,	12—what	does	12	mean?
mailing_list_dispatcher::mailing_list_dispatcher()
:	service(new	mail_service),	status(MAIL_OKAY)
{
				const	int	client_type	=	12;
				service->connect();
				if	(service->get_status()	==	MS_AVAILABLE)	{
								service->register(this,	client_type,	MARK_MESSAGES_OFF);
								service->set_param(client_type,	ML_NOBOUNCE	|	ML_REPEATOFF);
				}
				else
								status	=	MAIL_OFFLINE;
				…
}

We	can	create	an	instance	of	this	class	in	a	test,	but	it’s	probably	not	going	to	do	us	much
good.	First	of	all,	we’ll	have	to	link	to	the	mail	libraries	and	configure	the	mail	system	to
handle	registrations.	And	if	we	use	the	send_message	function	in	our	tests,	we’ll	really	be
sending	mail	to	people.	It	will	be	hard	to	test	that	functionality	in	an	automated	way	unless
we	set	up	a	special	mailbox	and	connect	to	it	repeatedly,	waiting	for	a	mail	message	to
arrive.	That	could	be	great	as	an	overall	system	test,	but	if	all	we	want	to	do	now	is	add
some	new	tested	functionality	to	the	class,	that	could	be	overkill.	How	can	we	create	a
simple	object	to	add	some	new	functionality?

The	fundamental	problem	here	is	that	the	dependency	on	mail_service	is	hidden	in	the
mailing_list_dispatcher	constructor.	If	there	was	some	way	to	replace	the	mail_service	object	with	a
fake,	we	could	sense	through	the	fake	and	get	some	feedback	as	we	change	the	class.

One	of	the	techniques	we	can	use	is	Parameterize	Constructor	(379).	With	this	technique,
we	externalize	a	dependency	that	we	have	in	a	constructor	by	passing	it	into	the
constructor.

This	is	what	the	constructor	code	looks	like	after	Parameterize	Constructor	(379):
mailing_list_dispatcher::mailing_list_dispatcher(mail_service	*service)
:	status(MAIL_OKAY)
{
				const	int	client_type	=	12;
				service->connect();
				if	(service->get_status()	==	MS_AVAILABLE)	{
								service->register(this,	client_type,	MARK_MESSAGES_OFF);
								service->set_param(client_type,	ML_NOBOUNCE	|	ML_REPEATOFF);
				}
				else
								status	=	MAIL_OFFLINE;
				…
}

The	only	difference,	really,	is	that	the	mail_service	object	is	created	outside	the	class	and
passed	in.	That	might	not	seem	like	much	of	an	improvement,	but	it	does	give	us
incredible	leverage.	We	can	use	Extract	Interface	(362)	to	make	an	interface	for	mail_service.
One	implementer	of	the	interface	can	be	the	production	class	that	really	sends	mail.
Another	can	be	a	fake	class	that	senses	the	things	that	we	do	to	it	under	test	and	lets	us
make	sure	that	they	happened.

Parameterize	Constructor	(379)	is	a	very	convenient	way	to	externalize	constructor
dependencies,	but	people	don’t	think	of	it	very	often.	One	of	the	stumbling	blocks	is	that
people	often	assume	that	all	clients	of	the	class	will	have	to	be	changed	to	pass	the	new
parameter,	but	that	isn’t	true.	We	can	handle	it	like	this.	First	we	extract	the	body	of	the
constructor	into	a	new	method	that	we	can	call	initialize.	Unlike	most	method	extractions,
this	one	is	pretty	safe	to	attempt	without	tests	because	we	can	Preserve	Signatures	(312)	as
we	do	it.
void	mailing_list_dispatcher::initialize(mail_service	*service)
{
				status	=	MAIL_OKAY;
				const	int	client_type	=	12;
				service.connect();
				if	(service->get_status()	==	MS_AVAILABLE)	{
								service->register(this,	client_type,	MARK_MESSAGES_OFF);
								service->set_param(client_type,	ML_NOBOUNCE	|	ML_REPEATOFF);
				}
				else
								status	=	MAIL_OFFLINE;
				…
}

mailing_list_dispatcher::mailing_list_dispatcher(mail_service	*service)
{
				initialize(service);
}

Now	we	can	supply	a	constructor	that	has	the	original	signature.	Tests	can	call	the
constructor	parameterized	by	mail_service,	and	clients	can	call	this	one.	They	don’t	need	to
know	that	anything	has	changed.
mailing_list_dispatcher::mailing_list_dispatcher()
{
				initialize(new	mail_service);
}

This	refactoring	is	even	easier	in	languages	such	as	C#	and	Java	because	we	can	call
constructors	from	other	constructors	in	those	languages.

For	instance,	if	we	were	doing	something	similar	in	C#,	the	resultant	code	would	look	like
this:
public	class	MailingListDispatcher
{
				public	MailingListDispatcher()
				:	this(new	MailService())
				{}

				public	MailingListDispatcher(MailService	service)	{
								…
				}
}

Dependencies	hidden	in	constructors	can	be	tackled	with	many	techniques.	Often	we	can
use	Extract	and	Override	Getter	(352),	Extract	and	Override	Factory	Method	(350),	and
Supersede	Instance	Variable	(404),	but	I	like	to	use	Parameterize	Constructor	(379)	as
often	as	I	can.	When	an	object	is	created	in	a	constructor	and	it	doesn’t	have	any
construction	dependencies	itself,	Parameterize	Constructor	is	a	very	easy	technique	to
apply.

The	Case	of	the	Construction	Blob
Parameterize	Constructor	(379)	is	one	of	the	easiest	techniques	that	we	can	use	to	break
hidden	dependencies	in	a	constructor,	and	it	is	the	one	that	I	often	turn	to	first.
Unfortunately,	it	isn’t	always	the	best	choice.	If	a	constructor	constructs	a	large	number	of
objects	internally	or	accesses	a	large	number	of	globals,	we	could	end	up	with	a	very	large
parameter	list.	In	worse	situations,	a	constructor	creates	a	few	objects	and	then	uses	them
to	create	other	objects,	like	this:
class	WatercolorPane
{
public:
				WatercolorPane(Form	*border,	WashBrush	*brush,	Pattern	*backdrop)
				{
								…
								anteriorPanel	=	new	Panel(border);
								anteriorPanel->setBorderColor(brush->getForeColor());
								backgroundPanel	=	new	Panel(border,	backdrop);

								cursor	=	new	FocusWidget(brush,	backgroundPanel);
								…
				}
				…
}

If	we	want	to	sense	through	the	cursor,	we	are	in	trouble.	The	cursor	object	is	embedded	in
a	blob	of	object	creation.	We	can	try	to	move	all	of	the	code	used	to	create	the	cursor
outside	of	the	class.	Then	a	client	can	create	the	cursor	and	pass	it	as	an	argument.	But	that
isn’t	very	safe	if	we	don’t	have	tests	in	place,	and	it	could	be	a	big	burden	on	clients	on
this	class.

If	we	have	a	refactoring	tool	that	safely	extracts	methods,	we	can	use	Extract	and
Override	Factory	Method	(350)	on	code	in	a	constructor,	but	that	doesn’t	work	in	all

languages.	In	Java	and	C#,	we	can	do	it,	but	C++	doesn’t	allow	calls	to	virtual	functions	in
constructors	to	resolve	to	virtual	functions	defined	in	derived	classes.	And	in	general,	it
isn’t	a	good	idea.	Functions	in	derived	classes	often	assume	that	they	can	use	variables
from	their	base	class.	Until	the	constructor	of	the	base	class	is	completely	finished,	there	is
a	chance	that	an	overridden	function	that	it	calls	can	access	an	uninitialized	variable.

Another	option	is	Supersede	Instance	Variable	(404).	We	write	a	setter	on	the	class	that
allows	us	to	swap	in	another	instance	after	we	construct	the	object.
class	WatercolorPane
{
public:
				WatercolorPane(Form	*border,	WashBrush	*brush,	Pattern	*backdrop)
				{
								…
								anteriorPanel	=	new	Panel(border);
								anteriorPanel->setBorderColor(brush->getForeColor());
								backgroundPanel	=	new	Panel(border,	backdrop);

								cursor	=	new	FocusWidget(brush,	backgroundPanel);
								…
				}

				void	supersedeCursor(FocusWidget	*newCursor)
				{
								delete	cursor;
								cursor	=	newCursor;
				}
}

In	C++,	we	have	to	be	very	careful	with	this	refactoring.	When	we	replace	an	object,	we
have	to	get	rid	of	the	old	one.	Often	that	means	that	we	have	to	use	the	delete	operator	to
call	its	destructor	and	destroy	its	memory.	When	we	do	that,	we	have	to	understand	what
the	destructor	does	and	whether	it	destroys	anything	that	is	passed	to	the	object’s
constructor.	If	we	are	not	careful	about	how	we	clean	up	memory,	we	can	introduce	some
subtle	bugs.

In	most	other	languages,	Supersede	Instance	Variable	(404)	is	pretty	straightforward.	Here
is	the	result	recoded	in	Java.	We	don’t	have	to	do	anything	special	to	get	rid	of	the	object
that	cursor	was	referring	to;	the	garbage	collector	will	get	rid	of	it	eventually.	But	we	should
be	very	careful	not	to	use	the	superseding	method	in	production	code.	If	the	objects	that
we	are	superseding	manage	other	resources,	we	can	cause	some	serious	resource
problems.
void	supersedeCursor(FocusWidget	newCursor)	{
				cursor	=	newCursor;
}

Now	that	we	have	a	superseding	method,	we	can	attempt	to	create	a	FocusWidget	outside	the
class	and	then	pass	it	into	the	object	after	construction.	Because	we	need	to	sense,	we	can
use	Extract	Interface	(362)	or	Extract	Implementer	(356)	on	the	FocusWidget	class	and	create	a
fake	object	to	pass	in.	It	will	certainly	be	easier	to	create	than	the	FocusWidget	that	is	created	in
the	constructor.
TEST(renderBorder,	WatercolorPane)
{
				…

				TestingFocusWidget	*widget	=	new	TestingFocusWidget;
				WatercolorPane	pane(form,	border,	backdrop);

				pane.supersedeCursor(widget);

				LONGS_EQUAL(0,	pane.getComponentCount());
}

I	don’t	like	to	use	Supersede	Instance	Variable	(404)	unless	I	can’t	avoid	it.	The	potential
for	resource-management	problems	is	too	great.	However,	I	do	use	it	in	C++	at	times.
Often	I’d	like	to	use	Extract	and	Override	Factory	Method	(350),	and	we	can’t	do	that	in
C++	constructors.	For	that	reason,	I	use	Supersede	Instance	Variable	(404)	occasionally.

The	Case	of	the	Irritating	Global	Dependency
For	years	in	the	software	industry,	people	have	bemoaned	the	fact	that	there	aren’t	more
reusable	components	on	the	market.	It’s	getting	better	over	time;	there	are	plenty	of
commercial	and	open-source	frameworks,	but	in	general,	many	of	them	are	not	really
things	that	we	use;	they	are	things	that	use	our	code.	Frameworks	often	manage	the
lifecycle	of	an	application,	and	we	write	code	to	fill	in	the	holes.	We	can	see	this	in	all
sorts	of	frameworks,	from	ASP.NET	to	Java	Struts.	Even	the	xUnit	frameworks	behave
this	way.	We	write	test	classes;	xUnit	calls	them	and	displays	their	results.

Frameworks	solve	many	problems,	and	they	do	give	us	a	boost	when	we	start	projects,	but
this	isn’t	the	kind	of	reuse	that	people	really	expected	early	on	in	software	development.
Old-style	reuse	happens	when	we	find	some	class	or	set	of	classes	that	we	want	to	use	in
our	application	and	we	just	do	it.	We	just	add	them	to	a	project	and	use	them.	It	would	be
nice	to	be	able	to	do	this	routinely,	but	frankly,	I	think	we	are	kidding	ourselves	even
thinking	about	that	sort	of	reuse	if	we	can’t	pull	a	random	class	out	of	an	average
application	and	compile	it	independently	in	a	test	harness	without	doing	a	lot	of	work
(grumble,	grumble).

Many	different	kinds	of	dependency	can	make	it	hard	to	create	and	use	classes	in	a	testing
framework,	but	one	of	the	hardest	to	deal	with	is	global	variable	usage.	In	simple	cases,
we	can	use	Parameterize	Constructor	(379),	Parameterize	Method	(383),	and	Extract	and
Override	Call	(348)	to	get	past	these	dependencies,	but	sometimes	dependencies	on
globals	are	so	extensive	that	it	is	easier	to	deal	with	the	problem	at	the	source.	We	run	into
this	situation	in	this	next	example,	a	class	in	a	Java	application	that	records	building
permits	for	a	governmental	agency.	Here	is	one	of	the	primary	classes:
public	class	Facility
{
				private	Permit	basePermit;

				public	Facility(int	facilityCode,	String	owner,	PermitNotice	notice)
																throws	PermitViolation	{

								Permit	associatedPermit	=
												PermitRepository.getInstance().findAssociatedPermit(notice);

								if	(associatedPermit.isValid()	&&	!notice.isValid())	{
												basePermit	=	associatedPermit;
								}
								else	if	(!notice.isValid())	{
												Permit	permit	=	new	Permit(notice);

												permit.validate();
												basePermit	=	permit;
								}
								else
												throw	new	PermitViolation(permit);
				}
				…
}

We	want	to	create	a	Facility	in	a	test	harness,	so	we	start	by	trying	to	create	an	object	in	the
test	harness:
public	void	testCreate()	{
				PermitNotice	notice	=	new	PermitNotice(0,	“a”);
				Facility	facility	=	new	Facility(Facility.RESIDENCE,	“b”,	notice);
}

The	test	compiles	okay,	but	when	we	start	to	write	additional	tests,	we	notice	a	problem.
The	constructor	uses	a	class	named	PermitRepository,	and	it	needs	to	be	initialized	with	a
particular	set	of	permits	to	set	up	our	tests	properly.	Sneaky,	sneaky.	Here	is	the	offending
statement	in	the	constructor:
Permit	associatedPermit	=
												PermitRepository.getInstance().findAssociatedPermit(notice);

We	could	get	past	this	by	parameterizing	the	constructor,	but	in	this	application,	this	isn’t
an	isolated	case.	There	are	10	other	classes	that	have	roughly	the	same	line	of	code.	It	sits
in	constructors,	regular	methods,	and	static	methods.	We	can	imagine	spending	a	lot	of
time	confronting	this	problem	in	the	code	base.

If	you’ve	studied	design	patterns,	you	probably	recognize	this	as	an	example	of	the
Singleton	Design	Pattern	(372).	The	getInstance	method	of	PermitRepository	is	a	static	method
whose	job	is	to	return	the	only	instance	of	PermitRepository	that	can	exist	in	our	application.	The
field	that	holds	that	instance	is	static	also,	and	it	lives	in	the	PermitRepository	class.

In	Java,	the	singleton	pattern	is	one	of	the	mechanisms	people	use	to	make	global
variables.	In	general,	global	variables	are	a	bad	idea	for	a	couple	of	reasons.	One	of	them
is	opacity.	When	we	look	at	a	piece	of	code,	it	is	nice	to	be	able	to	know	what	it	can	affect.
For	instance,	in	Java,	when	we	want	to	understand	how	this	piece	of	code	can	affect
things,	we	have	to	look	only	a	couple	places:

Account	example	=	new	Account();
example.deposit(1);
int	balance	=	example.getBalance();

We	know	that	an	account	object	can	affect	things	that	we	pass	into	the	Account	constructor,
but	we	aren’t	passing	anything	in.	Account	objects	can	also	affect	objects	that	we	pass	as
parameters	to	methods,	but	in	this	case,	we	aren’t	passing	anything	in	that	can	be	changed
—it’s	just	an	int.	Here	we	are	assigning	the	return	value	of	getBalance	to	a	variable,	and	that	is
really	the	only	value	that	should	be	affected	by	this	set	of	statements.

When	we	use	global	variables,	this	situation	is	turned	upside	down.	We	can	look	at	the	use
of	a	class	such	as	Account	and	not	have	a	clue	whether	it	is	accessing	or	modifying	variables
declared	someplace	else	in	the	program.	Needless	to	say,	this	can	make	it	harder	to
understand	programs.

The	tough	part	in	a	testing	situation	is	that	we	have	to	figure	which	globals	are	being	used

by	a	class	and	set	them	up	with	the	proper	state	for	a	test.	And	we	have	to	do	that	before
each	test	if	the	setup	is	different.	It’s	pretty	tedious;	I’ve	done	it	on	dozens	of	systems	to
get	them	under	test,	and	it	doesn’t	get	any	more	enjoyable.

Back	to	our	regularly	scheduled	example:

PermitRepository	is	a	singleton.	Because	it	is,	it	is	particularly	hard	to	fake.	The	whole	idea	of
the	singleton	pattern	is	to	make	it	impossible	to	create	more	than	one	instance	of	a
singleton	in	an	application.	That	might	be	fine	in	production	code,	but,	when	testing,	each
test	in	a	suite	of	tests	should	be	a	mini-application,	in	a	way:	It	should	be	totally	isolated
from	the	other	tests.	So,	to	run	code	containing	singletons	in	a	test	harness,	we	have	to
relax	the	singleton	property.	Here’s	how	we	do	it.

The	first	step	is	to	add	a	new	static	method	to	the	singleton	class.	The	method	allows	us	to
replace	the	static	instance	in	the	singleton.	We’ll	call	it	setTestingInstance.
public	class	PermitRepository
{
				private	static	PermitRepository	instance	=	null;

				private	PermitRepository()	{}

				public	static	void	setTestingInstance(PermitRepository	newInstance)
				{
								instance	=	newInstance;
				}

				public	static	PermitRepository	getInstance()
				{
								if	(instance	==	null)	{
												instance	=	new	PermitRepository();
								}
								return	instance;
				}

				public	Permit	findAssociatedPermit(PermitNotice	notice)	{
								…
				}
				…
}

Now	that	we	have	that	setter,	we	can	create	a	testing	instance	of	a	PermitRepository	and	set	it.
We’d	like	to	write	code	like	this	in	our	test	setup:
public	void	setUp()	{
				PermitRepository	repository	=	new	PermitRepository();
				…
				//	add	permits	to	the	repository	here
				…
				PermitRepository.setTestingInstance(repository);
}

Introduce	Static	Setter	(372)	isn’t	the	only	way	of	handling	this	situation.	Here	is	another	approach.	We	can	add	a
resetForTesting()	method	to	the	singleton	that	looks	like	this:
public	class	PermitRepository
{
				…
				public	void	resetForTesting()	{
								instance	=	null;

				}
				…
}

If	we	call	this	method	in	our	test	setUp	(and	it’s	a	good	idea	to	call	it	in	tearDown	also),	we	can	create	fresh	singletons	for
every	test.	The	singleton	will	reintialize	itself	for	every	test.	This	scheme	works	well	when	the	public	methods	on	the
singleton	allow	you	to	set	up	the	singleton’s	state	every	way	you	need	to	during	testing.	If	the	singleton	doesn’t	have
those	public	methods	or	uses	some	external	resources	that	affect	its	state,	Introduce	Static	Setter	(372)	is	the	better
choice.	You	can	subclass	the	singleton,	override	methods	to	break	dependencies,	and	add	public	methods	to	the
subclass	to	set	up	state	properly.

Will	that	work?	Not	yet.	When	people	use	the	Singleton	Design	Pattern	(372),	they	often
make	the	constructor	of	the	singleton	class	private,	and	with	good	reason.	That	is	the
clearest	way	to	make	sure	that	no	one	outside	the	class	can	make	another	instance	of	the
singleton.

At	this	point,	we	have	a	conflict	between	two	design	goals.	We	want	to	make	sure	that	we
have	only	one	instance	of	a	PermitRepository	in	a	system,	and	we	want	a	system	in	which	the
classes	are	testable	independently.	Can	we	have	both?

Let’s	backtrack	for	a	minute.	Why	do	we	want	only	one	instance	of	a	class	in	a	system?
The	answer	varies	depending	on	the	system,	but	here	are	some	of	the	most	common
answers:

1.	We	are	modeling	the	real	world,	and	there	is	only	one	of	these	things	in	the	real
world.	Some	hardware-control	systems	are	like	this.	People	make	a	class	for	each
circuit	board	they	need	to	control;	they	figure	that	if	there	is	just	one	of	each,	it
should	be	a	singleton.	The	same	holds	true	for	databases.	There	is	only	one
collection	of	permits	in	our	agency,	so	the	thing	that	provides	access	to	it	should	be
a	singleton.

2.	If	two	of	these	things	are	created,	we	could	have	a	serious	problem.	This	often
happens,	again,	in	the	hardware	control	domain.	Imagine	accidentally	creating	two
nuclear	control	rod	controllers	and	having	two	different	parts	of	a	program	operating
the	same	control	rods	without	knowing	about	each	other.

3.	If	someone	creates	two	of	these	things,	we’ll	be	using	too	many	resources.	This
happens	often.	The	resources	can	be	physical	things	such	as	disk	space	or	memory
consumption,	or	they	can	be	abstract	things	such	as	the	number	of	software	licenses.

Those	are	the	primary	reasons	why	people	want	to	enforce	a	single	instance,	but	they
aren’t	the	primary	reasons	why	people	use	singletons.	Often	people	create	singletons
because	they	want	to	have	a	global	variable.	They	feel	that	it	would	be	too	painful	to	pass
the	variable	around	to	the	places	where	it	is	needed.

If	we	have	a	singleton	for	the	latter	reason,	there	really	isn’t	any	reason	to	keep	the
singleton	property.	We	can	make	the	constructor	protected,	public,	or	package	scope	and
still	have	a	decent,	testable	system.	In	the	other	cases,	it	is	still	worth	exploring	that
alternative.	We	can	introduce	other	protection	if	we	need	to.	We	could	add	a	check	to	our
build	system	in	which	we	search	through	all	the	source	files	to	make	sure	that	setTestingInstance
is	not	called	by	non-testing	code.	We	can	do	the	same	thing	with	runtime	checks.	If
setTestingInstance	is	called	at	runtime,	we	can	issue	an	alarm	or	suspend	the	system	and	wait	for
operator	intervention.	The	truth	is,	it	wasn’t	possible	to	enforce	singleton-ness	in	many

pre-OO	languages,	and	people	did	manage	to	make	many	safe	systems.	In	the	end,	it
comes	down	to	responsible	design	and	coding.

If	breaking	the	singleton	property	isn’t	a	serious	problem,	we	can	rely	on	a	team	rule.	For
instance,	everyone	on	the	team	should	understand	that	we	have	one	instance	of	the
database	in	the	application	and	that	we	shouldn’t	have	another.

To	relax	the	singleton	property	on	PermitRepository,	we	can	make	the	constructor	public.	And
that	will	work	fine	for	us	as	long	as	the	public	methods	on	PermitRepository	allow	us	to	do
everything	that	we	need	to	set	up	a	repository	for	our	tests.	For	example,	if	PermitRepository	has
a	method	named	addPermit	that	allows	us	to	fill	it	up	with	whatever	permits	we	need	for	our
tests,	it	might	be	enough	to	just	allow	ourselves	to	make	repositories	and	use	them	in	our
tests.	At	other	times,	we	might	not	have	the	access	we	need,	or,	worse,	the	singleton	might
be	doing	things	that	we	would	not	want	to	have	happen	in	a	test	harness,	such	as	talk	to	a
database	in	the	background.	In	these	cases,	we	can	Subclass	and	Override	Method	(401)
and	make	derived	classes	that	make	testing	easier.

Here	is	an	example	in	our	permit	system.	In	addition	to	the	method	and	variables	that
make	PermitRepository	a	singleton,	we	have	the	following	method:
public	class	PermitRepository
{
				…
				public	Permit	findAssociatedPermit(PermitNotice	notice)	{
				//	open	permit	database
				…

				//	select	using	values	in	notice
				…

				//	verify	we	have	only	one	matching	permit,	if	not	report	error
				…

				//	return	the	matching	permit
				…
				}
}

If	we	want	to	avoid	talking	to	the	database,	we	can	subclass	PermitRepository	like	this:
public	class	TestingPermitRepository	extends	PermitRepository
{
				private	Map	permits	=	new	HashMap();

				public	void	addAssociatedPermit(PermitNotice	notice,	permit)	{
								permits.put(notice,	permit);
				}

				public	Permit	findAssociatedPermit(PermitNotice	notice)	{
								return	(Permit)permits.get(notice);
				}
}

When	we	do	this,	we	can	preserve	part	of	the	singleton	property.	Because	we	are	using	a
subclass	of	PermitRepository,	we	can	make	the	constructor	of	PermitRepository	protected	rather	than
public.	That	will	prevent	the	creation	of	more	than	one	PermitRepository,	although	it	does	allow
us	to	create	subclasses.

public	class	PermitRepository
{
				private	static	PermitRepository	instance	=	null;

				protected	PermitRepository()	{}

				public	static	void	setTestingInstance(PermitRepository	newInstance)
				{
								instance	=	newInstance;
				}

				public	static	PermitRepository	getInstance()
				{
								if	(instance	==	null)	{
												instance	=	new	PermitRepository();
								}
								return	instance;
				}

				public	Permit	findAssociatedPermit(PermitNotice	notice)
				{
								…
				}
				…
}

In	many	cases,	we	can	use	Subclass	and	Override	Method	(401)	like	this	to	get	a	fake
singleton	in	place.	At	other	times,	the	dependencies	are	so	extensive	that	it	is	easier	to	use
Extract	Interface	(362)	on	the	singleton	and	change	all	of	the	references	in	the	application
so	that	they	use	the	interface	name.	This	can	be	a	lot	of	work,	but	we	can	Lean	on	the
Compiler	(315)	to	make	the	change.	This	is	what	the	PermitRepository	class	will	look	like	after
the	extraction:
public	class	PermitRepository	implements	IPermitRepository
{
				private	static	IPermitRepository	instance	=	null;

				protected	PermitRepository()	{}

				public	static	void	setTestingInstance(IPermitRepository	newInstance)
				{
								instance	=	newInstance;
				}

				public	static	IPermitRepository	getInstance()
				{
								if	(instance	==	null)	{
												instance	=	new	PermitRepository();
								}
								return	instance;
				}

				public	Permit	findAssociatedPermit(PermitNotice	notice)
				{
								…
				}
				…
}

The	IPermitRepository	interface	will	have	signatures	for	all	of	the	public	non-static	methods	on
PermitRepository.

public	interface	IPermitRepository
{
				Permit	findAssociatedPermit(PermitNotice	notice);
				…
}

If	you	are	using	a	language	that	has	a	refactoring	tool,	you	might	be	able	to	perform	this
interface	extraction	automatically.	If	you	are	using	a	language	without	one,	it	might	be
easier	to	use	Extract	Implementer	(356)	instead.

The	name	for	this	whole	refactoring	is	Introduce	Static	Setter	(372).	This	is	a	technique
that	we	can	use	to	get	tests	in	place	despite	extensive	global	dependencies.	Unfortunately,
it	doesn’t	do	much	to	get	past	the	global	dependencies.	If	you	choose	to	tackle	that
problem,	you	can	do	so	by	using	Parameterize	Method	(383)	and	Parameterize
Constructor	(379).	With	those	refactorings,	you	trade	a	global	reference	for	either	a
temporary	variable	in	a	method	or	a	field	in	an	object.	The	downside	to	Parameterize
Method	(383)	is	that	you	can	end	up	with	many	additional	methods	that	distract	people
when	they	try	to	understand	the	classes.	The	downside	to	Parameterize	Constructor	(379)
is	that	each	object	that	currently	uses	the	global	ends	up	with	an	additional	field.	The	field
will	have	to	be	passed	to	its	constructor,	so	the	class	that	creates	the	object	needs	to	have
access	to	the	instance	also.	If	too	many	objects	need	this	additional	field,	it	can
substantially	impact	the	amount	of	memory	used	by	the	application,	but	often	that
indicates	other	design	problems.

Let’s	look	at	the	worst	case.	We	have	an	application	with	several	hundred	classes	that
creates	thousands	of	objects	at	runtime,	and	each	of	them	needs	access	to	the	database.
Without	even	looking	at	the	application,	the	first	question	that	comes	to	my	mind	is,	why?
If	the	system	does	anything	more	than	access	a	database,	it	can	be	factored	so	that	some
classes	do	those	other	things	and	others	store	and	retrieve	data.	When	we	make	a
concerted	effort	to	separate	responsibilities	in	an	application,	dependencies	become
localized;	we	might	not	need	a	reference	to	a	database	in	every	object.	Some	objects	are
populated	using	data	retrieved	from	the	database.	Others	perform	calculation	on	data
supplied	through	their	constructors.

As	an	exercise,	pick	a	global	variable	in	a	large	application	and	search	for	it.	In	most
cases,	variables	that	are	global	are	globally	accessible,	but	they	really	aren’t	globally	used.
They	are	used	in	a	relatively	small	number	of	places.	Imagine	how	we	could	get	that
object	to	the	objects	that	need	it	if	it	couldn’t	be	a	global	variable.	How	would	we	refactor
the	application?	Are	there	responsibilities	that	we	can	separate	out	of	sets	of	classes	to
decrease	the	scope	of	the	global?

If	you	find	a	global	variable	that	really	is	being	used	every	place,	it	means	there	isn’t	any
layering	in	your	code.	Take	a	look	at	Chapter	15,	My	Application	Is	All	API	Calls,	and
Chapter	17,	My	Application	Has	No	Structure.

The	Case	of	the	Horrible	Include	Dependencies
C++	was	my	first	OO	language,	and	I	have	to	admit	that	I	felt	very	proud	of	myself	for
learning	many	of	its	details	and	complexities.	It	became	dominant	in	the	industry	because
it	was	an	utterly	pragmatic	solution	to	many	vexing	problems	at	the	time.	Machines	are
too	slow?	Okay,	here	is	a	language	in	which	everything	is	optional.	You	can	get	all	of	the

efficiency	of	raw	C	if	you	use	only	the	C	features.	Can’t	get	your	team	to	use	an	OO
language?	Okay,	here	is	a	C++	compiler;	you	can	write	in	the	C	subset	of	C++	and	learn
OO	as	you	go.

Although	C++	became	very	popular	for	a	while,	it	eventually	fell	behind	Java	and	some	of
the	newer	languages	in	popularity.	There	was	leverage	in	maintaining	backward
compatibility	with	C,	but	there	was	much	more	leverage	in	making	languages	easier	to
work	with.	Repeatedly,	C++	teams	have	learned	that	the	language	defaults	are	not	ideal	for
maintenance,	and	they	have	to	go	beyond	them	a	bit	to	keep	a	system	nimble	and	easy	to
change.

One	part	of	C++’s	C	legacy	that	is	especially	problematic	is	its	way	of	letting	one	part	of	a
program	know	about	another	part.	In	Java	and	C#,	if	a	class	in	one	file	needs	to	use	a	class
in	another	file,	we	use	an	import	or	using	statement	to	make	its	definition	available.	The
compiler	looks	for	that	class	and	checks	to	see	if	it	has	been	compiled	already.	If	it	hasn’t,
it	compiles	it.	If	it	has	been	compiled,	the	compiler	reads	a	brief	snippet	of	information
from	the	compiled	file,	getting	only	as	much	information	as	it	needs	to	make	sure	that	all
of	the	methods	the	original	class	needs	are	on	that	class.

C++	compilers	generally	don’t	have	this	optimization.	In	C++,	if	a	class	needs	to	know
about	another	class,	the	declaration	of	the	class	(in	another	file)	is	textually	included	in	the
file	that	needs	to	use	it.	This	can	be	a	much	slower	process.	The	compiler	has	to	reparse
the	declaration	and	build	up	an	internal	representation	every	time	it	sees	that	declaration.
Worse,	the	include	mechanism	is	prone	to	abuse.	A	file	can	include	a	file	that	includes	a
file,	and	so	on.	On	projects	in	which	people	haven’t	avoided	this,	it’s	not	uncommon	to
find	small	files	that	end	up	transitively	including	tens	of	thousands	of	lines	of	code.	People
wonder	why	their	builds	take	so	long,	but	because	the	includes	are	spread	around	the
system,	it	is	hard	to	point	at	any	one	particular	file	and	understand	why	it	is	taking	so	long
to	compile.

It	might	seem	like	I’m	getting	down	on	C++,	but	I’m	not.	It	is	an	important	language,	and
there	is	an	incredible	amount	of	C++	code	out	there—but	it	does	take	extra	care	to	work
with	it	well.

In	legacy	code,	it	can	be	hard	to	instantiate	a	C++	class	in	a	test	harness.	One	of	the	most
immediate	issues	we	confront	is	header	dependency.	What	header	files	do	we	need	to
create	a	class	by	itself	in	a	test	harness?

Here	is	part	of	the	declaration	of	a	huge	C++	class	named	Scheduler.	It	has	more	than	200
methods,	but	I’ve	shown	only	about	5	of	them	in	the	declaration.	In	addition	to	being
large,	the	class	has	very	severe	and	tangled	dependencies	on	many	other	classes.	How	can
we	make	a	Scheduler	in	a	test?
#ifndef	SCHEDULER_H
#define	SCHEDULER_H

#include	“Meeting.h”
#include	“MailDaemon.h”
…
#include	“SchedulerDisplay.h”
#include	“DayTime.h”

class	Scheduler

{
public:
								Scheduler(const	string&	owner);
								~Scheduler();

				void	addEvent(Event	*event);
				bool	hasEvents(Date	date);
				bool	performConsistencyCheck(string&	message);
				…
};

#endif

Among	other	things,	the	Scheduler	class	uses	Meetings,	MailDaemons,	Events,	SchedulerDisplays,	and	Dates.	If
we	want	to	create	a	test	for	Schedulers,	the	easiest	thing	that	we	can	do	is	try	to	build	one
in	the	same	directory	in	another	file	named	SchedulerTests.	Why	do	we	want	the	tests	in	the
same	directory?	In	the	presence	of	the	preprocessor,	it	is	often	just	easier.	If	the	project
doesn’t	use	paths	to	include	files	in	consistent	ways,	we	could	have	a	lot	of	work	to	do	if
we	try	to	create	the	tests	in	other	directories.
#include	“TestHarness.h”
#include	“Scheduler.h”

TEST(create,Scheduler)
{
				Scheduler	scheduler(“fred”);
}

If	we	create	a	file	and	just	type	that	object	declaration	into	a	test,	we’ll	be	confronted	with
the	include	problem.	To	compile	a	Scheduler,	we	have	to	make	sure	that	the	compiler	and
linker	know	about	all	of	the	things	that	Scheduler	needs,	and	all	of	the	things	those	things
need,	and	so	on.	Luckily,	the	build	system	gives	us	a	large	number	of	error	messages	and
tells	us	about	these	things	in	exhaustive	detail.

In	simple	cases,	the	Scheduler.h	file	includes	everything	we	need	to	be	able	to	create	a	Scheduler,
but	in	some	cases,	the	header	file	doesn’t	include	everything.	We	have	to	supply	some
additional	includes	to	create	and	use	an	object.

We	could	just	copy	over	all	of	the	#include	directives	from	the	Scheduler	class	source	file,	but	the
fact	is,	we	might	not	need	them	all.	The	best	tack	to	take	is	to	add	them	one	at	a	time	and
decide	whether	we	really	need	those	particular	dependencies.

In	an	ideal	world,	the	easiest	thing	would	be	to	include	all	of	the	files	that	we	need	until
we	don’t	have	any	build	errors,	but	that	can	force	us	into	a	muddle.	If	there	is	a	long	line
of	transitive	dependencies,	we	could	end	up	including	far	more	than	we	really	need.	Even
if	the	line	of	dependencies	isn’t	too	long,	we	could	end	up	depending	on	things	that	are
very	hard	to	work	with	in	a	test	harness.	In	this	example,	the	SchedulerDisplay	class	is	one	of
those	dependencies.	I’m	not	showing	it	here,	but	it	is	actually	accessed	in	the	constructor
of	Scheduler.	We	can	get	rid	of	the	dependency	like	this:
#include	“TestHarness.h”
#include	“Scheduler.h”

void	SchedulerDisplay::displayEntry(const	string&	entyDescription)
{
}

TEST(create,Scheduler)
{
				Scheduler	scheduler(“fred”);
}

Here	we’ve	introduced	an	alternative	definition	for	SchedulerDisplay::displayEntry.	Unfortunately,
when	we	do	this,	we	need	to	have	a	separate	build	for	the	test	cases	in	this	file.	We	can
have	only	one	definition	for	each	method	in	SchedulerDisplay	in	a	program,	so	we	need	to	have	a
separate	program	for	our	scheduler	tests.

Luckily,	we	can	get	some	reuse	for	the	fakes	that	we	create	this	way.	Instead	of	putting	the
definitions	of	classes	such	as	SchedulerDisplay	inline	in	the	test	file,	we	can	put	them	in	a
separate	include	file	that	can	be	used	across	a	set	of	test	files:
#include	“TestHarness.h”
#include	“Scheduler.h”
#include	“Fakes.h”

TEST(create,Scheduler)
{
				Scheduler	scheduler(“fred”);
}

After	doing	it	a	couple	of	times,	getting	a	C++	class	instantiable	in	a	harness	like	this	is
pretty	easy	and	pretty	mechanical.	There	are	a	couple	of	very	serious	downsides.	We	have
to	create	that	separate	program,	and	we	really	aren’t	breaking	dependencies	at	the
language	level,	so	we	aren’t	making	the	code	cleaner	as	we	break	dependencies.	Worse,
those	duplicate	definitions	that	we	put	in	the	test	file	(SchedulerDisplay::displayEntry	in	this	example)
have	to	be	maintained	as	long	as	we	keep	this	set	of	tests	in	place.

I	reserve	this	technique	for	cases	in	which	I	have	a	very	huge	class	with	very	severe
dependency	problems.	It	is	not	a	technique	to	use	often	or	lightly.	If	that	class	is	going	to
be	broken	up	into	a	large	number	of	smaller	classes	over	time,	creating	a	separate	test
program	for	a	class	can	be	useful.	It	can	act	as	a	testing	point	for	a	lot	of	refactoring.	Over
time,	this	separate	testing	program	can	go	away	as	you	extract	more	classes	and	get	them
under	test.

The	Case	of	the	Onion	Parameter
I	like	simple	constructors.	I	really	do.	It	is	great	to	be	able	to	decide	to	create	a	class	and
then	just	type	in	a	constructor	call	and	have	a	nice	live,	working	object	available	to	use.
But	in	many	cases,	it	can	be	hard	to	create	objects.	Every	object	needs	to	be	set	up	in	a
good	state,	a	state	that	makes	it	ready	for	additional	work.	In	many	cases,	this	means	we
have	to	supply	it	with	objects	that	are	set	up	properly	themselves.	Those	objects	might
require	other	objects	so	that	they	can	be	set	up	also,	so	we	end	up	having	to	create	objects
to	create	objects	to	create	objects	to	create	a	parameter	for	a	constructor	of	the	class	that
we	want	to	test.	Objects	inside	of	other	objects—it	seems	like	a	big	onion.	Here	is	an
example	of	this	sort	of	problem.

We	have	a	class	that	displays	a	SchedulingTask:
public	class	SchedulingTaskPane	extends	SchedulerPane
{
				public	SchedulingTaskPane(SchedulingTask	task)	{
								…

				}
}

To	create	it,	we	need	to	pass	it	a	SchedulingTask,	but	to	create	a	SchedulingTask,	we	have	to	use	its	one
and	only	one	constructor:
public	class	SchedulingTask	extends	SerialTask
{
				public	SchedulingTask(Scheduler	scheduler,	MeetingResolver	resolver)
				{
								…
				}
}

If	we	discover	that	we	need	more	objects	to	create	Schedulers	and	Meeting-Resolvers,	we’re	liable	to
pull	our	hair	out.	The	only	thing	that	keeps	us	from	total	despair	is	the	fact	that	there	has
to	be	at	least	one	class	that	doesn’t	require	objects	of	another	class	as	arguments.	If	there
isn’t,	there	is	no	way	the	system	could	ever	have	compiled.

The	way	to	handle	this	situation	is	to	take	a	close	look	at	what	we	want	to	do.	We	need	to
write	tests,	but	what	do	we	really	need	from	the	parameters	passed	into	the	constructor?	If
we	don’t	need	anything	from	them	in	the	tests,	we	can	Pass	Null	(111).	If	we	just	need
some	rudimentary	behavior,	we	can	use	Extract	Interface	(362)	or	Extract	Implementer
(356)	on	the	most	immediate	dependency	and	use	the	interface	to	create	a	fake	object.	In
this	case,	the	most	immediate	dependency	of	SchedulingTaskPane	is	SchedulingTask.	If	we	can	create	a
fake	SchedulingTask,	we	can	create	a	SchedulingTaskPane.

Unfortunately,	SchedulingTask	inherits	from	a	class	named	SerialTask,	and	all	it	does	is	override
some	protected	methods.	All	of	the	public	methods	are	in	SerialTask.	Can	we	use	Extract
Interface	(362)	on	SchedulingTask,	or	do	we	have	to	use	it	on	SerialTask,	too?	In	Java,	we	don’t.	We
can	create	an	interface	for	SchedulingTask	that	includes	methods	from	SerialTask	also.

Our	resulting	hierarchy	looks	like	Figure	9.3.

Figure	9.3	SchedulingTask.

In	this	case,	we	are	lucky	that	we	are	using	Java.	In	C++,	unfortunately,	we	can’t	handle
this	case	like	this.	There	is	no	separate	interface	construct.	Interfaces	are	typically
implemented	as	classes	containing	only	pure	virtual	functions.	If	this	example	was	ported
to	C++,	the	SchedulingTask	would	become	abstract	because	it	inherits	a	pure	virtual	function
from	SchedulingTask.	To	instantiate	a	SchedulingTask,	we’d	need	to	provide	a	body	for	run()	in
SchedulingTask,	which	delegates	to	the	run()	from	SerialTask.	Fortunately,	that	would	be	easy	enough

to	add.	Here	is	what	it	looks	like	in	code:
class	SerialTask
{
public:
				virtual	void	run();
				…
};

class	ISchedulingTask
{
public:
				virtual	void	run()	=	0;
				…
};

class	SchedulingTask	:	public	SerialTask,	public	ISchedulingTask
{
public:
				virtual	void	run()	{	SerialTask::run();	}
};

In	any	language	where	we	can	create	interfaces	or	classes	that	act	like	interfaces,	we	can
systematically	use	them	to	break	dependencies.

The	Case	of	the	Aliased	Parameter
Often	when	we	have	parameters	to	constructors	that	get	in	the	way,	we	can	get	past	the
problem	by	using	Extract	Interface	(362)	or	Extract	Implementer	(356).	But	sometimes
this	isn’t	practical.	Let’s	take	a	look	at	another	class	in	that	building	permit	system	that	we
saw	in	a	previous	section:
public	class	IndustrialFacility	extends	Facility
{
				Permit	basePermit;

				public	IndustrialFacility(int	facilityCode,	String	owner,
																				OriginationPermit	permit)	throws	PermitViolation	{

								Permit	associatedPermit	=
												PermitRepository.GetInstance()
																																.findAssociatedFromOrigination(permit);

								if	(associatedPermit.isValid()	&&	!permit.isValid())	{
												basePermit	=	associatedPermit;
								}
								else	if	(!permit.isValid())	{
												permit.validate();
												basePermit	=	permit;
								}
								else
												throw	new	PermitViolation(permit);
				}
				…
}

We	want	to	instantiate	this	class	in	a	harness,	but	there	are	a	couple	of	problems.	One	is
that	we	are	accessing	a	singleton	again,	PermitRepository.	We	can	get	past	that	problem	by	using
the	techniques	we	saw	in	the	earlier	section	“The	Case	of	the	Irritating	Global
Dependency.”	But	before	we	even	get	to	that	problem,	we	have	another.	It	is	hard	to	make

the	origination	permit	that	we	need	to	pass	into	the	constructor.	OriginationPermits	have	horrible
dependencies.	The	immediate	thought	that	I	have	is	“Oh,	I	can	use	Extract	Interface	on	the
OriginationPermit	class	to	get	past	this	dependency,”	but	it	isn’t	that	easy.	Figure	9.4	shows	the
structure	of	the	Permit	hierarchy.

Figure	9.4	The	Permit	hierarchy

The	IndustrialFacility	constructor	accepts	an	OriginationPermit	and	goes	to	the	PermitRepository	to	get	an
associated	permit;	we	use	a	method	on	PermitRepository	that	accepts	an	OriginationPermit	and	returns
a	Permit.	If	the	repository	finds	the	associated	permit,	it	saves	it	to	the	permit	field.	If	it	doesn’t,
it	saves	the	OriginationPermit	to	the	permit	field.	We	could	create	an	interface	for	OriginationPermit,	but
that	wouldn’t	do	us	any	good.	We	would	have	to	assign	an	IOriginationPermit	to	a	Permit	field,	and
that	won’t	work.	In	Java,	interfaces	can’t	inherit	from	classes.	The	most	obvious	solution
is	to	create	interfaces	all	the	way	down	and	turn	the	Permit	field	into	an	IPermit	field.	Figure
9.5	shows	what	this	would	look	like.

Figure	9.5	Permit	hierarchy	with	extract	interfaces.

Yuck.	That	is	a	ridiculous	amount	of	work,	and	I	don’t	particularly	like	how	the	code	ends
up.	Interfaces	are	great	for	breaking	dependencies,	but	when	we	get	to	the	point	that	we
have	nearly	a	one-to-one	relationship	between	classes	and	interfaces,	the	design	gets
cluttered.	Don’t	get	me	wrong:	If	our	backs	are	against	the	wall,	it	would	be	fine	to	move
toward	this	design,	but	if	there	are	other	possibilities,	we	should	explore	them.
Fortunately,	there	are.

Extract	Interface	(362)	is	just	one	way	of	breaking	a	dependency	on	a	parameter.
Sometimes	it	pays	to	ask	why	the	dependency	is	bad.	Sometimes	creation	is	a	pain.	At
other	times,	the	parameter	has	a	bad	side	effect.	Maybe	it	talks	to	the	file	system	or	a
database.	At	still	other	times,	it	just	might	take	too	long	for	its	code	to	run.	When	we	use

Extract	Interface	(362),	we	can	get	past	all	of	these	issues,	but	we	do	it	by	brutally
severing	the	connection	to	a	class.	If	only	pieces	of	a	class	are	problems,	we	can	take
another	approach	and	sever	only	the	connection	to	them.

Let’s	look	closer	at	the	OriginationPermit	class.	We	don’t	want	to	use	it	in	a	test	because	it
silently	accesses	a	database	when	we	tell	it	to	validate	itself:
public	class	OriginationPermit	extends	FacilityPermit
{
				…
				public	void	validate()	{
								//	form	connection	to	database
								…
								//	query	for	validation	information
								…
								//	set	the	validation	flag
								…
								//	close	database
								…
				}
}

We	don’t	want	to	do	this	in	a	test:	We’d	have	to	make	some	fake	entries	in	the	database,
and	the	DBA	will	get	upset.	We’d	have	to	take	him	to	lunch	when	he	found	out,	and	even
then	he’d	still	be	upset.	His	job	is	hard	enough	as	it	is.

Another	strategy	that	we	can	use	is	Subclass	and	Override	Method	(401).	We	can	make	a
class	called	FakeOriginationPermit	that	supplies	methods	that	make	it	easy	to	change	the	validation
flag.	Then,	in	subclasses,	we	can	override	the	validate	method	and	set	the	validation	flag	any
way	that	we	need	to	while	we	are	testing	the	IndustrialFacility	class.	Here	is	a	good	first	test:
public	void	testHasPermits()	{
				class	AlwaysValidPermit	extends	FakeOriginationPermit
				{
								public	void	validate()	{
												//	set	the	validation	flag
												becomeValid();
								}
				};

				Facility	facility	=	new	IndustrialFacility(Facility.HT_1,	“b”,
																																												new	AlwaysValidPermit());
				assertTrue(facility.hasPermits());
}

In	many	languages,	we	can	create	classes	“on	the	fly”	like	this	in	methods.	Although	I
don’t	like	to	do	it	often	in	production	code,	it	is	very	convenient	when	we	are	testing.	We
can	make	special	cases	very	easily.

Subclass	and	Override	Method	(401)	helps	us	break	dependencies	on	parameters,	but
sometimes	the	factoring	of	methods	in	a	class	isn’t	ideal	for	it.	We	were	lucky	that	the
dependencies	we	didn’t	like	were	isolated	in	that	validate	method.	In	worse	cases,	they	are
intermingled	with	logic	that	we	need,	and	we	have	to	extract	methods	first.	If	we	have	a
refactoring	tool,	that	can	be	easy.	If	we	don’t,	some	of	the	techniques	in	Chapter	22,	I
Need	to	Change	a	Monster	Method	and	I	Can’t	Write	Tests	for	It,	might	help.

Chapter	10:	I	Can’t	Run	This	Method	in	a	Test	Harness

Getting	tests	in	place	to	make	changes	can	be	a	bit	of	a	problem.	If	you	can	instantiate
your	class	separately	in	a	test	harness,	consider	yourself	lucky.	Many	people	can’t.	If
you’re	having	trouble,	take	a	look	at	Chapter	9,	I	Can’t	Get	This	Class	into	a	Test	Harness.

Instantiating	a	class	is	often	only	the	first	part	of	the	battle.	The	second	part	is	writing	tests
for	the	methods	we	need	to	change.	Sometimes	we	can	do	this	without	instantiating	the
class	at	all.	If	the	method	doesn’t	use	much	instance	data,	we	can	use	Expose	Static
Method	(345)	to	get	access	to	the	code.	If	the	method	is	pretty	long	and	difficult	to	deal
with,	we	can	use	Break	Out	Method	Object	(330)	to	move	the	code	to	a	class	that	we	can
instantiate	more	easily.

Fortunately,	in	most	cases,	the	amount	of	work	that	we	have	to	do	to	write	tests	for
methods	isn’t	as	drastic.	Here	are	some	of	the	problems	that	we	can	run	into.

•	The	method	might	not	be	accessible	to	the	test.	It	could	be	private	or	have	some	other
accessibility	problem.

•	It	might	be	hard	to	call	the	method	because	it	is	hard	to	construct	the	parameters	we
need	to	call	it.

•	The	method	might	have	bad	side	effects	(modifying	a	database,	launching	a	cruise
missile,	and	so	on),	so	it	is	impossible	to	run	in	a	test	harness.

•	We	might	need	to	sense	through	some	object	that	the	method	uses.

The	rest	of	this	chapter	contains	a	set	of	scenarios	that	show	different	ways	of	getting	past
them	and	some	of	the	trade-offs	involved.

The	Case	of	the	Hidden	Method
We	need	to	make	a	change	to	a	method	in	a	class,	but	it’s	a	private	method.	What	should
we	do?

The	first	question	to	ask	is	whether	we	can	test	through	a	public	method.	If	we	can,	it	is	a
worthwhile	thing	to	do.	It	saves	us	the	trouble	of	trying	to	find	a	way	of	accessing	the
private	method,	and	it	has	another	benefit.	If	we	test	through	public	methods,	we	are
guaranteed	to	be	testing	the	method	as	it	is	used	in	the	code.	This	can	help	us	constrain	our
work	a	bit.	In	legacy	code,	there	are	often	methods	of	very	dubious	quality	lying	around	in
classes.	The	amount	of	refactoring	we’d	have	to	do	to	make	a	private	method	useful	for	all
callers	might	be	rather	large.	Although	it’s	nice	to	have	very	general	methods	that	are
useful	to	many	callers,	the	fact	is	that	each	method	has	to	be	just	functional	enough	to
support	the	callers	that	use	it	and	clear	enough	to	understand	and	change	easily.	If	we	test
a	private	method	through	the	public	methods	that	use	it,	there	isn’t	much	danger	of	making
it	too	general.	If	the	method	needs	to	become	public	someday,	the	first	user	outside	of	the
class	should	write	test	cases	that	explain	exactly	what	the	method	does	and	how	a	caller
can	use	it	correctly.

All	that	is	fine,	but	in	some	cases,	we	just	want	to	write	a	test	case	for	a	private	method,	a
method	whose	call	is	buried	deep	in	a	class.	We	want	concrete	feedback	and	tests	that

explain	how	it	is	used—or,	who	knows,	maybe	it	is	just	a	pain	to	test	it	through	the	public
methods	on	the	class.

So,	how	do	we	write	a	test	for	a	private	method?	This	has	to	be	one	of	the	most	common
testing-related	questions.	Fortunately,	there	is	a	very	direct	answer	for	this	question:	If	we
need	to	test	a	private	method,	we	should	make	it	public.	If	making	it	public	bothers	us,	in
most	cases,	it	means	that	our	class	is	doing	too	much	and	we	ought	to	fix	it.	Let’s	look	at
the	cases.	Why	would	making	a	private	method	public	bother	us?	Here	are	some	reasons:

1.	The	method	is	just	a	utility;	it	isn’t	something	clients	would	care	about.

2.	If	clients	use	the	method,	they	could	adversely	affect	results	from	other	methods	on
the	class.

The	first	reason	isn’t	very	severe.	An	extra	public	method	in	a	class’s	interface	is
forgivable,	although	we	should	try	to	figure	out	whether	it	would	be	better	to	put	the
method	on	another	class.	The	second	reason	is	a	bit	more	serious,	but	fortunately	there	is	a
remedy:	The	private	methods	can	be	moved	to	a	new	class.	They	can	be	public	on	that
class	and	our	class	can	create	an	internal	instance	of	it.	That	makes	the	methods	testable
and	the	design	better.

Yes,	I	know	this	advice	sounds	strident,	but	it	has	some	very	positive	effects.	The	fact
remains:	Good	design	is	testable,	and	design	that	isn’t	testable	is	bad.	The	answer	in	cases
like	this	is	to	start	using	the	techniques	in	Chapter	20,	This	Class	Is	Too	Big	and	I	Don’t
Want	It	to	Get	Any	Bigger.	However,	when	there	aren’t	many	tests	in	place,	we	might	have
to	move	carefully	and	do	some	other	work	until	we	can	break	things	down.

Let’s	see	how	to	get	past	this	problem	in	a	realistic	case.	Here	is	part	of	a	class	declaration
in	C++:
class	CCAImage
{
private:
				void	setSnapRegion(int	x,	int	y,	int	dx,	int	dy);
				…
public:
				void	snap();
				…
};

The	CCAImage	class	is	used	to	take	pictures	in	a	security	system.	You	might	wonder	why	an
image	class	is	snapping	pictures,	but	this	is	legacy	code,	remember?	The	class	has	a	snap()
method	that	uses	a	low-level	C	API	to	control	a	camera	and	“take”	the	picture,	but	this	is	a
very	special	kind	of	image.	A	single	call	to	snap()	can	result	in	a	couple	of	different	camera
actions,	each	of	which	takes	a	picture	and	places	it	on	a	different	part	of	an	image	buffer
held	in	the	class.	The	logic	used	to	decide	where	to	place	each	picture	is	dynamic.	It
depends	on	the	motion	of	the	subject,	the	thing	we	are	taking	a	picture	of.	Depending	upon
how	the	subject	moves,	the	snap()	method	can	make	several	repeated	calls	to	setSnapRegion	to
determine	where	the	current	picture	will	be	placed	on	the	buffer.	Unfortunately,	the	API
for	the	camera	has	changed,	so	we	need	to	make	a	change	to	setSnapRegion.	What	should	we
do?

One	thing	that	we	could	do	is	just	make	it	public.	Unfortunately,	that	could	have	some
very	negative	consequences.	The	CCAImage	class	holds	on	to	some	variables	that	determine	the

current	location	of	the	snap	region.	If	someone	starts	to	call	setSnapRegion	in	production	code
outside	of	the	snap()	method,	it	could	cause	serious	trouble	with	the	camera’s	tracking
system.

Well,	that	is	the	problem.	Before	we	look	into	some	solutions,	let’s	talk	about	how	we	got
into	this	mess.	The	real	reason	we	can’t	test	the	image	class	well	is	that	it	has	too	many
responsibilities.	Ideally,	it	would	be	great	to	break	it	down	into	smaller	classes	using	the
techniques	described	in	Chapter	20,	but	we	have	to	carefully	consider	whether	we	want	to
do	that	much	refactoring	right	now.	It	would	be	great	to	do	it,	but	whether	we	can	depends
on	where	we	are	in	our	release	cycle,	how	much	time	we	have,	and	all	the	associated	risks.

If	we	can’t	afford	to	separate	the	responsibilities	right	now,	can	we	still	write	tests	for	the
method	that	we	are	changing?	Fortunately,	yes.	Here’s	how	we	can	do	it.

The	first	step	is	to	change	setSnapRegion	from	private	to	protected.
class	CCAImage
{
protected:
				void	setSnapRegion(int	x,	int	y,	int	dx,	int	dy);
				…
public:
				void	snap();
				…
};

Next,	we	can	subclass	CCAImage	to	get	access	to	that	method:
class	TestingCCAImage	:	public	CCAImage
{
public:
				void	setSnapRegion(int	x,	int	y,	int	dx,	int	dy)
				{
								//	call	the	setSnapRegion	of	the	superclass
						CCAImage::setSnapRegion(x,	y,	dx,	dy);
				}
};

In	most	modern	C++	compilers,	we	can	also	use	a	using	declaration	in	the	testing	subclass	to	perform	the	delegation
automatically:
class	TestingCCAImage	:	public	CCAImage
{
public:
				//	Expose	all	CCAImage	implementations	of	setSnapRegion
				//	as	part	of	my	public	interface.	Delegate	all	calls	to	CCAImage.
				using	CCAImage::setSnapRegion;
}

After	we’ve	done	this,	we	can	call	setSnapRegion	on	CCAImage	in	a	test,	albeit	indirectly.	But	is	this
a	good	idea?	Earlier,	we	didn’t	want	to	make	the	method	public,	but	we	are	doing
something	similar.	We’re	making	it	protected	and	making	the	method	more	accessible.

Frankly,	I	don’t	mind	doing	this.	For	me,	getting	the	tests	in	place	is	a	fair	trade.	Yes,	this
change	does	let	us	violate	encapsulation.	When	we	are	reasoning	about	how	the	code
works,	we	do	have	to	consider	that	setSnapRegion	can	be	called	in	subclasses	now,	but	that	is
relatively	minor.	Maybe	that	little	piece	will	be	enough	to	trigger	us	to	do	the	full
refactoring	the	next	time	we	touch	the	class.	We	can	separate	the	responsibilities	in	CCAImage

into	different	classes	and	make	them	testable.

Subverting	Access	Protection
In	many	OO	languages	newer	than	C++,	we	can	use	reflection	and	special	permissions	to	access	private	variables	at
runtime.	Although	that	can	be	handy,	it	is	a	bit	of	a	cheat,	really.	It	is	very	helpful	when	we	want	to	break
dependencies,	but	I	don’t	like	to	keep	tests	that	access	private	variables	around	in	projects.	That	sort	of	subterfuge
really	prevents	a	team	from	noticing	just	how	bad	the	code	is	getting.	It	might	sound	kind	of	sadistic,	but	the	pain	that
we	feel	working	in	a	legacy	code	base	can	be	an	incredible	impetus	to	change.	We	can	take	the	sneaky	way	out,	but
unless	we	deal	with	the	root	causes,	overly	responsible	classes	and	tangled	dependencies,	we	are	just	delaying	the
bill.	When	everyone	discovers	just	how	bad	the	code	has	gotten,	the	costs	to	make	it	better	will	have	gotten	too
ridiculous.

The	Case	of	the	“Helpful”	Language	Feature
Language	designers	often	try	to	make	our	lives	easier,	but	they	have	a	tough	job.	They
have	to	balance	ease	of	programming	against	security	concerns	and	safety.	Some	features
initially	look	like	a	clear	“win”	balancing	all	of	these	concerns	well,	but	when	we	attempt
to	test	code	that	uses	them,	we	discover	the	cruel	reality.

Here	is	a	piece	of	C#	code	that	accepts	a	collection	of	uploaded	files	from	a	web	client.
The	code	iterates	through	each	of	them	and	returns	a	list	of	streams	associated	with	files
that	have	particular	characteristics.
public	void	IList	getKSRStreams(HttpFileCollection	files)	{
				ArrayList	list	=	new	ArrayList();
				foreach(string	name	in	files)	{
								HttpPostedFile	file	=	files[name];
								if	(file.FileName.EndsWith(“.ksr”)	||
																(file.FileName.EndsWith(“.txt”)
																												&&	file.ContentLength	>	MIN_LEN))	{
												…
												list.Add(file.InputStream);
								}
				}
				return	list;
}

We’d	like	to	make	some	changes	to	this	piece	of	code	and	maybe	refactor	it	a	little,	but
writing	tests	is	going	to	be	difficult.	We’d	like	to	create	an	HttpFileCollection	object	and
populate	it	with	HttpPostedFile	objects,	but	that	is	impossible.	First	of	all,	the	HttpPostedFile	class
doesn’t	have	a	public	constructor.	Second,	the	class	is	sealed.	In	C#,	this	means	that	we
can’t	create	an	instance	of	an	HttpPostedFile,	and	we	can’t	subclass	it.	HttpPostedFile	is	part	of	the
.NET	library.	At	runtime,	some	other	class	creates	instances	of	this	class,	but	we	don’t
have	access	to	it.	A	quick	look	at	the	HttpFileCollection	class	shows	us	that	it	has	the	same
problems:	no	public	constructors	and	no	way	to	created	derived	classes.

Why	did	Bill	Gates	do	this	to	us?	After	all,	we’ve	kept	our	licenses	up-to-date	and
everything.	I	don’t	think	he	hates	us.	But	if	he	does,	well,	maybe	Scott	McNealy	does,	too,
because	it’s	not	just	an	issue	with	Microsoft’s	languages.	Sun	has	a	parallel	syntax	for
preventing	subclassing.	They	use	the	keyword	final	in	Java	to	mark	classes	that	are
particularly	sensitive	when	it	comes	to	security.	If	just	anyone	could	create	a	subclass	of
HttpPostedFile	or	even	a	class	such	as	String,	they	could	write	some	malicious	code	and	pass	it
around	in	code	that	uses	those	classes.	It’s	a	very	real	danger,	but	sealed	and	final	are	pretty

drastic	tools;	they	leave	us	in	a	bind	here.

What	can	we	do	to	write	tests	for	the	getKSRStreams	method?	We	can’t	use	Extract	Interface
(362)	or	Extract	Implementer	(356);	the	HttpPostedFile	and	HttpFileCollection	classes	aren’t	under
our	control,	they	are	library	classes	and	we	can’t	change	them.	The	only	technique	that	we
can	use	here	is	Adapt	Parameter	(326).

We’re	lucky,	in	this	case,	because	the	only	thing	that	we	do	to	the	collection	is	iterate	over
it.	Fortunately,	the	sealed	HttpFileCollection	class	that	our	code	uses	has	an	unsealed	superclass
named	NameObjectCollectionBase.	We	can	subclass	it	and	pass	an	object	of	that	subclass	to	the
getKSRStreams	method.	The	change	is	safe	and	easy	if	we	Lean	on	the	Compiler	(315).
public	void	LList	getKSRStreams(OurHttpFileCollection	files)	{
				ArrayList	list	=	new	ArrayList();
				foreach(string	name	in	files)	{
								HttpPostedFile	file	=	files[name];
								if	(file.FileName.EndsWith(“.ksr”)	||
																(file.FileName.EndsWith(“.txt”)
																				&&	file.ContentLength	>	MAX_LEN))	{
												…
												list.Add(file.InputStream);
								}
				}
				return	list;
}

OurHttpFileCollection	is	a	subclass	of	NameObjectCollectionBase	and	NameObjectCollectionBase	is	an	abstract	class
that	associates	strings	with	objects.

That	gets	us	past	one	problem.	The	next	problem	is	tougher.	We	need	HttpPostedFiles	to	run
getKSRStreams	in	a	test,	but	we	can’t	create	them.	What	do	we	need	from	them?	It	looks	like	we
need	a	class	that	provides	a	couple	of	properties:	FileName	and	ContentLength.	We	can	use	Skin	and
Wrap	the	API	(205)	to	get	some	separation	between	us	and	HttpPostedFile	class.	To	do	that,	we
extract	an	interface	(IHttpPostedFile)	and	write	a	wrapper	(HttpPostedFileWrapper):
public	class	HttpPostedFileWrapper	:	IHttpPostedFile
{
				public	HttpPostedFileWrapper(HttpPostedFile	file)	{
								this.file	=	file;
				}

				public	int	ContentLength	{
								get	{	return	file.ContentLength;	}
				}
				…
}

Because	we	have	an	interface,	we	can	also	create	a	class	for	testing:
public	class	FakeHttpPostedFile	:	IHttpPostedFile
{
				public	FakeHttpPostedFile(int	length,	Stream	stream,	…)	{	…	}

				public	int	ContentLength	{
								get	{	return	length;	}
				}
}

Now,	if	we	Lean	on	the	Compiler	(315)	and	change	our	production	code,	we	can	use
HttpPostedFileWrapper	objects	or	FakeHttpPostedFile	objects	through	the	IHttpPostedFile	interface	without

knowing	which	is	being	used.
public	IList	getKSRStreams(OurHttpFileCollection)	{
				ArrayList	list	=	new	ArrayList();
				foreach(string	name	in	files)	{
								IHttpPostedFile	file	=	files[name];
								if	(file.FileName.EndsWith(“.ksr”)	||
																(file.FileName.EndsWith(“.txt”))
																				&&	file.ContentLength	>	MAX_LEN))	{
												…
												list.Add(file.InputStream);
								}
				}
				return	list;
}

The	only	annoyance	is	that	we	have	to	iterate	the	original	HttpFileCollection	in	the	production
code,	wrap	each	HttpPostedFile	that	it	contains,	and	then	add	it	to	a	new	collection	that	we	pass
to	the	getKSRStreams	method.	That’s	the	price	of	security.

Seriously,	it	is	easy	to	believe	that	sealed	and	final	are	a	wrong-headed	mistake,	that	they
should	never	have	been	added	to	programming	languages.	But	the	real	fault	lies	with	us.
When	we	depend	directly	on	libraries	that	are	out	of	our	control,	we	are	just	asking	for
trouble.

Some	day,	mainstream	programming	languages	might	provide	special	access	permissions
for	tests,	but	in	the	meantime,	it	is	good	to	use	mechanisms	such	as	sealed	and	final	sparingly.
And	when	we	need	to	use	library	classes	that	use	them,	it’s	a	good	idea	to	isolate	them
behind	some	wrapper	so	that	we	have	some	wiggle	room	when	we	make	our	changes.	See
Chapter	14,	Dependencies	on	Libraries	Are	Killing	Me,	and	Chapter	15,	My	Application	Is
All	API	Calls,	for	more	discussion	and	techniques	that	address	this	problem.

The	Case	of	the	Undetectable	Side	Effect
In	theory,	writing	a	test	for	a	piece	of	functionality	shouldn’t	be	too	bad.	We	instantiate	a
class,	call	its	methods,	and	check	their	results.	What	could	go	wrong?	Well,	it	can	be	that
easy	if	the	object	we	create	doesn’t	communicate	with	any	other	objects.	If	other	objects
use	it	and	it	doesn’t	use	anything	else,	our	tests	can	use	it	also	and	act	just	like	the	rest	of
our	program	would.	But	objects	that	don’t	use	other	objects	are	rare.

Programs	build	on	themselves.	Often	we	have	objects	with	methods	that	don’t	return
values.	We	call	their	methods,	and	they	do	some	work,	but	we	(the	calling	code)	never	get
to	know	about	it.	The	object	calls	methods	on	other	objects,	and	we	never	have	a	clue	how
things	turned	out.

Here	is	a	class	with	this	problem:
public	class	AccountDetailFrame	extends	Frame
												implements	ActionListener,	WindowListener
{
				private	TextField	display	=	new	TextField(10);
				…
				public	AccountDetailFrame(…)	{	…	}

				public	void	actionPerformed(ActionEvent	event)	{
								String	source	=	(String)event.getActionCommand();
								if	(source.equals(“project	activity”))	{

												detailDisplay	=	new	DetailFrame();
												detailDisplay.setDescription(
																				getDetailText()	+	”	”	+	getProjectionText());
												detailDisplay.show();
												String	accountDescription
																				=	detailDisplay.getAccountSymbol();
												accountDescription	+=	“:	“;
												…
												display.setText(accountDescription);
												…
								}
				}
				…
}

This	old	class	in	Java	does	it	all.	It	creates	GUI	components,	it	receives	notifications	from
them	using	its	actionPerformed	handler,	and	it	calculates	what	it	needs	to	display	and	displays	it.
It	does	all	of	this	in	a	particularly	strange	way:	It	builds	up	detailed	text	and	then	creates
and	displays	another	window.	When	the	window	is	done	with	its	work,	it	grabs
information	from	it	directly,	processes	it	a	bit,	and	then	sets	it	onto	one	of	its	own	text
fields.

We	could	try	running	this	method	in	a	test	harness,	but	it	would	be	pointless.	It	would
create	a	window,	show	it	to	us,	prompt	us	for	input,	and	then	go	on	to	display	something	in
another	window.	There	is	no	decent	place	to	sense	what	this	code	does.

What	can	we	do?	First,	we	can	start	to	separate	work	that	is	independent	of	the	GUI	from
work	that	is	really	dependent	on	the	GUI.	Because	we	are	working	in	Java,	we	can	take
advantage	of	one	of	the	available	refactoring	tools.	Our	first	step	is	to	perform	a	set	of
Extract	Method	(415)	refactorings	to	divide	up	the	work	in	this	method.

Where	should	we	start?

The	method	itself	is	primarily	a	hook	for	notifications	from	the	windowing	framework.
The	first	thing	it	does	is	get	the	name	of	a	command	from	the	action	event	that	is	passed	to
it.	If	we	extract	the	whole	body	of	the	method,	we	can	separate	ourselves	from	any
dependency	on	the	ActionEvent	class.
public	class	AccountDetailFrame	extends	Frame
												implements	ActionListener,	WindowListener
{
				private	TextField	display	=	new	TextField(10);
				…
				public	AccountDetailFrame(…)	{	…	}

				public	void	actionPerformed(ActionEvent	event)	{
								String	source	=	(String)event.getActionCommand();
								performCommand(source);
				}

				public	void	performCommand(String	source)	{
								if	(source.equals(“project	activity”))	{
												detailDisplay	=	new	DetailFrame();
												detailDisplay.setDescription(
																				getDetailText()	+	”	”	+	getProjectionText());
												detailDisplay.show();
												String	accountDescription
																				=	detailDisplay.getAccountSymbol();

												accountDescription	+=	“:	“;
												…
												display.setText(accountDescription);
												…
								}
				}
				…
}

But	that	isn’t	enough	to	make	the	code	testable.	The	next	step	is	to	extract	methods	for	the
code	that	accesses	the	other	frame.	It	will	help	to	make	the	detailDisplay	frame	an	instance
variable	of	the	class.
public	class	AccountDetailFrame	extends	Frame
												implements	ActionListener,	WindowListener
{
				private	TextField	display	=	new	TextField(10);
				private	DetailFrame	detailDisplay;
				…
				public	AccountDetailFrame(…)	{	..	}

				public	void	actionPerformed(ActionEvent	event)	{
								String	source	=	(String)event.getActionCommand();
								performCommand(source);
				}

				public	void	performCommand(String	source)	{
								if	(source.equals(“project	activity”))	{
												detailDisplay	=	new	DetailFrame();
												detailDisplay.setDescription(
																				getDetailText()	+	”	”	+	getProjectionText());
												detailDisplay.show();
												String	accountDescription
																				=	detailDisplay.getAccountSymbol();
												accountDescription	+=	“:	“;
												…
												display.setText(accountDescription);
												…
								}
				}
				…
}

Now	we	can	extract	the	code	that	uses	that	frame	into	a	set	of	methods.	What	should	we
name	the	methods?	To	get	ideas	for	names,	we	should	take	a	look	at	what	each	piece	of
code	does	from	the	perspective	of	this	class,	or	what	it	calculates	for	this	class.	In	addition,
we	should	not	use	names	that	deal	with	the	display	components.	We	can	use	display
components	in	the	code	that	we	extract,	but	the	names	should	hide	that	fact.	With	these
things	in	mind,	we	can	create	either	a	command	method	or	a	query	method	for	each	chunk
of	code.

Command/Query	Separation
Command/Query	Separation	is	a	design	principle	first	described	by	Bertrand	Meyer.	Simply	put,	it	is	this:	A	method
should	be	a	command	or	a	query,	but	not	both.	A	command	is	a	method	that	can	modify	the	state	of	the	object	but	that
doesn’t	return	a	value.	A	query	is	a	method	that	returns	a	value	but	that	does	not	modify	the	object.

Why	is	this	principle	important?	There	are	a	number	of	reasons,	but	the	most	primary	is	communication.	If	a	method
is	a	query,	we	shouldn’t	have	to	look	at	its	body	to	discover	whether	we	can	use	it	several	times	in	a	row	without

causing	some	side	effect.

Here’s	what	the	performCommand	method	looks	like	after	a	series	of	extractions:
public	class	AccountDetailFrame	extends	Frame
												implements	ActionListener,	WindowListener
{
				public	void	performCommand(String	source)	{
								if	(source.equals(“project	activity”))	{
												setDescription(getDetailText()	+	”	”	+	getProjectionText());
												…
												String	accountDescription	=	getAccountSymbol();
												accountDescription	+=	“:	“;
												…
												display.setText(accountDescription);
												…
								}
				}

				void	setDescription(String	description)	{
								detailDisplay	=	new	DetailFrame();
								detailDisplay.setDescription(description);
								detailDisplay.show();
				}

				String	getAccountSymbol()	{
								return	detailDisplay.getAccountSymbol();
				}
				…
}

Now	that	we’ve	extracted	all	of	the	code	that	deals	with	the	detailDisplay	frame,	we	can	go
through	and	extract	the	code	that	accesses	components	on	the	AccountDetailFrame.
public	class	AccountDetailFrame	extends	Frame
				implements	ActionListener,	WindowListener	{
				public	void	performCommand(String	source)	{
								if	(source.equals(“project	activity”))	{
												setDescription(getDetailText()	+	”	”	+	getProjectionText());
												…
												String	accountDescription
																				=	detailDisplay.getAccountSymbol();
												accountDescription	+=	“:	“;
												…
												setDisplayText(accountDescription);
												…
								}
				}

				void	setDescription(String	description)	{
								detailDisplay	=	new	DetailFrame();
								detailDisplay.setDescription(description);
								detailDisplay.show();
				}

				String	getAccountSymbol()	{
								return	detailDisplay.getAccountSymbol();
				}

				void	setDisplayText(String	description)	{
								display.setText(description);

				}
				…
}

After	those	extractions,	we	can	Subclass	and	Override	Method	(401)	and	test	whatever
code	is	left	in	the	performCommand	method.	For	example,	if	we	subclass	AccountDetailFrame	like	this,	we
can	verify	that	given	the	"project	activity"	command,	the	display	gets	the	proper	text:
public	class	TestingAccountDetailFrame	extends	AccountDetailFrame
{
				String	displayText	=	””;
				String	accountSymbol	=	””;

				void	setDescription(String	description)	{
				}

				String	getAccountSymbol()	{
								return	accountSymbol;
				}

				void	setDisplayText(String	text)	{
								displayText	=	text;
				}
}

Here	is	a	test	that	exercises	the	performCommand	method:
public	void	testPerformCommand()	{
				TestingAccountDetailFrame	frame	=	new	TestingAccountDetailFrame();
				frame.accountSymbol	=	“SYM”;
				frame.performCommand(“project	activity”);
				assertEquals(“SYM:	basic	account”,	frame.displayText);
}

When	we	separate	out	dependencies	this	way,	very	conservatively,	by	doing	automated
extracting	method	refactorings,	we	might	end	up	with	code	that	makes	us	flinch	a	bit.	For
instance,	a	setDescription	method	that	creates	a	frame	and	shows	it	is	downright	nasty.	What
happens	if	we	call	it	twice?	We	have	to	deal	with	that	issue,	but	doing	these	coarse
extractions	is	a	decent	first	step.	Afterward,	we	can	see	if	we	can	relocate	the	frame
creation	to	a	better	place.

Where	are	we	now?	We	started	with	a	class	that	had	one	class	with	one	important	method
on	it:	performAction.	We	ended	up	with	what	is	shown	in	Figure	10.1.

Figure	10.1	AccountDetailFrame.

We	can’t	really	see	this	in	a	UML	diagram,	but	getAccountSymbol	and	setDescription	use	the	detailDisplay
field	and	nothing	else.	The	setDisplayText	method	uses	only	the	TextField	named	display.	We	could
recognize	these	as	separate	responsibilities.	If	we	do,	we	can	eventually	move	to

something	like	what	is	shown	in	Figure	10.2.

Figure	10.2	AccountDetailFrame	crudely	refactored.

This	is	an	extremely	crude	refactoring	of	the	original	code,	but	at	least	it	separates
responsibilities	somewhat.	The	AccountDetailFrame	is	tied	to	the	GUI	(it	is	a	subclass	of	Frame)	and
it	still	contains	business	logic.	With	further	refactoring,	we	can	move	beyond	that,	but	at
the	very	least,	now	we	can	run	the	method	that	contained	business	logic	in	a	test	case.	It	is
a	positive	step	forward.

The	SymbolSource	class	is	a	concrete	class	that	represents	the	decision	to	create	another	Frame	and
get	information	from	it.	However,	we	named	it	SymbolSource	here	because,	from	the	point	of
view	of	the	AccountDetailFrame,	its	job	is	to	get	symbol	information	any	way	it	needs	to.	I
wouldn’t	be	surprised	to	see	SymbolSource	become	an	interface,	if	that	decision	ever	changes.

The	steps	we	took	in	this	example	are	very	common.	When	we	have	a	refactoring	tool,	we
can	easily	extract	methods	on	a	class	and	then	start	to	identify	groups	of	methods	that	can
be	moved	to	new	classes.	A	good	refactoring	tool	will	only	allow	you	to	do	an	automated
extract	method	refactoring	when	it	is	safe.	However,	that	just	makes	the	editing	that	we	do
between	uses	of	the	tool	the	most	hazardous	part	of	the	work.	Remember	that	it	is	okay	to
extract	methods	with	poor	names	or	poor	structure	to	get	tests	in	place.	Safety	first.	After
the	tests	are	in	place,	you	can	make	the	code	much	cleaner.

Chapter	11:	I	Need	to	Make	a	Change.	What	Methods
Should	I	Test?

We	need	to	make	some	changes,	and	we	need	to	write	characterization	tests	(186)	to	pin
down	the	behavior	that	is	already	there.	Where	should	we	write	them?	The	simplest
answer	is	to	write	tests	for	each	method	that	we	change.	But	is	that	enough?	It	can	be	if
the	code	is	simple	and	easy	to	understand,	but	in	legacy	code,	often	all	bets	are	off.	A
change	in	one	place	can	affect	behavior	someplace	else;	unless	we	have	a	test	in	place,	we
might	never	know	about	it.

When	I	need	to	make	changes	in	particularly	tangled	legacy	code,	I	often	spend	time
trying	to	figure	out	where	I	should	write	my	tests.	This	involves	thinking	about	the	change
I	am	going	to	make,	seeing	what	it	will	affect,	seeing	what	the	affected	things	will	affect,
and	so	on.	This	type	of	reasoning	is	nothing	new;	people	have	been	doing	it	since	the
dawn	of	the	computer	age.

Programmers	sit	down	and	reason	about	their	programs	for	many	reasons.	The	funny	thing
is,	we	don’t	talk	about	it	much.	We	just	assume	that	everyone	knows	how	to	do	it	and	that
doing	it	is	“just	part	of	being	a	programmer.”	Unfortunately,	that	doesn’t	help	us	much
when	we	are	confronted	with	terribly	tangled	code	that	goes	far	beyond	our	ability	to
reason	easily	about	it.	We	know	that	we	should	refactor	it	to	make	it	more	understandable,
but	then	there	is	that	issue	of	testing	again.	If	we	don’t	have	tests,	how	do	we	know	that
we	are	refactoring	correctly?

I	wrote	the	techniques	in	this	chapter	to	bridge	the	gap.	Often	we	do	have	to	reason	about
effects	in	non-trivial	ways	to	find	the	best	places	to	test.

Reasoning	About	Effects
In	the	industry,	we	don’t	talk	about	this	often,	but	for	every	functional	change	in	software,
there	is	some	associated	chain	of	effects.	For	instance,	if	I	change	the	3	to	4	in	the
following	C#	code,	it	changes	the	result	of	the	method	when	it	is	called.	It	could	also
change	the	results	of	methods	that	call	that	method,	and	so	on,	all	the	way	back	to	some
system	boundary.	Despite	this,	many	parts	of	the	code	won’t	have	different	behavior.	They
won’t	produce	different	results	because	they	don’t	call	getBalancePoint()	directly	or	indirectly.
int	getBalancePoint()	{
				const	int	SCALE_FACTOR	=	3;
				int	result	=	startingLoad	+	(LOAD_FACTOR	*	residual	*	SCALE_FACTOR);
				foreach(Load	load	in	loads)	{
								result	+=	load.getPointWeight()	*	SCALE_FACTOR;
				}
				return	result;
}

IDE	Support	for	Effect	Analysis
Sometimes	I	wish	that	I	had	an	IDE	that	would	help	me	see	effects	in	legacy	code.	I	would	be	able	to	highlight	a
piece	of	code	and	hit	a	hotkey.	Then	the	IDE	would	give	me	a	list	of	all	of	the	variables	and	methods	that	could	be
impacted	when	I	change	the	selected	code.

Perhaps	someday	someone	will	develop	a	tool	like	this.	In	the	meantime,	we	have	to	reason	about	effects	without

tools.	It	is	a	very	learnable	skill,	but	it	is	hard	to	know	when	we’ve	gotten	it	right.

The	best	way	to	get	a	sense	of	what	effect	reasoning	is	like	is	to	look	at	an	example.	Here
is	a	Java	class	that	is	part	of	an	application	that	manipulates	C++	code.	It	sounds	pretty
domain	intensive,	doesn’t	it?	But	domain	knowledge	doesn’t	matter	when	we	reason	about
effects.

Let’s	try	a	little	exercise.	Make	a	list	of	all	of	the	things	that	can	be	changed	after	a	CppClass
object	is	created	that	would	affect	results	returned	by	any	of	its	methods.
public	class	CppClass	{
				private	String	name;
				private	List	declarations;

				public	CppClass(String	name,	List	declarations)	{
								this.name	=	name;
								this.declarations	=	declarations;
				}

				public	int	getDeclarationCount()	{
								return	declarations.size();
				}

				public	String	getName()	{
								return	name;
				}

				public	Declaration	getDeclaration(int	index)	{
								return	((Declaration)declarations.get(index));
				}

				public	String	getInterface(String	interfaceName,	int	[]	indices)	{
								String	result	=	“class	”	+	interfaceName	+	”	{\npublic:\n”;
								for	(int	n	=	0;	n	<	indices.length;	n++)	{
												Declaration	virtualFunction
																				=	(Declaration)(declarations.get(indices[n]));
												result	+=	“\t”	+	virtualFunction.asAbstract()	+	“\n”;
								}
								result	+=	“};\n”;
								return	result;
				}
}

Your	list	should	look	something	like	this:

1.	Someone	could	add	additional	elements	to	the	declarations	list	after	passing	it	to	the
constructor.	Because	the	list	is	held	by	reference,	changes	made	to	it	can	alter	the
results	of	getInterface,	getDeclaration,	and	getDeclarationCount.

2.	Someone	can	alter	one	of	the	objects	held	in	the	declarations	list	or	replace	one	of
its	elements,	affecting	the	same	methods.

Some	people	look	at	the	getName	method	and	suspect	that	it	could	return	a	different	value	if	anyone	changes	the	name
string,	but	in	Java,	String	objects	are	immutable.	You	can’t	change	their	value	after	they	are	created.	After	a	CppClass
object	is	created,	getName	always	returns	the	same	string	value.

We	make	a	sketch	that	shows	that	changes	in	declarations	have	an	effect	on	getDeclarationCount()	(see
Figure	11.1).

Figure	11.1	declarations	impacts	getDeclarationCount.

This	sketch	shows	that	if	declarations	changes	in	some	way—for	instance,	if	its	size	grows
—getDeclarationCount()	can	return	a	different	value.

We	can	make	a	sketch	for	getDeclaration(int	index)	also	(see	Figure	11.2).

Figure	11.2	declarations	and	the	objects	it	holds	impact	getDeclarationCount.

The	return	values	of	calls	to	getDeclaration(int	index)	can	change	if	something	causes	declarations	to
change	or	if	the	declarations	within	it	change.

Figure	11.3	shows	that	similar	things	impact	the	getInterface	method	also.

Figure	11.3	Things	that	affect	getInterface.

We	can	bundle	all	of	these	sketches	together	into	a	larger	sketch	(see	Figure	11.4).

Figure	11.4	Combined	effect	sketch.

There	isn’t	much	syntax	in	these	diagrams.	I	just	call	them	effect	sketches.	The	key	is	to
have	a	separate	bubble	for	each	variable	that	can	be	affected	and	each	method	whose
return	value	can	change.	Sometimes	the	variables	are	on	the	same	object,	and	sometimes
they	are	on	different	objects.	It	doesn’t	matter:	We	just	make	a	bubble	for	the	things	that
will	change	and	draw	an	arrow	to	everything	whose	value	can	change	at	runtime	because
of	them.

If	your	code	is	well	structured,	most	of	the	methods	in	your	software	have	simple	effect	structures.	In	fact,	one
measure	of	goodness	in	software	is	that	rather	complicated	effects	on	the	outside	world	are	the	sum	of	a	much
simpler	set	of	effects	in	the	code.	Almost	anything	that	you	can	do	to	make	the	effect	sketch	simpler	for	a	piece	of
code	makes	it	more	understandable	and	maintainable.

Let’s	widen	our	picture	of	the	system	that	the	previous	class	comes	from	and	look	at	a
bigger	effect	picture.	CppClass	objects	are	created	in	a	class	named	ClassReader.	In	fact,	we’ve
been	able	to	determine	that	they	are	created	only	in	ClassReader.
public	class	ClassReader	{
				private	boolean	inPublicSection	=	false;
				private	CppClass	parsedClass;
				private	List	declarations	=	new	ArrayList();
				private	Reader	reader;

				public	ClassReader(Reader	reader)	{
								this.reader	=	reader;
				}
				public	void	parse()	throws	Exception	{
								TokenReader	source	=	new	TokenReader(reader);
								Token	classToken	=	source.readToken();
								Token	className	=	source.readToken();

								Token	lbrace	=	source.readToken();
								matchBody(source);
								Token	rbrace	=	source.readToken();

								Token	semicolon	=	source.readToken();

								if	(classToken.getType()	==	Token.CLASS
																&&	className.getType()	==	Token.IDENT
																&&	lbrace.getType()	==	Token.LBRACE
																&&	rbrace.getType()	==	Token.RBRACE
																&&	semicolon.getType()	==	Token.SEMIC)	{
												parsedClass	=	new	CppClass(className.getText(),
																																										declarations);

								}
				}
				…
}

Remember	what	we	learned	about	CppClass?	Do	we	know	that	the	list	of	declarations	won’t
ever	change	after	a	CppClass	is	created?	The	view	that	we	have	of	CppClass	doesn’t	really	tell	us.
We	need	to	figure	out	how	the	declarations	list	gets	populated.	If	we	look	at	more	of	the
class,	we	can	see	that	declarations	are	added	in	only	one	place	in	CppClass,	a	method	named
matchVirtualDeclaration	that	is	called	by	matchBody	in	parse.
private	void	matchVirtualDeclaration(TokenReader	source)
																				throws	IOException	{
				if	(!source.peekToken().getType()	==	Token.VIRTUAL)
								return;
				List	declarationTokens	=	new	ArrayList();
				declarationTokens.add(source.readToken());
				while(source.peekToken().getType()	!=	Token.SEMIC)	{
								declarationTokens.add(source.readToken());
				}
				declarationTokens.add(source.readToken());
				if	(inPublicSection)
								declarations.add(new	Declaration(declarationTokens));
}

It	looks	like	all	of	the	changes	that	happen	to	this	list	happen	before	the	CppClass	object	is
created.	Because	we	add	new	declarations	to	the	list	and	don’t	hold	on	to	any	references	to
them,	the	declarations	aren’t	going	to	change,	either.

Let’s	think	about	the	things	held	by	the	declarations	list.	The	readToken	method	of	TokenReader
returns	token	objects	that	just	hold	a	string	and	an	integer	that	never	changes.	I’m	not
showing	it	here,	but	a	quick	look	at	the	Declaration	class	shows	that	nothing	else	can	change
its	state	after	it	is	created,	so	we	can	feel	pretty	comfortable	saying	that	when	a	CppClass
object	is	created,	its	declaration	list	and	the	list’s	contents	aren’t	going	to	change.

How	does	this	knowledge	help	us?	If	we	were	getting	unexpected	values	from	CppClass,	we
would	know	that	we	have	to	look	at	only	a	couple	things.	Generally,	we	can	start	to	really
look	back	at	the	places	where	the	sub-objects	of	CppClass	are	created	to	figure	out	what	is
going	on.	We	can	also	make	the	code	clearer	by	starting	to	mark	some	of	the	references	in
CppClass	constant	using	Java’s	final	keyword.

In	programs	that	aren’t	written	very	well,	we	often	find	it	very	difficult	to	figure	out	why
the	results	we	are	looking	at	are	what	they	are.	When	we	are	at	that	point,	we	have	a
debugging	problem	and	we	have	to	reason	backward	from	the	problem	to	its	source.	When
we	are	working	with	legacy	code,	we	often	have	to	ask	a	different	question:	If	we	make	a
particular	change,	how	could	it	possibly	affect	the	rest	of	the	results	of	the	program?

This	involves	reasoning	forward	from	points	of	change.	When	you	get	a	good	handle	on
this	sort	of	reasoning,	you	have	the	beginnings	of	a	technique	for	finding	good	places	to
write	tests.

Reasoning	Forward
In	the	previous	example,	we	tried	to	deduce	the	set	of	objects	that	affect	values	at	a
particular	point	in	code.	When	we	are	writing	characterization	tests	(186),	we	invert	this

process.	We	look	at	a	set	of	objects	and	try	to	figure	out	what	will	change	downstream	if
they	stop	working.	Here	is	an	example.	The	following	class	is	part	of	an	in-memory	file
system.	We	don’t	have	any	tests	for	it,	but	we	want	to	make	some	changes.
public	class	InMemoryDirectory	{
				private	List	elements	=	new	ArrayList();

				public	void	addElement(Element	newElement)	{
								elements.add(newElement);
				}
				public	void	generateIndex()	{
								Element	index	=	new	Element(“index”);
								for	(Iterator	it	=	elements.iterator();	it.hasNext();)	{
												Element	current	=	(Element)it.next();
										index.addText(current.getName()	+	“\n”);
								}
								addElement(index);
				}

				public	int	getElementCount()	{
								return	elements.size();
				}

				public	Element	getElement(String	name)	{
								for	(Iterator	it	=	elements.iterator();	it.hasNext();)	{
												Element	current	=	(Element)it.next();
												if	(current.getName().equals(name))	{
																return	current;
												}
								}
								return	null;
				}
}

InMemoryDirectory	is	a	little	Java	class.	We	can	create	an	InMemoryDirectory	object,	add	elements	into	it,
generate	an	index,	and	then	access	the	elements.	Elements	are	objects	that	contain	text,	just
like	files.	When	we	generate	an	index,	we	create	an	element	named	index	and	append	the
names	of	all	of	the	other	elements	to	its	text.

One	odd	feature	of	InMemoryDirectory	is	that	we	can’t	call	generateIndex	twice	without	gumming
things	up.	If	we	call	generateIndex	twice,	we	end	up	with	two	index	elements	(the	second	one
created	actually	lists	the	first	one	as	an	element	of	the	directory).

Fortunately,	our	application	uses	InMemoryDirectory	in	a	very	constrained	way.	It	creates
directories,	fills	them	with	elements,	calls	generateIndex,	and	then	passes	the	directory	around
so	that	other	parts	of	the	application	can	access	its	elements.	It	all	works	fine	right	now,
but	we	need	to	make	a	change.	We	need	to	modify	the	software	to	allow	people	to	add
elements	at	any	time	during	the	directory’s	lifetime.

Ideally,	we’d	like	to	have	index	creation	and	maintenance	happen	as	a	side	effect	of
adding	elements.	The	first	time	someone	adds	an	element,	the	index	element	should	be
created	and	it	should	contain	the	name	of	the	element	that	was	added.	The	second	time,
that	same	index	element	should	be	updated	with	the	name	of	the	element	that	is	added.
It’ll	be	easy	enough	to	write	tests	for	the	new	behavior	and	the	code	that	satisfies	them,
but	we	don’t	have	any	tests	for	the	current	behavior.	How	do	we	figure	out	where	to	put
them?

In	this	example,	the	answer	is	clear	enough:	We	need	a	series	of	tests	that	call	addElement	in
various	ways,	generate	an	index,	and	then	get	the	various	elements	to	see	if	they	are
correct.	How	do	we	know	that	these	are	the	right	methods	to	use?	In	this	case,	the	problem
is	simple.	The	tests	are	just	a	description	of	how	we	expect	to	use	the	directory.	We	could
probably	write	them	without	even	looking	at	the	directory	code	because	we	have	a	good
idea	of	what	the	directory	is	supposed	to	do.	Unfortunately,	figuring	out	where	to	test	isn’t
always	that	simple.	I	could	have	used	a	big	complicated	class	in	this	example,	one	that	is
kind	of	like	the	ones	that	are	often	lurking	in	legacy	systems,	but	you	would	have	gotten
bored	and	closed	the	book.	So	let’s	pretend	that	this	is	a	tough	one	and	take	a	look	at	how
we	can	figure	out	what	to	test	by	looking	at	the	code.	The	same	kind	of	reasoning	applies
to	thornier	problems.

In	this	example,	the	first	thing	that	we	need	to	do	is	figure	out	where	we	are	going	to	make
our	changes.	We	need	to	remove	functionality	from	generateIndex	and	add	functionality	to
addElement.	When	we’ve	identified	those	as	the	points	of	change,	we	can	start	to	sketch
effects.

Let’s	start	with	generateIndex.	What	calls	it?	No	other	methods	in	the	class	do.	The	method	is
called	only	by	clients.	Do	we	modify	anything	in	generateIndex?	We	do	create	a	new	element
and	add	it	to	the	directory,	so	generateIndex	can	have	an	effect	on	the	elements	collection	in	the
class	(see	Figure	11.5).

Figure	11.5	generateIndex	affects	elements.

Now	we	can	take	a	look	at	the	elements	collection	and	see	what	it	can	affect.	Where	else	is	it
used?	It	looks	like	it	is	used	in	getElementCount	and	getElement.	The	elements	collection	is	used	in
addElement	also,	but	we	don’t	need	to	count	that	because	addElement	behaves	the	same	way,
regardless	of	what	we	do	to	the	elements	collection:	No	user	of	addElements	can	be	impacted	by
anything	we	do	to	the	elements	collection	(see	Figure	11.6).

Figure	11.6	Further	effects	of	changes	in	generateIndex.

Are	we	done?	No,	our	change	points	were	the	generateIndex	method	and	the	addElement	method,	so
we	need	to	look	at	how	addElement	affects	surrounding	software	also.	It	looks	like	addElement
affects	the	elements	collection	(see	Figure	11.7).

Figure	11.7	addElement	affects	elements.

We	can	look	to	see	what	elements	affects,	but	we’ve	done	that	already	because	generateIndex
affects	elements.

The	whole	sketch	appears	in	Figure	11.8.

Figure	11.8	Effect	sketch	of	the	InMemoryDirectory	class.

The	only	way	that	users	of	the	InMemoryDirectory	class	can	sense	effects	is	through	the	getElementCount
and	getElement	methods.	If	we	can	write	tests	at	those	methods,	it	appears	that	we	should	be
able	to	cover	all	of	the	effects	of	our	change.

But	is	there	any	chance	we’ve	missed	anything?	What	about	superclasses	and	subclasses?
If	any	data	in	InMemoryDirectory	is	public,	protected,	or	package-scoped,	a	method	in	a	subclass
could	modify	it	in	ways	that	we	won’t	know	about.	In	this	example,	the	instance	variables
in	InMemoryDirectory	are	private,	so	we	don’t	have	to	worry	about	that.

When	you	are	sketching	effects,	make	sure	that	you	have	found	all	of	the	clients	of	the	class	you	are	examining.	If
your	class	has	a	superclass	or	subclasses,	there	might	be	other	clients	that	you	haven’t	considered.

Are	we	done?	Well,	there	is	one	thing	that	we’ve	glossed	over	completely.	We’re	using	the
Element	class	in	the	directory,	but	it	isn’t	part	of	our	effect	sketch.	Let’s	look	at	it	more
closely.

When	we	call	generateIndex,	we	create	an	Element	and	repeatedly	call	addText	on	it.	Let’s	look	at	the

code	for	Element:
public	class	Element	{
				private	String	name;
				private	String	text	=	””;

				public	Element(String	name)	{
								this.name	=	name;
				}

				public	String	getName()	{
								return	name;
				}

				public	void	addText(String	newText)	{
								text	+=	newText;
				}

				public	String	getText()	{
								return	text;
				}
}

Fortunately,	it	is	very	simple.	Let’s	create	a	bubble	for	a	new	element	that	generateIndex	creates
(see	Figure	11.9).

Figure	11.9	Effects	through	the	Element	class.

When	we	have	a	new	element	and	it	is	filled	with	text,	generateIndex	adds	it	to	the	collection,
so	the	new	element	affects	the	collection	(see	Figure	11.10).

Figure	11.10	generateIndex	affecting	the	elements	collection.

We	know	from	our	previous	work	that	the	addText	method	affects	the	elements	collection,	which,
in	turn,	affects	the	return	values	of	getElement	and	getElementCount.	If	we	want	to	see	that	the	text	is
generated	correctly,	we	can	call	getText	on	an	element	returned	by	getElement.	Those	are	the	only
places	that	we	have	to	write	tests	to	detect	the	effects	of	our	changes.

As	I	mentioned	earlier,	this	is	a	rather	small	example,	but	it	is	very	representative	of	the
type	of	reasoning	that	we	need	to	do	when	we	assess	the	impact	of	changes	in	legacy	code.
We	need	to	find	places	to	test,	and	the	first	step	is	figuring	out	where	change	can	be
detected:	what	the	effects	of	the	change	are.	When	we	know	where	we	can	detect	effects,
we	can	pick	and	choose	among	them	when	we	write	our	tests.

Effect	Propagation
Some	ways	that	effects	propagate	are	easier	to	notice	than	others.	In	the	InMemoryDirectory
example	in	the	last	section,	we	ended	up	finding	methods	that	returned	values	to	the	caller.
Even	though	I	start	by	tracing	effects	from	change	points,	places	where	I	am	making	a
change,	I	usually	notice	methods	with	return	values	first.	Unless	their	return	values	aren’t
being	used,	they	propagate	effects	to	code	that	calls	them.

Effects	can	also	propagate	in	silent,	sneaky	ways.	If	we	have	an	object	that	accepts	some
object	as	a	parameter,	it	can	modify	its	state,	and	the	change	is	reflected	back	into	the	rest
of	the	application.

Each	language	has	rules	about	how	parameters	to	methods	are	handled.	The	default	in	many	cases	is	to	pass
references	to	objects	by	value.	This	is	the	default	in	Java	and	C#.	Objects	aren’t	passed	to	methods;	instead,
“handles”	to	objects	are	passed.	As	a	result,	any	method	can	change	the	state	of	objects	through	the	handle	they	were
passed.	Some	of	these	languages	have	keywords	that	you	can	use	to	make	it	impossible	to	modify	the	state	of	an
object	that	is	passed	to	them.	In	C++,	the	const	keyword	does	this	when	you	use	it	in	the	declaration	of	a	method
parameter.

The	sneakiest	way	that	a	piece	of	code	can	affect	other	code	is	through	global	or	static
data.	Here	is	an	example:
public	class	Element	{
				private	String	name;
				private	String	text	=	””;

				public	Element(String	name)	{
								this.name	=	name;
				}

				public	String	getName()	{
								return	name;
				}

				public	void	addText(String	newText)	{
								text	+=	newText;
								View.getCurrentDisplay().addText(newText);
				}

				public	String	getText()	{
								return	text;
				}
}

This	class	is	nearly	the	same	as	the	Element	class	that	we	used	in	the	InMemoryDirectory	example.	In
fact,	only	one	line	of	code	is	different:	the	second	line	in	addText.	Looking	at	the	signatures
of	the	methods	on	Element	isn’t	going	to	help	us	find	the	effect	that	elements	have	on	views.
Information	hiding	is	great,	unless	it	is	information	that	we	need	to	know.

Effects	propagate	in	code	in	three	basic	ways:

1.	Return	values	that	are	used	by	a	caller

2.	Modification	of	objects	passed	as	parameters	that	are	used	later

3.	Modification	of	static	or	global	data	that	is	used	later

Some	languages	provide	additional	mechanisms.	For	instance,	in	aspect-oriented	languages,	programmers	can	write
constructs	called	aspects	that	affect	the	behavior	of	code	in	other	areas	of	the	system.

Here	is	a	heuristic	that	I	use	when	looking	for	effects:

1.	Identify	a	method	that	will	change.

2.	If	the	method	has	a	return	value,	look	at	its	callers.

3.	See	if	the	method	modifies	any	values.	If	it	does,	look	at	the	methods	that	use	those
values,	and	the	methods	that	use	those	methods.

4.	Make	sure	you	look	for	superclasses	and	subclasses	that	might	be	users	of	these
instance	variables	and	methods	also.

5.	Look	at	parameters	to	the	methods.	See	if	they	or	any	objects	that	their	methods
return	are	used	by	the	code	that	you	want	to	change.

6.	Look	for	global	variables	and	static	data	that	is	modified	in	any	of	the	methods
you’ve	identified.

Tools	for	Effect	Reasoning
The	most	important	tool	that	we	have	in	our	arsenal	is	knowledge	of	our	programming
language.	In	every	language,	there	are	little	“firewalls,”	things	that	prevent	effect
propagation.	If	we	know	what	they	are,	we	know	that	we	don’t	have	to	look	past	them.

Let’s	suppose	that	we	are	about	to	change	the	representation	in	the	following	coordinate
class.	We	want	to	move	toward	using	a	vector	to	hold	on	to	the	x	and	y	values	because	we
want	to	generalize	the	Coordinate	class	so	that	it	can	represent	three-	and	four-dimensional
coordinates.	In	the	following	Java	code,	we	don’t	have	to	look	beyond	the	class	to

understand	the	effect	of	that	change:
public	class	Coordinate	{
				private	double	x	=	0;
				private	double	y	=	0;

				public	Coordinate()	{}
				public	Coordinate(double	x,	double	y)	{
								this.x	=	x;	this.y	=	x;
				}
				public	double	distance(Coordinate	other)	{
								return	Math.sqrt(
												Math.pow(other.x	-	x,	2.0)	+	Math.pow(other.y	-	y,	2.0));
				}
}

Here	is	some	code	that	we	do	have	to	look	beyond:
public	class	Coordinate	{
				double	x	=	0;
				double	y	=	0;

				public	Coordinate()	{}
				public	Coordinate(double	x,	double	y)	{
				this.x	=	x;	this.y	=	x;
				}
				public	double	distance(Coordinate	other)	{
								return	Math.sqrt(
												Math.pow(other.x	-	x,	2.0)	+	Math.pow(other.y	-	y,	2.0));
				}
}

See	the	difference?	It’s	subtle.	In	the	first	version	of	the	class,	the	x	and	y	variables	were
private.	In	the	second,	they	had	package	scope.	In	the	first	version,	if	we	do	anything	that
changes	the	x	and	y	variables,	it	impacts	clients	only	through	the	distance	function,
regardless	of	whether	clients	use	Coordinate	or	a	subclass	of	Coordinate.	In	the	second	version,
clients	in	the	package	could	be	accessing	the	variables	directly.	We	should	look	for	that	or
try	making	them	private	to	make	sure	that	they	aren’t.	Subclasses	of	Coordinate	can	use	the
instance	variables,	too,	so	we	have	to	look	at	them	and	see	if	they	are	being	used	in
methods	of	any	subclasses.

Knowing	our	language	is	important	because	the	subtle	rules	can	often	trip	us	up.	Let’s	take
a	look	at	a	C++	example:
class	PolarCoordinate	:	public	Coordinate	{
public:
												PolarCoordinate();
				double	getRho()	const;
				double	getTheta()	const;
};

In	C++,	when	the	keyword	const	comes	after	a	method	declaration,	the	method	can’t	modify
the	instance	variables	of	the	object.	Or	can	it?	Suppose	that	the	superclass	of	PolarCoordinate
looks	like	this:
class	Coordinate	{
protected:
				mutable	double	first,	second;
};

In	C++,	when	the	keyword	mutable	is	used	in	a	declaration,	it	means	that	those	variables	can

be	modified	in	const	methods.	Admittedly,	this	use	of	mutable	is	particularly	odd,	but	when	it
comes	to	figuring	out	what	can	and	can’t	change	in	a	program	that	we	don’t	know	well,
we	have	to	look	for	effects	regardless	of	how	odd	they	might	be.	Taking	const	to	mean	const
in	C++	without	really	checking	can	be	dangerous.	The	same	holds	true	for	other	language
constructs	that	can	be	circumvented.

Know	your	language.

Learning	from	Effect	Analysis
Try	to	analyze	effects	in	code	whenever	you	get	a	chance.	Sometimes	you	will	notice	that
as	you	get	very	familiar	with	a	code	base,	you	feel	that	you	don’t	have	to	look	for	certain
things.	When	you	feel	that	way,	you’ve	found	some	“basic	goodness”	in	your	code	base.
In	the	best	code,	there	aren’t	many	“gotchas.”	Some	“rules”	embodied	in	the	code	base,
whether	they	are	explicitly	stated	or	not,	prevent	you	from	having	to	be	paranoid	as	you
look	for	possible	effects.	The	best	way	to	find	these	rules	is	to	think	of	a	way	that	a	piece
of	software	could	have	an	effect	on	another,	a	way	that	you’ve	never	seen	in	the	code	base.
Then	say	to	yourself,	“But,	no,	that	would	be	stupid.”	When	your	code	base	has	a	lot	of
rules	like	that,	it	is	far	easier	to	deal	with.	In	bad	code,	people	don’t	know	what	the	“rules”
are,	or	the	“rules”	are	littered	with	exceptions.

The	“rules”	for	a	code	base	aren’t	necessarily	grand	statements	of	programming	style,
things	such	as	“Never	use	protected	variables.”	Instead,	they	are	often	contextual	things.
In	the	CppClass	example	at	the	beginning	of	chapter,	we	did	a	little	exercise	in	which	we	tried
to	figure	out	what	would	affect	users	of	a	CppClass	object	after	we	created	it.	Here	is	an
excerpt	of	that	code:
public	class	CppClass	{
				private	String	name;
				private	List	declarations;

				public	CppClass(String	name,	List	declarations)	{
								this.name	=	name;
								this.declarations	=	declarations;
				}
				…
}

We	listed	the	fact	that	someone	could	modify	the	declarations	list	after	passing	it	to	the
constructor.	This	is	an	ideal	candidate	for	a	“but	that	would	be	stupid”	rule.	If	we	know
when	we	start	to	look	at	the	CppClass	that	we	have	been	given	a	list	that	won’t	change,	our
reasoning	is	much	easier.

In	general,	programming	gets	easier	as	we	narrow	effects	in	a	program.	We	need	to	know
less	to	understand	a	piece	of	code.	At	the	extreme,	we	end	up	with	functional
programming	in	languages	such	as	Scheme	and	Haskell.	Programs	can	actually	be	very
easy	to	understand	in	those	languages,	but	those	languages	aren’t	in	widespread	use.
Regardless,	in	OO	languages,	restricting	effects	can	make	testing	much	easier,	and	there
aren’t	any	hurdles	to	doing	it.

Simplifying	Effect	Sketches

This	book	is	about	making	legacy	code	easier	to	work	with,	so	there	is	a	sort	of	“spilt
milk”	quality	to	a	lot	of	the	examples.	However,	I	wanted	to	take	the	opportunity	to	show
you	something	very	useful	that	you	can	see	through	effect	sketches.	This	could	affect	how
you	write	code	as	you	move	forward.

Remember	the	effect	sketch	for	the	CppClass	class?	(See	Figure	11.11.)

Figure	11.11	Effect	sketch	for	CppClass.

It	looks	like	there	is	a	little	fan-out.	Two	pieces	of	data,	a	declaration	and	the	declarations
collection,	have	effects	on	several	different	methods.	We	can	pick	and	choose	which	ones
we	want	to	use	for	our	tests.	The	best	one	to	use	is	getInterface	because	it	exercises
declarations	a	bit	more.	Some	things	we	can	sense	through	the	getInterface	method	that	we
can’t	as	easily	through	getDeclaration	and	getDeclarationCount.	I	wouldn’t	mind	writing	only	tests	for
getInterface	if	I	was	characterizing	CppClass,	but	it	would	be	a	shame	that	getDeclaration	and
getDeclarationCount	wouldn’t	be	covered.	But	what	if	getInterface	looked	like	this?

public	String	getInterface(String	interfaceName,	int	[]	indices)	{
				String	result	=	“class	”	+	interfaceName	+	”	{\npublic:\n”;
				for	(int	n	=	0;	n	<	indices.length;	n++)	{
								Declaration	virtualFunction	=	getDeclaration(indices[n]);
								result	+=	“\t”	+	virtualFunction.asAbstract()	+	“\n”;
				}
				result	+=	“};\n”;
				return	result;
}

The	difference	here	is	subtle;	the	code	now	uses	getDeclaration	internally.	So	our	sketch
changes	from	Figure	11.12	to	Figure	11.13.

Figure	11.12	Effect	sketch	for	CppClass.

Figure	11.13	Effect	sketch	for	Changed	CppClass.

It’s	just	a	small	change,	but	it’s	a	pretty	significant	one.	The	getInterface	method	now	uses
getDeclaration	internally.	We	end	up	exercising	getDeclaration	whenever	we	test	getInterface.

When	we	remove	tiny	pieces	of	duplication,	we	often	end	up	getting	effect	sketches	with	a
smaller	set	of	endpoints.	This	often	translates	into	easier	testing	decisions.

Effects	and	Encapsulation
One	of	the	often-mentioned	benefits	of	object	orientation	is	encapsulation.	Many	times	when	I	show	people	the
dependency-breaking	techniques	in	this	book,	they	point	out	that	many	of	them	break	encapsulation.	That’s	true.
Many	of	them	do.

Encapsulation	is	important,	but	the	reason	why	it	is	important	is	more	important.	Encapsulation	helps	us	reason	about
our	code.	In	well-encapsulated	code,	there	are	fewer	paths	to	follow	as	you	try	to	understand	it.	For	instance,	if	we
add	another	parameter	to	a	constructor	to	break	a	dependency	as	we	do	in	the	Parameterize	Constructor	(379)
refactoring,	we	have	one	more	path	to	follow	when	we	are	reasoning	about	effects.	Breaking	encapsulation	can	make
reasoning	about	our	code	harder,	but	it	can	make	it	easier	if	we	end	up	with	good	explanatory	tests	afterward.	When
we	have	test	cases	for	a	class,	we	can	use	them	to	reason	about	our	code	more	directly.	We	can	also	write	new	tests
for	any	questions	that	we	might	have	about	the	behavior	of	the	code.

Encapsulation	and	test	coverage	aren’t	always	at	odds,	but	when	they	are,	I	bias	toward	test	coverage.	Often	it	can
help	me	get	more	encapsulation	later.

Encapsulation	isn’t	an	end	in	itself;	it	is	a	tool	for	understanding.

When	we	need	to	find	out	where	to	write	our	tests,	it’s	important	to	know	what	can	be
affected	by	the	changes	we	are	making.	We	have	to	reason	about	effects.	We	can	do	this
sort	of	reasoning	informally	or	in	a	more	rigorous	way	with	little	sketches,	but	it	pays	to
practice	it.	In	particularly	tangled	code,	it	is	one	of	the	only	skills	we	can	depend	upon	in
the	process	of	getting	tests	in	place.

Chapter	12:	I	Need	to	Make	Many	Changes	in	One	Area.	Do
I	Have	to	Break	Dependencies	for	All	the	Classes	Involved?

In	some	cases,	it’s	easy	to	start	writing	tests	for	a	class.	But	in	legacy	code,	it’s	often
difficult.	Dependencies	can	be	hard	to	break.	When	you’ve	made	a	commitment	to	get
classes	into	test	harnesses	to	make	work	easier,	one	of	the	most	infuriating	things	that	you
can	encounter	is	a	closely	scattered	change.	You	need	to	add	a	new	feature	to	a	system,
and	you	find	that	you	have	to	modify	three	or	four	closely	related	classes.	Each	of	them
would	take	a	couple	of	hours	to	get	under	test.	Sure,	you	know	that	the	code	will	be	better
for	it	at	the	end,	but	do	you	really	have	to	break	all	of	those	dependencies	individually?
Maybe	not.

Often	it	pays	to	test	“one	level	back,”	to	find	a	place	where	we	can	write	tests	for	several
changes	at	once.	We	can	write	tests	at	a	single	public	method	for	changes	in	a	number	of
private	methods,	or	we	can	write	tests	at	the	interface	of	one	object	for	a	collaboration	of
several	objects	that	it	holds.	When	we	do	this,	we	can	test	the	changes	we	are	making,	but
we	also	give	ourselves	some	“cover”	for	more	refactoring	in	the	area.	The	structure	of
code	below	the	tests	can	change	radically	as	long	as	the	tests	pin	down	their	behavior.

Higher-level	tests	can	be	useful	in	refactoring.	Often	people	prefer	them	to	finely	grained	tests	at	each	class	because
they	think	that	change	is	harder	when	lots	of	little	tests	are	written	against	an	interface	that	has	to	change.	In	fact,
changes	are	often	easier	than	you	would	expect	because	you	can	make	changes	to	the	tests	and	then	make	changes	to
the	code,	moving	the	structure	along	in	small	safe	increments.

While	higher-level	tests	are	an	important	tool,	they	shouldn’t	be	a	substitute	for	unit	tests.	Instead,	they	should	be	a
first	step	toward	getting	unit	tests	in	place.

How	do	we	get	these	“covering	tests”	in	place?	The	first	thing	that	we	have	to	figure	out	is
where	to	write	them.	If	you	haven’t	already,	take	a	look	at	Chapter	11,	I	Need	to	Make	a
Change.	What	Methods	Should	I	Test?	That	chapter	describes	effect	sketches	(155),	a
powerful	tool	that	you	can	use	to	figure	out	where	to	write	tests.	In	this	chapter,	I	describe
the	concept	of	an	interception	point	and	show	how	to	find	them.	I	also	describe	the	best
kind	of	interception	points	you	can	find	in	code,	pinch	points.	I	show	you	how	to	find
them	and	how	they	can	help	you	when	you	want	to	write	tests	to	cover	the	code	you	are
going	to	change.

Interception	Points
An	interception	point	is	simply	a	point	in	your	program	where	you	can	detect	the	effects
of	a	particular	change.	In	some	applications,	finding	them	is	tougher	than	it	is	in	others.	If
you	have	an	application	whose	pieces	are	glued	together	without	many	natural	seams,
finding	a	decent	interception	point	can	be	a	big	deal.	Often	it	requires	some	effect
reasoning	and	a	lot	of	dependency	breaking.	How	do	we	start?

The	best	way	to	start	is	to	identify	the	places	where	you	need	to	make	changes	and	start
tracing	effects	outward	from	those	change	points.	Each	place	where	you	can	detect	effects
is	an	interception	point,	but	it	might	not	be	the	best	interception	point.	You	have	to	make
judgment	calls	throughout	the	process.

The	Simple	Case

Imagine	that	we	have	to	modify	a	Java	class	called	Invoice,	to	change	the	way	that	costs	are
calculated.	The	method	that	calculates	all	of	the	costs	for	Invoice	is	called	getValue.
public	class	Invoice
{
				…
				public	Money	getValue()	{
								Money	total	=	itemsSum();
								if	(billingDate.after(Date.yearEnd(openingDate)))	{
												if	(originator.getState().equals(“FL”)	||
																				originator.getState().equals(“NY”))
																total.add(getLocalShipping());
												else
																total.add(getDefaultShipping());
								}
								else
												total.add(getSpanningShipping());
								total.add(getTax());
								return	total;
				}
				…
}

We	need	to	change	the	way	that	we	calculate	shipping	costs	for	New	York.	The	legislature
just	added	a	tax	that	affects	our	shipping	operation	there,	and,	unfortunately,	we	have	to
pass	the	cost	on	to	the	consumer.	In	the	process,	we	are	going	to	extract	the	shipping	cost
logic	into	a	new	class	called	ShippingPricer.	When	we’re	done,	the	code	should	look	like	this:
public	class	Invoice
{
				public	Money	getValue()	{
								Money	total	=	itemsSum();
								total.add(shippingPricer.getPrice());
								total.add(getTax());
								return	total;
				}
}

All	of	that	work	that	was	done	in	getValue	is	done	by	a	ShippingPricer.	We’ll	have	to	alter	the
constructor	for	Invoice	also	to	create	a	ShippingPricer	that	knows	about	the	invoice	dates.

To	find	our	interception	points,	we	have	to	start	tracing	effects	forward	from	our	change
points.	The	getValue	method	will	have	a	different	result.	It	turns	out	that	no	methods	in	Invoice
use	getValue,	but	getValue	is	used	in	another	class:	The	makeStatement	method	of	a	class	named
BillingStatement	uses	it.	This	is	shown	in	Figure	12.1.

Figure	12.1	getValue	affects	BillingStatement.makeStatement.

We’re	also	going	to	be	modifying	the	constructor,	so	we	have	to	look	at	code	that	depends

on	that.	In	this	case,	we’re	going	to	be	creating	a	new	object	in	the	constructor,	a
ShippingPricer.	The	pricer	won’t	affect	anything	except	for	the	methods	that	use	it,	and	the	only
one	that	will	use	it	is	the	getValue	method.	Figure	12.2	shows	this	effect.

Figure	12.2	Effects	on	getValue.

We	can	piece	together	the	sketches	as	in	Figure	12.3.

Figure	12.3	A	chain	of	effects.

So,	where	are	our	interception	points?	Really,	we	can	use	any	of	the	bubbles	in	the
diagram	as	an	interception	point	here,	provided	that	we	have	access	to	whatever	they
represent.	We	could	try	to	test	through	the	shippingPricer	variable,	but	it	is	a	private	variable	in
the	Invoice	class,	so	we	don’t	have	access	to	it.	Even	if	it	were	accessible	to	tests,	shippingPricer
is	a	pretty	narrow	interception	point.	We	can	sense	what	we’ve	done	to	the	constructor
(create	the	shippingPricer)	and	make	sure	that	the	shippingPricer	does	what	it	is	supposed	to	do,	but
we	can’t	use	it	to	make	sure	that	getValue	doesn’t	change	in	a	bad	way.

We	could	write	tests	that	exercise	the	makeStatement	method	of	BillingStatement	and	check	its	return
value	to	make	sure	that	we’ve	made	our	changes	correctly.	But	better	than	that,	we	can
write	tests	that	exercise	getValue	on	Invoice	and	check	there.	It	might	even	be	less	work.	Sure,	it
would	be	nice	to	get	BillingStatement	under	test,	but	it	just	isn’t	necessary	right	now.	If	we	have
to	make	a	change	to	BillingStatement	later,	we	can	get	it	under	test	then.

In	general,	it	is	a	good	idea	to	pick	interception	points	that	are	very	close	to	your	change	points,	for	a	couple	of
reasons.	The	first	reason	is	safety.	Every	step	between	a	change	point	and	an	interception	point	is	like	a	step	in	a
logical	argument.	Essentially,	we	are	saying,	“We	can	test	here	because	this	affects	this	and	that	affects	this	other
thing,	which	affects	this	thing	that	we	are	testing.”	The	more	steps	you	have	in	the	argument,	the	harder	it	is	know
that	you	have	it	right.	Sometimes	the	only	way	you	can	be	sure	is	by	writing	tests	at	the	interception	point	and	then
going	back	to	the	change	point	to	alter	the	code	a	little	bit	and	see	if	the	test	fails.	Sometimes	you	have	to	fall	back	on

that	technique,	but	you	shouldn’t	have	to	do	it	all	the	time.	Another	reason	why	more	distant	interception	points	are
worse	is	that	it	is	often	harder	to	set	up	tests	at	them.	This	isn’t	always	true;	it	depends	on	the	code.	What	can	make	it
harder	is,	again,	the	number	of	steps	between	the	change	and	the	interception	point.	Often	you	have	to	“play
computer”	in	your	mind	to	know	that	a	test	covers	some	distant	piece	of	functionality.

In	the	example,	the	changes	that	we	want	to	make	to	Invoice	are	probably	best	tested	for	there.	We	can	create	an
Invoice	in	a	test	harness,	set	it	up	in	various	ways,	and	call	getValue	to	pin	down	its	behavior	while	we	make	our
changes.

Higher-Level	Interception	Points

In	most	cases,	the	best	interception	point	we	can	have	for	a	change	is	a	public	method	on
the	class	we’re	changing.	These	interception	points	are	easy	to	find	and	easy	to	use,	but
sometimes	they	aren’t	the	best	choice.	We	can	see	this	if	we	expand	the	Invoice	example	a
bit.

Let’s	suppose	that,	in	addition	to	changing	the	way	that	shipping	costs	are	calculated	for
Invoices,	we	have	to	modify	a	class	named	Item	so	that	it	contains	a	new	field	for	holding	the
shipping	carrier.	We	also	need	a	separate	per-shipper	breakdown	in	the	BillingStatement.	Figure
12.4	shows	what	our	current	design	looks	like	in	UML.

Figure	12.4	Expanded	billing	system.

If	none	of	these	classes	have	tests,	we	could	start	by	writing	tests	for	each	class
individually	and	making	the	changes	that	we	need.	That	would	work,	but	it	can	be	more
efficient	to	start	out	by	trying	to	find	a	higher-level	interception	point	that	we	can	use	to
characterize	this	area	of	the	code.	The	benefits	of	doing	this	are	twofold:	We	could	have
less	dependency	breaking	to	do,	and	we’re	also	holding	a	bigger	chunk	in	the	vise.	With
tests	that	characterize	this	group	of	classes,	we	have	more	cover	for	refactoring.	We	can
alter	the	structure	of	Invoice	and	Item	using	the	tests	we	have	at	BillingStatement	as	an	invariant.
Here	is	a	good	starter	test	for	characterizing	BillingStatement,	Invoice,	and	Item	together:
void	testSimpleStatement()	{
				Invoice	invoice	=	new	Invoice();
				invoice.addItem(new	Item(0,new	Money(10));
				BillingStatement	statement	=	new	BillingStatement();
				statement.addInvoice(invoice);
				assertEquals(””,	statement.makeStatement());
}

We	can	find	out	what	BillingStatement	creates	for	an	invoice	of	one	item	and	change	the	test	to
use	that	value.	Afterward,	we	can	add	more	tests	to	see	how	statement	formatting	happens
for	different	combinations	of	invoices	and	items.	We	should	be	especially	careful	to	write
cases	that	exercise	areas	of	the	code	where	we’ll	be	introducing	seams.

What	makes	BillingStatement	an	ideal	interception	point	here?	It	is	a	single	point	that	we	can
use	to	detect	effects	from	changes	in	a	cluster	of	classes.	Figure	12.5	shows	the	effect
sketch	for	the	changes	we	are	going	to	make.

Figure	12.5	Billing	system	effect	sketch.

Notice	that	all	effects	are	detectable	through	makeStatement.	They	might	not	be	easy	to	detect
through	makeStatement,	but,	at	the	very	least,	this	is	one	place	where	it	is	possible	to	detect	them
all.	The	term	I	use	for	a	place	like	this	in	a	design	is	pinch	point.	A	pinch	point	is	a
narrowing	in	an	effect	sketch	(155),	a	place	where	it	is	possible	to	write	tests	to	cover	a
wide	set	of	changes.	If	you	can	find	a	pinch	point	in	a	design,	it	can	make	your	work	a	lot
easier.

The	key	thing	to	remember	about	pinch	points,	though,	is	that	they	are	determined	by
change	points.	A	set	of	changes	to	a	class	might	have	a	good	pinch	point	even	if	the	class
has	multiple	clients.	To	see	this,	let’s	take	a	wider	look	at	the	invoicing	system	in	Figure
12.6.

Figure	12.6	Billing	system	with	inventory.

We	didn’t	notice	it	earlier,	but	Item	also	has	a	method	named	needsReorder.	The	InventoryControl	class
calls	it	whenever	it	needs	to	figure	out	whether	it	needs	to	place	an	order.	Does	this	change
our	effect	sketch	for	the	changes	we	need	to	make?	Not	a	bit.	Adding	a	shippingCarrier	field	to
Item	doesn’t	impact	the	needsReorder	method	at	all,	so	BillingStatement	is	still	our	pinch	point,	our
narrow	place	where	we	can	test.

Let’s	vary	the	scenario	a	bit	more.	Suppose	that	we	have	another	change	that	we	need	to
make.	We	have	to	add	methods	to	Item	that	allow	us	to	get	and	set	the	supplier	for	an	Item.
The	InventoryControl	class	and	the	BillingStatement	will	use	the	name	of	the	supplier.	Figure	12.7

shows	what	this	does	to	our	effect	sketch.

Figure	12.7	Full	billing	system	scenario.

Things	don’t	look	as	good	now.	The	effects	of	our	changes	can	be	detected	through	the
makeStatement	method	of	BillingStatement	and	through	variables	affected	by	the	run	method	of
InventoryControl,	but	there	isn’t	a	single	interception	point	any	longer.	However,	taken	together,
the	run	method	and	the	makeStatement	method	can	be	seen	as	a	pinch	point;	together	they	are	just
two	methods,	and	that	is	a	narrower	place	to	detect	problems	than	the	eight	methods	and
variables	that	have	to	be	touched	to	make	the	changes.	If	we	get	tests	in	place	there,	we
will	have	cover	for	a	lot	of	change	work.

Pinch	Point
A	pinch	point	is	a	narrowing	in	an	effect	sketch,	a	place	where	tests	against	a	couple	of	methods	can	detect	changes
in	many	methods.

In	some	software,	it	is	pretty	easy	to	find	pinch	points	for	sets	of	changes,	but	in	many
cases	it	is	nearly	impossible.	A	single	class	or	method	might	have	dozens	of	things	that	it
can	directly	affect,	and	an	effect	sketch	drawn	from	it	might	look	like	a	large	tangled	tree.
What	can	we	do	then?	One	thing	that	we	can	do	is	revisit	our	change	points.	Maybe	we	are
trying	to	do	too	much	at	once.	Consider	finding	pinch	points	for	only	one	or	two	changes
at	a	time.	If	you	can’t	find	a	pinch	point	at	all,	just	try	to	write	tests	for	individual	changes
as	close	as	you	can.

Another	way	of	finding	a	pinch	point	is	to	look	for	common	usage	across	an	effect	sketch
(155).	A	method	or	variable	might	have	three	users,	but	that	doesn’t	mean	that	it	is	being
used	in	three	distinct	ways.	For	example,	suppose	that	we	need	to	do	some	refactoring	of
the	needsReorder	method	of	the	Item	class	in	the	previous	example.	I	haven’t	shown	you	the

code,	but	if	we	sketched	out	effects,	we’d	see	that	we	can	get	a	pinch	point	that	includes
the	run	method	of	InventoryControl	and	the	makeStatement	method	of	BillingStatement,	but	we	can’t	really
get	any	narrower	than	that.	Would	it	be	okay	to	write	tests	at	only	one	of	those	classes	and
not	the	other?	The	key	question	to	ask	is,	“If	I	break	this	method,	will	I	be	able	to	sense	it
in	this	place?”	The	answer	depends	on	how	the	method	is	used.	If	it	is	used	the	same	way
on	objects	that	have	comparable	values,	it	could	be	okay	to	test	in	one	place	and	not	the
other.	Work	through	the	analysis	with	your	coworker.

Judging	Design	with	Pinch	Points
In	the	previous	section,	we	talked	about	how	useful	pinch	points	are	in	testing,	but	they
have	other	uses,	too.	If	you	pay	attention	to	where	your	pinch	points	are,	they	can	give	you
hints	about	how	to	make	your	code	better.

What	is	a	pinch	point,	really?	A	pinch	point	is	a	natural	encapsulation	boundary.	When
you	find	a	pinch	point,	you’ve	found	a	narrow	funnel	for	all	of	the	effects	of	a	large	piece
of	code.	If	the	method	BillingStatement.makeStatement	is	a	pinch	point	for	a	bunch	of	invoices	and
items,	we	know	where	to	look	when	the	statement	isn’t	what	we	expect.	The	problem	then
has	to	be	because	of	the	BillingStatement	class	or	the	invoices	and	items.	Likewise,	we	don’t
need	to	know	about	invoices	and	items	to	call	makeStatement.	This	is	pretty	much	the	definition
of	encapsulation:	We	don’t	have	to	care	about	the	internals,	but	when	we	do,	we	don’t
have	to	look	at	the	externals	to	understand	them.	Often	when	I	look	for	pinch	points,	I	start
to	notice	how	responsibilities	can	be	reallocated	across	classes	to	give	better
encapsulation.

Using	Effect	Sketches	to	Find	Hidden	Classes
Sometimes	when	you	have	a	large	class,	you	can	use	effect	sketches	to	discover	how	to	break	the	class	into	pieces.
Here	is	a	little	example	in	Java.	We	have	a	class	called	Parser	that	has	a	public	method	named	parseExpression.
public	class	Parser
{
				private	Node	root;
				private	int	currentPosition;
				private	String	stringToParse;
				public	void	parseExpression(String	expression)	{	..	}
				private	Token	getToken()	{	..	}
				private	boolean	hasMoreTokens()	{	..	}
}

If	we	drew	an	effect	sketch	for	this	class,	we’d	find	that	parseExpression	depends	on	getToken	and	hasMoreTokens,	but	it
doesn’t	directly	depend	on	stringToParse	or	currentPosition,	even	though	getToken	and	hasMoreTokens	do.	What	we	have	here
is	a	natural	encapsulation	boundary,	even	though	it	isn’t	really	narrow	(two	methods	hide	two	pieces	of	information).
We	can	extract	those	methods	and	fields	to	a	class	called	Tokenizer	and	end	up	with	a	simpler	Parser	class.

This	isn’t	the	only	way	to	figure	out	how	to	separate	responsibilities	in	a	class;	sometimes	the	names	will	give	you	a
hint,	as	they	do	in	this	case	(we	have	two	methods	with	the	word	Token	in	their	names).	This	can	help	you	see	a	large
class	in	a	different	way,	and	that	could	lead	to	some	good	class	extractions.

As	an	exercise,	create	an	effect	sketch	for	changes	in	a	large	class	and	forget	about	the	names	of	the	bubbles.	Just
look	at	how	they	are	grouped.	Are	there	any	natural	encapsulation	boundaries?	If	there	are,	look	at	the	bubbles	inside
a	boundary.	Think	about	the	name	that	you	would	use	for	that	cluster	of	methods	and	variables:	It	could	become	the
name	of	a	new	class.	Think	about	whether	changing	any	of	the	names	would	help.

When	you	do	this,	do	it	with	your	teammates.	The	discussions	that	you	have	about	naming	have	benefits	far	beyond
the	work	that	you	are	currently	doing.	They	help	you	and	your	team	develop	a	common	view	of	what	the	system	is
and	what	it	can	become.

Writing	tests	at	pinch	points	is	an	ideal	way	to	start	some	invasive	work	in	part	of	a
program.	You	make	an	investment	by	carving	out	a	set	of	classes	and	getting	them	to	the
point	that	you	can	instantiate	them	together	in	a	test	harness.	After	you	write	your
characterization	tests	(186),	you	can	make	changes	with	impunity.	You’ve	made	a	little
oasis	in	your	application	where	the	work	has	just	gotten	easier.	But	be	careful—it	could	be
a	trap.

Pinch	Point	Traps
We	can	get	in	trouble	in	a	couple	of	ways	when	we	write	unit	tests.	One	way	is	to	let	unit
tests	slowly	grow	into	mini-integration	tests.	We	need	to	test	a	class,	so	we	instantiate
several	of	its	collaborators	and	pass	them	to	the	class.	We	check	some	values,	and	we	can
feel	confident	that	the	whole	cluster	of	objects	works	well	together.	The	downside	is	that,
if	we	do	this	too	often,	we’ll	end	up	with	a	lot	of	big,	bulky	unit	tests	that	take	forever	to
run.	The	trick	when	we	are	writing	unit	tests	for	new	code	is	to	test	classes	as
independently	as	possible.	When	you	start	to	notice	that	your	tests	are	too	large,	you
should	break	down	the	class	that	you	are	testing,	to	make	smaller	independent	pieces	that
can	be	tested	more	easily.	At	times,	you	will	have	to	fake	out	collaborators	because	the	job
of	a	unit	test	isn’t	to	see	how	a	cluster	of	objects	behaves	together,	but	rather	how	a	single
object	behaves.	We	can	test	that	more	easily	through	a	fake.

When	we	are	writing	tests	for	existing	code,	the	tables	are	turned.	Sometimes	it	pays	to
carve	off	a	piece	of	an	application	and	build	it	up	with	tests.	When	we	have	those	tests	in
place,	we	can	more	easily	write	narrower	unit	tests	for	each	of	the	classes	we	are	touching
as	we	do	our	work.	Eventually,	the	tests	at	the	pinch	point	can	go	away.

Tests	at	pinch	points	are	kind	of	like	walking	several	steps	into	a	forest	and	drawing	a	line,
saying	“I	own	all	of	this	area.”	After	you	know	that	you	own	all	of	that	area,	you	can
develop	it	by	refactoring	and	writing	more	tests.	Over	time,	you	can	delete	the	tests	at	the
pinch	point	and	let	the	tests	for	each	class	support	your	development	work.

Chapter	13:	I	Need	to	Make	a	Change,	but	I	Don’t	Know
What	Tests	to	Write

When	people	talk	about	testing,	they	are	usually	referring	to	tests	that	they	use	to	find
bugs.	Often	these	tests	are	manual	tests.	Writing	automated	tests	to	find	bugs	in	legacy
code	often	doesn’t	feel	as	efficient	as	just	trying	out	the	code.	If	you	have	some	way	of
exercising	legacy	code	manually,	you	can	usually	find	bugs	very	quickly.	The	downside	is
that	you	have	to	do	that	manual	work	over	and	over	again	whenever	you	change	the	code.
And,	frankly,	people	just	don’t	do	that.	Nearly	every	team	I’ve	worked	with	that	depended
on	manual	testing	for	its	changes	has	ended	far	behind.	The	confidence	of	the	team	isn’t
what	it	could	be.

No,	finding	bugs	in	legacy	code	usually	isn’t	a	problem.	In	terms	of	strategy,	it	can
actually	be	misdirected	effort.	It	is	usually	better	to	do	something	that	helps	your	team
start	to	write	correct	code	consistently.	The	way	to	win	is	to	concentrate	effort	on	not
putting	bugs	into	code	in	the	first	place.

Automated	tests	are	a	very	important	tool,	but	not	for	bug	finding—not	directly,	at	least.
In	general,	automated	tests	should	specify	a	goal	that	we’d	like	to	fulfill	or	attempt	to
preserve	behavior	that	is	already	there.	In	the	natural	flow	of	development,	tests	that
specify	become	tests	that	preserve.	You	will	find	bugs,	but	usually	not	the	first	time	that	a
test	is	run.	You	find	bugs	in	later	runs	when	you	change	behavior	that	you	didn’t	expect	to.

Where	does	this	leave	us	with	legacy	code?	In	legacy	code,	we	might	not	have	any	tests
for	the	changes	we	need	to	make,	so	there	isn’t	any	way	to	really	verify	that	we’re
preserving	behavior	when	we	make	changes.	For	this	reason,	the	best	approach	we	can
take	when	we	need	to	make	changes	is	to	bolster	the	area	we	want	to	change	with	tests	to
provide	some	kind	of	safety	net.	We’ll	find	bugs	along	the	way,	and	we’ll	have	to	deal
with	them,	but	in	most	legacy	code,	if	we	make	finding	and	fixing	all	of	the	bugs	our	goal,
we’ll	never	finish.

Characterization	Tests
Okay,	so	we	need	tests—how	do	we	write	them?	One	way	of	approaching	this	is	to	find
out	what	the	software	is	supposed	to	do	and	then	write	tests	based	on	those	ideas.	We	can
try	to	dig	up	old	requirements	documents	and	project	memos,	and	just	sit	down	and	start
writing	tests.	Well,	that’s	one	approach,	but	it	isn’t	a	very	good	one.	In	nearly	every	legacy
system,	what	the	system	does	is	more	important	than	what	it	is	supposed	to	do.	If	we	write
tests	based	on	our	assumption	of	what	the	system	is	supposed	to	do,	we’re	back	to	bug
finding	again.	Bug	finding	is	important,	but	our	goal	right	now	is	to	get	tests	in	place	that
help	us	make	changes	more	deterministically.

The	tests	that	we	need	when	we	want	to	preserve	behavior	are	what	I	call	characterization
tests.	A	characterization	test	is	a	test	that	characterizes	the	actual	behavior	of	a	piece	of
code.	There’s	no	“Well,	it	should	do	this”	or	“I	think	it	does	that.”	The	tests	document	the
actual	current	behavior	of	the	system.

Here	is	a	little	algorithm	for	writing	characterization	tests:

1.	Use	a	piece	of	code	in	a	test	harness.

2.	Write	an	assertion	that	you	know	will	fail.

3.	Let	the	failure	tell	you	what	the	behavior	is.

4.	Change	the	test	so	that	it	expects	the	behavior	that	the	code	produces.

5.	Repeat.

In	the	following	example,	I’m	reasonably	sure	that	a	PageGenerator	is	not	going	to	generate	the
string	"fred":
void	testGenerator()	{
				PageGenerator	generator	=	new	PageGenerator();
				assertEquals(“fred”,	generator.generate());
}

Run	your	test	and	let	it	fail.	When	it	does,	you	have	found	out	what	the	code	actually	does
under	that	condition.	For	instance,	in	the	preceding	code,	a	freshly	created	PageGenerator
generates	an	empty	string	when	its	generate	method	is	called:
	.F
Time:	0.01
There	was	1	failure:
1)	testGenerator(PageGeneratorTest)
junit.framework.ComparisonFailure:	expected:<fred>	but	was:<>
					at	PageGeneratorTest.testGenerator
									(PageGeneratorTest.java:9)
					at	sun.reflect.NativeMethodAccessorImpl.invoke0
									(Native	Method)
					at	sun.reflect.NativeMethodAccessorImpl.invoke
									(NativeMethodAccessorImpl.java:39)
					at	sun.reflect.DelegatingMethodAccessorImpl.invoke
								(DelegatingMethodAccessorImpl.java:25)

FAILURES!!!
Tests	run:	1,	Failures:	1,	Errors:	0

We	can	alter	the	test	so	that	it	passes:
void	testGenerator()	{
				PageGenerator	generator	=	new	PageGenerator();
				assertEquals(””,	generator.generate());
}

The	test	passes	now.	More	than	that,	it	documents	one	of	the	most	basic	facts	about	the
PageGenerator:	When	we	create	one	and	immediately	ask	it	to	generate,	it	generates	an	empty
string.

We	can	use	the	same	trick	to	find	out	what	its	behavior	would	be	when	we	feed	it	other
data:
void	testGenerator()	{
				PageGenerator	generator	=	new	PageGenerator();
				generator.assoc(RowMappings.getRow(Page.BASE_ROW));
				assertEquals(“fred”,	generator.generate());
}

In	this	case,	the	error	message	of	the	test	harness	tells	us	that	the	resultant	string	is	"<node>
<carry>1.1	vectrai</carry></node>",	so	we	can	make	that	string	the	expected	value	in	the	test:

void	testGenerator()	{
				PageGenerator	generator	=	new	PageGenerator();
				assertEquals(“<node><carry>1.1	vectrai</carry></node>”,
												generator.generate());
}

There	is	something	fundamentally	weird	about	doing	this	if	you	are	used	to	thinking	about
these	tests	as,	well,	tests.	If	we	are	just	putting	the	values	that	the	software	produces	into
the	tests,	are	our	tests	really	testing	anything	at	all?	What	if	the	software	has	a	bug?	The
expected	values	that	we’re	putting	in	our	tests	could	just	simply	be	wrong.

This	problem	goes	away	if	we	think	of	our	tests	in	a	different	way.	They	aren’t	really	tests
written	as	a	gold	standard	that	the	software	must	live	up	to.	We	aren’t	trying	to	find	bugs
right	now.	We	are	trying	to	put	in	a	mechanism	to	find	bugs	later,	bugs	that	show	up	as
differences	from	the	system’s	current	behavior.	When	we	adopt	this	perspective,	our	view
of	our	tests	is	different:	They	don’t	have	any	moral	authority;	they	just	sit	there
documenting	what	pieces	of	the	system	really	do.	When	we	can	see	what	the	pieces	do,	we
can	use	that	knowledge	along	with	our	knowledge	of	what	the	system	is	supposed	to	do	to
make	changes.	Frankly,	it’s	very	important	to	have	that	knowledge	of	what	the	system
actually	does	someplace.	We	can	usually	figure	out	what	behavior	we	need	to	add	by
talking	to	other	people	or	doing	some	calculations,	but	short	of	the	tests,	there	is	no	other
way	to	know	what	a	system	actually	does	except	by	“playing	computer”	in	our	minds,
reading	code	and	trying	to	reason	through	what	the	values	will	be	at	particular	times.
Some	people	do	that	faster	than	others,	but	regardless	of	how	fast	we	can	do	it,	it’s	pretty
tedious	and	wasteful	to	have	to	do	it	over	and	over	again.

Characterization	tests	record	the	actual	behavior	of	a	piece	of	code.	If	we	find	something	unexpected	when	we	write
them,	it	pays	to	get	some	clarification.	It	could	be	a	bug.	That	doesn’t	mean	that	we	don’t	include	the	test	in	our	test
suite;	instead,	we	should	mark	it	as	suspicious	and	find	out	what	the	effect	would	be	of	fixing	it.

There	is	a	lot	more	to	writing	characterization	tests	than	what	I’ve	described	so	far.	In	the
page	generator	example,	it	seemed	like	we	were	getting	test	values	blindly	by	throwing
values	at	the	code	and	getting	them	back	in	the	assertions.	We	can	do	that	if	we	have	a
good	sense	of	what	the	code	is	supposed	to	do.	Some	cases,	such	as	not	doing	anything	to
an	object	and	then	seeing	what	its	methods	produce,	are	easy	to	think	of	and	worth
characterizing,	but	where	do	we	go	next?	What	is	the	total	number	of	tests	that	we	can
apply	to	something	such	as	the	page	generator?	It’s	infinite.	We	could	dedicate	a	good
portion	of	our	lives	to	writing	case	after	case	for	this	class.	When	do	we	stop?	Is	there	any
way	of	knowing	which	cases	are	more	important	than	others?

The	important	thing	to	realize	is	that	we	aren’t	writing	black-box	tests	here.	We	are
allowed	to	look	at	the	code	we	are	characterizing.	The	code	itself	can	give	us	ideas	about
what	it	does,	and	if	we	have	questions,	tests	are	an	ideal	way	of	asking	them.	The	first	step
in	characterizing	is	to	get	into	a	state	of	curiosity	about	the	code’s	behavior.	At	that	point,
we	just	write	tests	until	we	are	satisfied	that	we	understand	it.	Does	that	cover	everything
in	the	code?	It	might	not.	But	then	we	do	the	next	step.	We	think	about	the	changes	that
we	want	to	make	in	the	code	and	try	to	figure	out	whether	the	tests	that	we	have	will	sense
any	problems	that	we	can	cause.	If	they	won’t,	we	add	more	tests	until	we	feel	confidence
that	they	will.	If	we	can’t	feel	that	confidence,	it’s	safer	to	consider	changing	the	software
in	a	different	way.	Maybe	we	can	do	a	piece	of	what	we	were	considering	first.

The	Method	Use	Rule
Before	you	use	a	method	in	a	legacy	system,	check	to	see	if	there	are	tests	for	it.	If	there	aren’t,	write	them.	When
you	do	this	consistently,	you	use	tests	as	a	medium	of	communication.	People	can	look	at	them	and	get	a	sense	of
what	they	can	and	cannot	expect	from	the	method.	The	act	of	making	a	class	testable	in	itself	tends	to	increase	code
quality.	People	can	find	out	what	works	and	how;	they	can	change	it,	correct	bugs,	and	move	forward.

Characterizing	Classes
We	have	a	class,	and	we	want	to	figure	out	what	to	test.	How	do	we	do	it?	The	first	thing
to	do	is	to	try	to	figure	out	what	the	class	does	at	a	high	level.	We	can	write	tests	for	the
simplest	thing	that	we	can	imagine	it	doing	and	then	let	our	curiosity	guide	us	from	there.
Here	are	some	heuristics	that	can	help:

1.	Look	for	tangled	pieces	of	logic.	If	you	don’t	understand	an	area	of	code,	consider
introducing	a	sensing	variable	(301)	to	characterize	it.	Use	sensing	variables	to
make	sure	you	execute	particular	areas	of	the	code.

2.	As	you	discover	the	responsibilities	of	a	class	or	method,	stop	to	make	a	list	of	the
things	that	can	go	wrong.	See	if	you	can	formulate	tests	that	trigger	them.

3.	Think	about	the	inputs	you	are	supplying	under	test.	What	happens	at	extreme
values?

4.	Should	any	conditions	be	true	at	all	times	during	the	lifetime	of	the	class?	Often
these	are	called	invariants.	Attempt	to	write	tests	to	verify	them.	Often	you	might
have	to	refactor	to	discover	these	conditions.	If	you	do,	the	refactorings	often	lead	to
new	insight	about	how	the	code	should	be.

The	tests	that	we	write	to	characterize	code	are	very	important.	They	are	the
documentation	of	the	system’s	actual	behavior.	Like	any	documentation	that	you	write,
you	have	to	think	about	what	will	be	important	to	the	reader.	Put	yourself	in	the	reader’s
shoes.	What	would	you	like	to	know	about	the	class	you	are	working	with	if	you’d	never
seen	it?	In	what	order	would	you	like	the	information?	When	you	use	the	xUnit
frameworks,	tests	are	just	methods	in	a	file.	You	can	put	them	in	an	order	that	makes	it
easier	for	people	to	learn	about	the	code	they	exercise.	Start	with	some	easy	cases	that
show	the	main	intent	of	the	class,	and	then	move	into	cases	that	highlight	its
idiosyncrasies.	Make	sure	you	document	the	important	things	that	you	discover	as	tests.
When	you	get	to	making	your	changes,	often	you’ll	find	that	the	tests	you’ve	written	are
very	appropriate	for	the	work	you	are	about	to	do.	Whether	we	think	about	it	consciously
or	not,	the	change	that	we	set	out	to	make	often	guides	our	curiosity.

When	You	Find	Bugs
When	you	characterize	legacy	code,	you	will	find	bugs	throughout	the	entire	process.	All	legacy	code	has	bugs,
usually	in	direct	proportion	to	how	little	it	is	understood.	What	should	you	do	when	you	find	a	bug?

The	answer	depends	on	the	situation.	If	the	system	has	never	been	deployed,	the	answer	is	simple:	You	should	fix	the
bug.	If	the	system	has	been	deployed,	you	need	to	examine	the	possibility	that	someone	is	depending	on	that
behavior,	even	though	you	see	it	as	a	bug.	Often	it	takes	a	bit	of	analysis	to	figure	out	how	to	fix	a	bug	without
causing	ripple	effects.

My	bias	is	toward	fixing	bugs	as	soon	as	they	are	found.	When	behavior	is	clearly	in	error,	it	should	be	fixed.	If	you
suspect	that	some	behavior	is	wrong,	mark	it	in	the	test	code	as	suspicious	and	then	escalate	it.	Find	out	as	quickly	as

you	can	whether	it	is	a	bug	and	how	best	to	deal	with	it.

Targeted	Testing
After	we’ve	written	tests	to	understand	a	section	of	code,	we	have	to	look	at	the	things	that
we	want	to	change	and	see	if	our	tests	really	cover	them.	Here	is	an	example,	a	method	on
a	Java	class	that	computes	the	value	of	fuel	in	leased	tanks:
public	class	FuelShare
{
				private	long	cost	=	0;
				private	double	corpBase	=	12.0;
				private	ZonedHawthorneLease	lease;
				…
				public	void	addReading(int	gallons,	Date	readingDate){
								if	(lease.isMonthly())	{
												if	(gallons	<	Lease.CORP_MIN)
																cost	+=	corpBase;
												else
																cost	+=	1.2	*	priceForGallons(gallons);
								}
								…
								lease.postReading(readingDate,	gallons);
				}
				…
}

We	want	to	make	a	very	direct	change	to	the	FuelShare	class.	We’ve	already	written	some
tests	for	it,	so	we	are	ready.	Here	is	the	change:	We	want	to	extract	the	top-level	if-
statement	to	a	new	method	and	then	move	that	method	to	the	ZonedHawthorneLease	class.	The	lease
variable	in	the	code	is	an	instance	of	that	class.

We	can	imagine	what	the	code	will	look	like	after	we	refactor:
public	class	FuelShare

{
				public	void	addReading(int	gallons,	Date	readingDate){
								cost	+=	lease.computeValue(gallons,
																																			priceForGallons(gallons));
								…
								lease.postReading(readingDate,	gallons);
				}
				…
}

public	class	ZonedHawthorneLease	extends	Lease
{
				public	long	computeValue(int	gallons,	long	totalPrice)	{
								long	cost	=	0;
								if	(lease.isMonthly())	{
												if	(gallons	<	Lease.CORP_MIN)
																cost	+=	corpBase;
												else
																cost	+=	1.2	*	totalPrice;
								}
								return	cost;
				}
				…
}

What	kind	of	tests	do	we	need	to	make	sure	that	we	do	these	refactorings	correctly?	One
thing	is	certain:	We	know	that	we	aren’t	going	to	be	modifying	this	piece	of	logic	at	all:
if	(gallons	<	Lease.CORP_MIN)
				cost	+=	corpBase;

Having	a	test	in	place	to	see	how	the	value	is	computed	below	the	Lease.CORP_MIN	limit	would
be	nice,	but	it	is	not	strictly	necessary.	On	the	other	hand,	this	else-statement	in	the
original	code	is	going	to	change:
else
				valueInCents	+=	1.2	*	priceForGallons(gallons);

When	that	code	moves	over	to	the	new	method,	it	will	become	this:
else
				valueInCents	+=	1.2	*	totalPrice;

That’s	a	small	change,	but	it	is	a	change	nonetheless.	If	we	can	make	sure	that	the	else-
statement	executes	in	one	of	our	tests,	we’re	better	off.	Let’s	look	at	the	original	method
again:
public	class	FuelShare
{
				public	void	addReading(int	gallons,	Date	readingDate){
								if	(lease.isMonthly())	{
												if	(gallons	<	CORP_MIN)
																cost	+=	corpBase;
												else
																cost	+=	1.2	*	priceForGallons(gallons);
								}
								…
								lease.postReading(readingDate,	gallons);
				}
				…
}

If	we	are	able	to	make	a	FuelShare	with	a	monthly	lease	and	we	attempt	to	addReading	for	a
number	of	gallons	greater	than	Lease.CORP_MIN,	we’ll	go	through	that	leg	of	the	else:
public	void	testValueForGallonsMoreThanCorpMin()	{
				StandardLease	lease	=	new	StandardLease(Lease.MONTHLY);
				FuelShare	share	=	new	FuelShare(lease);

				share.addReading(FuelShare.CORP_MIN	+1,	new	Date());
				assertEquals(12,	share.getCost());
}

When	you	write	a	test	for	a	branch,	ask	yourself	whether	there	is	any	other	way	that	the	test	could	pass,	aside	from
executing	that	branch.	If	you	are	not	sure,	use	a	sensing	variable	(301)	or	the	debugger	to	find	out	whether	the	test	is
hitting	it.

One	important	thing	to	figure	out	when	you	are	characterizing	branches	such	as	this	is
whether	the	inputs	that	you	provide	have	special	behavior	that	could	lead	a	test	to	succeed
when	it	should	fail.	Here’s	an	example.	Suppose	that	the	code	used	doubles	instead	of	ints
to	represent	money:
public	class	FuelShare
{
				private	double	cost	=	0.0;
				…

				public	void	addReading(int	gallons,	Date	readingDate){
								if	(lease.isMonthly())	{
												if	(gallons	<	CORP_MIN)
																cost	+=	corpBase;
												else
																cost	+=	1.2	*	priceForGallons(gallons);
								}
								…
								lease.postReading(readingDate,	gallons);
				}
				…
}

We	could	run	into	some	serious	trouble.	And,	no,	I’m	not	referring	to	the	fact	that	the
application	probably	leaks	fractional	cents	all	over	the	place	because	of	floating-point
rounding	errors.	Unless	we	pick	our	inputs	well,	we	could	make	a	mistake	when	we
extract	a	method	and	never	know	it.	One	possible	mistake	could	happen	if	we	extract	a
method	and	make	one	of	its	arguments	an	int	rather	than	a	double.	In	Java	and	many	other
languages,	there	is	an	automatic	conversion	from	doubles	to	ints;	the	runtime	just
truncates	the	value.	Unless	we	take	care	to	devise	inputs	that	will	force	us	to	see	that	error,
we’ll	miss	it.

Let’s	look	at	an	example.	What	would	be	the	effect	on	the	previous	code	if	the	value	of
Lease.	CORP_MIN	is	10	and	the	value	of	corpBase	is	12.0	when	we	run	this	test?
public	void	testValue	()	{
				StandardLease	lease	=	new	StandardLease(Lease.MONTHLY);
				FuelShare	share	=	new	FuelShare(lease);

				share.addReading(1,	new	Date());
				assertEquals(12,	share.getCost());
}

Because	1	is	less	than	10,	we	just	add	12.0	to	the	initial	value	of	cost,	which	is	0.	At	the	end
of	the	calculation,	the	value	of	cost	is	12.0.	That	is	perfectly	fine,	but	what	if	we	extract	the
method	like	this	and	declare	the	value	of	cost	as	a	long	rather	than	a	double?
public	class	ZonedHawthorneLease
{
				public	long	computeValue(int	gallons,	long	totalPrice)	{
								long	cost	=	0;
								if	(lease.isMonthly())	{
												if	(gallons	<	CORP_MIN)
																cost	+=	corpBase;
												else
																cost	+=	1.2	*	totalPrice;
								}
								return	cost;
				}
}

That	test	that	we	wrote	still	passes,	even	though	we	are	silently	truncating	the	value	of	cost
when	we	return	it.	A	conversion	from	double	to	int	is	being	executed,	but	it	isn’t	really
being	fully	exercised.	It	does	the	same	thing	that	it	would	if	there	was	no	conversion,	if	we
were	just	assigning	an	int	to	an	int.

When	we	refactor,	we	generally	have	to	check	for	two	things:	Does	the	behavior	exist	after	the	refactoring,	and	is	it
connected	correctly?

Many	characterization	tests	look	like	“sunny	day”	tests.	They	don’t	test	many	special	conditions;	they	just	verify	that
particular	behaviors	are	present.	From	their	presence,	we	can	infer	that	refactorings	that	we’ve	done	to	move	or
extract	code	have	preserved	behavior.

How	can	we	handle	this?	There	are	a	couple	of	general	strategies.	One	is	to	manually
calculate	the	expected	values	for	a	piece	of	code.	At	each	conversion,	we	see	whether
there	is	a	truncation	issue.	Another	technique	is	to	use	a	debugger	and	step	through
assignments	so	that	we	can	see	what	conversions	a	particular	set	of	inputs	triggers.	A	third
technique	is	to	use	sensing	variables	(301)	to	verify	that	a	particular	path	is	being	covered
and	that	the	conversions	are	exercised.

The	most	valuable	characterization	tests	exercise	a	specific	path	and	exercise	each	conversion	along	the	path.

There	is	a	fourth	option	also.	We	can	just	decide	to	characterize	a	smaller	chunk	of	code.
If	we	have	a	refactoring	tool	that	helps	us	extract	methods	safely,	we	can	slice	up	the
computeValue	method	and	write	tests	for	its	pieces.	Unfortunately,	not	all	languages	have
refactoring	tools—and	at	times,	even	the	tools	that	are	available	don’t	extract	methods	the
way	that	you	wish	they	would.

Refactoring	Tool	Quirks
A	good	refactoring	tool	is	invaluable,	but	often	people	who	have	these	tools	have	to	resort	to	refactoring	by	hand.
Here	is	one	common	case.	We	have	a	class	A	with	some	code	that	we’d	like	to	extract	in	its	b()	method:
public	class	A
{
				int	x	=	1;
				public	void	b()	{
								int	y	=	0;
								int	c	=	x	+	y;
				}
};

If	we	want	to	extract	the	x	+	y	expression	in	method	b	and	make	a	method	called	add,	at	least	one	tool	on	the	market
will	extract	it	as	add(y)	rather	than	add(x,y).	Why?	Because	x	is	an	instance	variable	and	it	is	available	to	whatever
methods	we	extract.

A	Heuristic	for	Writing	Characterization	Tests
1.	Write	tests	for	the	area	where	you	will	make	your	changes.	Write	as	many	cases	as
you	feel	you	need	to	understand	the	behavior	of	the	code.

2.	After	doing	this,	take	a	look	at	the	specific	things	you	are	going	to	change,	and
attempt	to	write	tests	for	those.

3.	If	you	are	attempting	to	extract	or	move	some	functionality,	write	tests	that	verify
the	existence	and	connection	of	those	behaviors	on	a	case-by-case	basis.	Verify	that
you	are	exercising	the	code	that	you	are	going	to	move	and	that	it	is	connected
properly.	Exercise	conversions.

Chapter	14:	Dependencies	on	Libraries	Are	Killing	Me

One	thing	that	really	helps	development	is	code	reuse.	If	we	can	buy	a	library	that	solves
some	problem	for	us	(and	figure	out	how	to	use	it),	we	can	often	cut	substantial	time	off	a
project.	The	only	problem	is	that	it	is	very	easy	to	become	over-reliant	on	a	library.	If	you
use	it	promiscuously	throughout	your	code,	you	are	pretty	much	stuck	with	it.	Some	teams
I’ve	worked	with	have	been	severely	burned	by	their	over-reliance	on	libraries.	In	one
case,	a	vendor	raised	royalties	so	high	that	the	application	couldn’t	make	money	in	the
marketplace.	The	team	couldn’t	easily	use	another	vendor’s	library	because	separating	out
the	calls	to	the	original	vendor’s	code	would’ve	amounted	to	a	rewrite.

Avoid	littering	direct	calls	to	library	classes	in	your	code.	You	might	think	that	you’ll	never	change	them,	but	that	can
become	a	self-fulfilling	prophecy.

At	the	time	of	this	writing,	much	of	the	development	world	is	polarized	around	Java	and
.NET.	Both	Microsoft	and	Sun	have	tried	to	make	their	platforms	as	broad	as	possible,
creating	many	libraries	so	that	people	will	continue	to	use	their	products.	In	a	way,	it	is	a
win	for	many	projects,	but	you	can	still	over	rely	on	particular	libraries.	Every	hard-coded
use	of	a	library	class	is	a	place	where	you	could	have	had	a	seam.	Some	libraries	are	very
good	about	defining	interfaces	for	all	of	their	concrete	classes.	In	other	cases,	classes	are
concrete	and	declared	final	or	sealed,	or	they	have	key	functions	that	are	non-virtual,
leaving	no	way	to	fake	them	out	under	test.	In	these	cases,	sometimes	the	best	thing	you
can	do	is	write	a	thin	wrapper	over	the	classes	that	you	need	to	separate	out.	Make	sure
that	you	write	your	vendor	and	give	them	grief	about	making	your	development	work
difficult.

Library	designers	who	use	language	features	to	enforce	design	constraints	are	often	making	a	mistake.	They	forget
that	good	code	runs	in	production	and	test	environments.	Constraints	for	the	former	can	make	working	in	the	latter
nearly	impossible.

A	fundamental	tension	exists	between	language	features	that	try	to	enforce	good	design
and	things	you	have	to	do	to	test	code.	One	of	the	most	prevalent	tensions	is	the	once
dilemma.	If	library	assumes	that	there	is	going	to	be	only	one	instance	of	a	class	in	a
system,	it	can	make	the	use	of	fake	objects	difficult.	There	might	not	be	any	way	to	use
Introduce	Static	Setter	(372)	or	many	of	the	other	dependency-breaking	techniques	that
you	can	use	to	deal	with	singletons.	Sometimes	wrapping	the	singleton	is	the	only	choice
available	to	you.

A	related	problem	is	the	restricted	override	dilemma.	In	some	OO	languages,	all	methods
are	virtual.	In	others,	they	are	virtual	by	default,	but	they	can	be	made	non-virtual.	In
others,	you	have	to	explicitly	make	them	virtual.	From	a	design	perspective,	there	is	some
value	in	making	some	methods	non-virtual.	At	times,	various	people	in	the	industry	have
recommended	making	as	many	methods	non-virtual	as	possible.	Sometimes	the	reasons
they	give	are	good,	but	it	is	hard	to	deny	that	this	practice	makes	it	hard	to	introduce
sensing	and	separation	in	code	bases.	It	is	also	hard	to	deny	that	people	often	write	very
good	code	in	Smalltalk,	where	that	practice	is	impossible;	in	Java,	where	people	generally
don’t	do	it;	and	even	in	C++,	where	plenty	of	code	has	been	written	without	it.	You	can	do

very	well	just	pretending	that	a	public	method	is	non-virtual	in	production	code.	If	you	do
that,	you	can	override	it	selectively	in	test	and	get	the	best	of	both	worlds.

Sometimes	using	a	coding	convention	is	just	as	good	as	using	a	restrictive	language	feature.	Think	about	what	your
tests	need.

Chapter	15:	My	Application	Is	All	API	Calls

Build,	buy,	or	borrow.	It’s	a	choice	we	all	have	to	make	when	we	develop	software.	Many
times	when	we’re	working	on	an	application,	we	suspect	that	we	can	save	ourselves	some
time	and	effort	by	buying	some	vendor	library,	using	some	open	source,	or	even	just	using
significant	chunks	of	code	from	libraries	that	come	bundled	with	our	platform	(J2EE,
.NET,	and	so	on).	There	are	many	different	things	to	consider	when	choosing	to	integrate
code	we	can’t	change.	We	have	to	know	how	stable	it	is,	whether	it	is	sufficient,	and	how
easy	it	is	to	use.	And,	when	we	do	finally	decide	to	use	someone	else’s	code,	we’re	often
left	with	another	problem.	We	end	up	with	applications	that	look	like	they	are	nothing	but
repeated	calls	to	someone	else’s	library.	How	do	we	make	changes	in	code	like	that?

The	immediate	temptation	is	to	say	that	we	don’t	really	need	tests.	After	all,	we	aren’t
really	doing	anything	significant;	we’re	just	calling	a	method	here	and	there,	and	our	code
is	simple.	It’s	really	simple.	What	can	go	wrong?

Many	legacy	projects	have	started	from	those	humble	beginnings.	The	code	grows	and
grows,	and	things	aren’t	quite	as	simple	anymore.	Over	time,	we	might	still	be	able	to	see
areas	of	code	that	don’t	touch	an	API,	but	they	are	embedded	in	a	patchwork	of	untestable
code.	We	have	to	run	the	application	every	time	we	change	something	to	make	sure	that	it
still	works,	and	we	are	right	back	in	the	central	dilemma	of	the	legacy	system	programmer.
Changes	are	uncertain;	we	didn’t	write	all	of	the	code,	but	we	have	to	maintain	it.

Systems	that	are	littered	with	library	calls	are	harder	to	deal	with	than	home-grown
systems,	in	many	respects.	The	first	reason	is	that	it	is	often	hard	to	see	how	to	make	the
structure	better	because	all	you	can	see	are	the	API	calls.	Anything	that	would’ve	been	a
hint	at	a	design	just	isn’t	there.	The	second	reason	that	API-intensive	systems	are	difficult
is	that	we	don’t	own	the	API.	If	we	did,	we	could	rename	interfaces,	classes,	and	methods
to	make	things	clearer	for	us,	or	add	methods	to	classes	to	make	them	available	to
different	parts	of	the	code.

Here	is	an	example.	This	is	a	listing	of	very	poorly	written	code	for	a	mailing	list	server.
We’re	not	even	sure	it	works.
import	java.io.IOException;
import	java.util.Properties;

import	javax.mail.*;
import	javax.mail.internet.*;

public	class	MailingListServer
{
		public	static	final	String	SUBJECT_MARKER	=	“[list]”;
		public	static	final	String	LOOP_HEADER	=	“X-Loop”;

		public	static	void	main	(String	[]	args)	{
				if	(args.length	!=	8)	{
						System.err.println	(“Usage:	java	MailingList	<popHost>	”	+
										”<smtpHost>	<pop3user>	<pop3password>	”	+
										”<smtpuser>	<smtppassword>	<listname>	”	+
										”<relayinterval>”);
						return;
				}

				HostInformation	host	=	new	HostInformation	(
												args	[0],	args	[1],	args	[2],	args	[3],
												args	[4],	args	[5]);
				String	listAddress	=	args[6];
				int	interval	=	new	Integer	(args	[7]).intValue	();
				Roster	roster	=	null;
				try	{
						roster	=	new	FileRoster(“roster.txt”);
				}	catch	(Exception	e)	{
						System.err.println	(“unable	to	open	roster.txt”);
						return;
				}
				try	{
						do	{
								try	{
										Properties	properties	=	System.getProperties	();
										Session	session	=	Session.getDefaultInstance	(
														properties,	null);
										Store	store	=	session.getStore	(“pop3”);
										store.connect	(host.pop3Host,	-1,
														host.pop3User,	host.pop3Password);
										Folder	defaultFolder	=	store.getDefaultFolder();
										if	(defaultFolder	==	null)	{
												System.err.println(“Unable	to	open	default	folder”);
												return;
										}
										Folder	folder	=	defaultFolder.getFolder	(“INBOX”);
										if	(folder	==	null)	{
												System.err.println(“Unable	to	get:	“
																				+	defaultFolder);
												return;
										}
										folder.open	(Folder.READ_WRITE);
										process(host,	listAddress,	roster,	session,
														store,	folder);
								}	catch	(Exception	e)	{
										System.err.println(e);
										System.err.println	(“(retrying	mail	check)”);
								}
								System.err.print	(“.”);
								try	{	Thread.sleep	(interval	*	1000);	}
								catch	(InterruptedException	e)	{}
						}	while	(true);
				}
				catch	(Exception	e)	{
						e.printStackTrace	();
				}
		}

		private	static	void	process(
						HostInformation	host,	String	listAddress,	Roster	roster,
						Session	session,Store	store,	Folder	folder)
										throws	MessagingException	{
				try	{
						if	(folder.getMessageCount()	!=	0)	{
								Message[]	messages	=	folder.getMessages	();
								doMessage(host,	listAddress,	roster,	session,
												folder,	messages);
						}
				}	catch	(Exception	e)	{
						System.err.println	(“message	handling	error”);

						e.printStackTrace	(System.err);
				}
				finally	{
						folder.close	(true);
						store.close	();
				}
		}

		private	static	void	doMessage(
										HostInformation	host,
										String	listAddress,
										Roster	roster,
										Session	session,
										Folder	folder,
										Message[]	messages)	throws
														MessagingException,	AddressException,	IOException,
														NoSuchProviderException	{
				FetchProfile	fp	=	new	FetchProfile	();
				fp.add	(FetchProfile.Item.ENVELOPE);
				fp.add	(FetchProfile.Item.FLAGS);
				fp.add	(“X-Mailer”);
				folder.fetch	(messages,	fp);
				for	(int	i	=	0;	i	<	messages.length;	i++)	{
						Message	message	=	messages	[i];
						if	(message.getFlags	().contains	(Flags.Flag.DELETED))
								continue;
						System.out.println(“message	received:	“
										+	message.getSubject	());
						if	(!roster.containsOneOf	(message.getFrom	()))
								continue;
						MimeMessage	forward	=	new	MimeMessage	(session);
						InternetAddress	result	=	null;
						Address	[]	fromAddress	=	message.getFrom	();
						if	(fromAddress	!=	null	&&	fromAddress.length	>	0)
								result	=
												new	InternetAddress	(fromAddress	[0].toString	());
						InternetAddress	from	=	result;
						forward.setFrom	(from);
						forward.setReplyTo	(new	Address	[]	{
								new	InternetAddress	(listAddress)	});
						forward.addRecipients	(Message.RecipientType.TO,
								listAddress);
						forward.addRecipients	(Message.RecipientType.BCC,
								roster.getAddresses	());
						String	subject	=	message.getSubject();
						if	(-1	==	message.getSubject().indexOf	(SUBJECT_MARKER))
								subject	=	SUBJECT_MARKER	+	”	”	+	message.getSubject();
						forward.setSubject	(subject);
						forward.setSentDate	(message.getSentDate	());
						forward.addHeader	(LOOP_HEADER,	listAddress);
						Object	content	=	message.getContent	();
						if	(content	instanceof	Multipart)
								forward.setContent	((Multipart)content);
						else
								forward.setText	((String)content);

						Properties	props	=	new	Properties	();
						props.put	(“mail.smtp.host”,	host.smtpHost);

						Session	smtpSession	=
										Session.getDefaultInstance	(props,	null);
						Transport	transport	=	smtpSession.getTransport	(“smtp”);

						transport.connect	(host.smtpHost,
										host.smtpUser,	host.smtpPassword);
						transport.sendMessage	(forward,	roster.getAddresses	());
						message.setFlag	(Flags.Flag.DELETED,	true);
				}
		}
}

It’s	a	pretty	small	piece	of	code,	but	it	isn’t	very	clear.	It’s	hard	to	see	any	lines	of	code
that	don’t	touch	an	API.	Could	this	code	be	structured	better?	Could	it	be	structured	in	a
way	that	makes	change	easier?

Yes,	it	can.

The	first	step	is	to	identify	the	computational	core	of	code:	What	is	this	chunk	of	code
really	doing	for	us?

It	might	help	to	try	to	write	a	brief	description	of	what	it	does:
This	code	reads	configuration	information	from	the	command	line	and	a	list	of	e-mail	addresses	from	a	file.	It
checks	for	mail	periodically.	When	it	finds	mail,	it	forwards	it	to	each	of	the	e-mail	addresses	in	the	file.

It	seems	that	this	program	is	mainly	about	input	and	output,	but	there	is	a	little	bit	more.
We’re	running	a	thread	in	the	code.	It	sleeps	and	then	wakes	up	periodically	to	check	for
mail.	In	addition,	we	aren’t	just	sending	out	the	incoming	mail	messages	again;	we’re
making	new	messages	based	on	the	incoming	one.	We	have	to	set	all	of	the	fields	and	then
check	and	alter	the	subject	line	so	that	it	shows	that	the	message	is	coming	from	the
mailing	list.	So,	we	are	doing	some	real	work.

If	we	try	to	separate	the	code’s	responsibilities,	we	might	end	up	with	something	like	this:

1.	We	need	something	that	can	receive	each	incoming	message	and	feed	it	into	our
system.

2.	We	need	something	that	can	just	send	out	a	mail	message.

3.	We	need	something	that	can	make	new	messages	for	each	incoming	message,	based
on	our	roster	of	list	recipients.

4.	We	need	something	that	sleeps	most	of	the	time	but	wakes	up	periodically	to	see	if
there	is	more	mail.

Now	when	we	look	at	those	responsibilities,	does	it	seem	like	some	are	more	tied	to	the
Java	Mail	API	than	others?	Responsibilities	1	and	2	are	definitely	tied	to	the	mail	API.
Responsibility	3	is	a	little	trickier.	The	message	classes	that	we	need	are	part	of	the	mail
API,	but	we	can	probably	test	the	responsibility	independently	by	creating	dummy
incoming	messages.	Responsibility	4	doesn’t	really	have	anything	to	do	with	mail;	it	just
requires	a	thread	that	is	set	to	wake	up	at	certain	intervals.

Figure	15.1	shows	a	little	design	that	separates	out	these	responsibilities.

Figure	15.1	A	better	mailing	list	server.

ListDriver	drives	the	system.	It	has	a	thread	that	sleeps	most	of	the	time	and	wakes	up
periodically	to	check	for	mail.	ListDriver	checks	for	mail	by	telling	the	MailReceiver	to	check	for
mail.	The	MailReceiver	reads	the	mail	and	sends	the	messages	one	by	one	to	a	MessageForwarder.	The
MessageForwarder	creates	messages	for	each	of	the	list	recipients	and	mails	them	using	the
MailSender.

This	design	is	pretty	nice.	The	MessageProcessor	and	MailService	interfaces	are	handy	because	they
allow	us	to	test	the	classes	independently.	In	particular,	it’s	great	to	be	able	to	work	on	the
MessageFowarder	class	in	a	test	harness	without	actually	sending	mail.	That’s	easily	achievable	if
we	make	a	FakeMailSender	class	that	implements	the	MailService	interface.

Nearly	every	system	has	some	core	logic	that	can	be	peeled	away	from	API	calls.
Although	this	case	is	small,	it	is	actually	worse	than	most.	MessageForwarder	is	the	piece	of	the
system	whose	responsibility	is	most	independent	of	the	mechanics	of	sending	and
receiving	mail,	but	it	still	uses	the	message	classes	of	the	JavaMail	API.	It	doesn’t	seem
like	there	are	many	places	for	plain	old	Java	classes.	Regardless,	factoring	the	system	into
four	classes	and	two	interfaces	in	the	diagram	does	give	us	some	layering.	The	primary
logic	of	the	mailing	list	is	in	the	MessageForwarder	class,	and	we	can	get	it	under	test.	In	the
original	code,	it	was	buried	and	unapproachable.	It’s	nearly	impossible	to	break	up	a
system	into	smaller	pieces	without	ending	up	with	some	that	are	“higher	level”	than
others.

When	we	have	a	system	that	looks	like	it	is	nothing	but	API	calls,	it	helps	to	imagine	that
it	is	just	one	big	object	and	then	apply	the	responsibility-separation	heuristics	in	Chapter
20,	This	Class	Is	Too	Big	and	I	Don’t	Want	It	to	Get	Any	Bigger.	We	might	not	be	able	to
move	toward	a	better	design	immediately,	but	just	the	act	of	identifying	the
responsibilities	can	make	it	easier	to	make	better	decisions	as	we	move	forward.

Okay,	that	was	what	a	better	design	looks	like.	It’s	nice	to	know	that	it’s	possible,	but	back
to	reality:	How	do	we	move	forward?	There	are	essentially	two	approaches:

1.	Skin	and	Wrap	the	API

2.	Responsibility-Based	Extraction

When	we	Skin	and	Wrap	the	API,	we	make	interfaces	that	mirror	the	API	as	close	as
possible	and	then	create	wrappers	around	library	classes.	To	minimize	our	chances	of
making	mistakes,	we	can	Preserve	Signatures	(312)	as	we	work.	One	advantage	to
skinning	and	wrapping	an	API	is	that	we	can	end	up	having	no	dependencies	on	the
underlying	API	code.	Our	wrappers	can	delegate	to	the	real	API	in	production	code	and
we	can	use	fakes	during	test.

Can	we	use	this	technique	with	the	mailing	list	code?

This	is	the	code	in	the	mailing	list	server	that	actually	sends	the	mail	messages:
…
Session	smtpSession	=	Session.getDefaultInstance	(props,	null);
Transport	transport	=	smtpSession.getTransport	(“smtp”);
transport.connect	(host.smtpHost,	host.smtpUser,
				host.smtpPassword);
transport.sendMessage	(forward,	roster.getAddresses	());
…

If	we	wanted	to	break	the	dependency	on	the	Transport	class,	we	could	make	a	wrapper	for	it,
but	in	this	code,	we	don’t	create	the	Transport	object;	we	get	it	from	the	Session	class.	Can	we
create	a	wrapper	for	Session?	Not	really—Session	is	a	final	class.	In	Java,	final	classes	can’t	be
subclassed	(grumble,	grumble).

This	mailing	list	code	is	really	a	poor	candidate	for	skinning.	The	API	is	relatively
complicated.	But	if	we	don’t	have	any	refactoring	tools	available,	it	could	be	the	safest
course.

Luckily,	there	are	refactoring	tools	available	for	Java,	so	we	can	do	something	else	called
Responsibility-Based	Extraction.	In	Responsibility-Based	Extraction,	we	identify
responsibilities	in	the	code	and	start	extracting	methods	for	them.

What	are	the	responsibilities	in	the	preceding	snippet	of	code?	Well,	its	overall	goal	is	to
send	a	message.	What	does	it	need	to	do	this?	It	needs	an	SMTP	session	and	a	connected
transport.	In	the	following	code,	we’ve	extracted	the	responsibility	of	sending	messages
into	its	own	method	and	added	that	methodb	to	a	new	class:	MailSender.
import	javax.mail.*;
import	javax.mail.internet.InternetAddress;
import	java.util.Properties;

public	class	MailSender
{
		private	HostInformation	host;
		private	Roster	roster;

		public	MailSender	(HostInformation	host,	Roster	roster)	{
				this.host	=	host;
				this.roster	=	roster;
		}

		public	void	sendMessage	(Message	message)	throws	Exception	{
				Transport	transport
								=	getSMTPSession	().getTransport	(“smtp”);

				transport.connect	(host.smtpHost,
																							host.smtpUser,	host.smtpPassword);
				transport.sendMessage	(message,	roster.getAddresses	());
		}

		private	Session	getSMTPSession	()	{
				Properties	props	=	new	Properties	();
				props.put	(“mail.smtp.host”,	host.smtpHost);
				return	Session.getDefaultInstance	(props,	null);
		}
}

How	do	we	choose	between	Skin	and	Wrap	the	API	and	Responsibility-Based	Extraction?
Here	are	the	trade-offs:

Skin	and	Wrap	the	API	is	good	in	these	circumstances:

•	The	API	is	relatively	small.

•	You	want	to	completely	separate	out	dependencies	on	a	third-party	library.

•	You	don’t	have	tests,	and	you	can’t	write	them	because	you	can’t	test	through	the	API.

When	we	skin	and	wrap	an	API,	we	have	the	chance	to	get	all	of	our	code	under	test
except	for	a	thin	layer	of	delegation	from	the	wrapper	to	the	real	API	classes.

Responsibility-Based	Extraction	is	good	in	these	circumstances:

•	The	API	is	more	complicated.

•	You	have	a	tool	that	provides	a	safe	extract	method	support,	or	you	feel	confident	that
you	can	do	the	extractions	safely	by	hand.

Balancing	the	advantages	and	disadvantages	of	these	techniques	is	kind	of	tricky.	Skin	and
Wrap	the	API	is	more	work,	but	it	can	be	very	useful	when	we	want	to	isolate	ourselves
from	third-party	libraries,	and	that	need	comes	up	often.	See	Chapter	14,	Dependencies	on
Libraries	Are	Killing	Me,	for	details.	When	we	use	Responsibility-Based	Extraction,	we
might	end	up	extracting	some	of	our	own	logic	with	the	API	code	just	so	that	we	can
extract	a	method	with	a	higher-level	name.	If	we	do,	our	code	can	depend	on	higher-level
interfaces	rather	than	low-level	API	calls,	but	we	might	not	be	able	to	get	the	code	we’ve
extracted	under	test.

Many	teams	use	both	techniques:	a	thin	wrapper	for	testing	and	a	higher-level	wrapper	to
present	a	better	interface	to	their	application.

Chapter	16:	I	Don’t	Understand	the	Code	Well	Enough	to
Change	It

Stepping	into	unfamiliar	code,	especially	legacy	code,	can	be	scary.	Over	time,	some
people	become	relatively	immune	to	the	fear.	They	develop	confidence	from	confronting
and	slaying	monsters	in	code	over	and	over	again,	but	it	is	tough	not	to	be	afraid.
Everyone	runs	into	demons	that	they	can’t	slay	from	time	to	time.	If	you	dwell	on	it	before
you	start	to	look	at	the	code,	that	makes	it	worse.	You	never	know	whether	a	change	is
going	to	be	simple	or	a	weeklong	hair-pulling	exercise	that	leaves	you	cursing	the	system,
your	situation,	and	nearly	everything	around	you.	If	we	understood	everything	we	need	to
know	to	make	our	changes,	things	would	go	smoother.	How	can	we	get	that
understanding?

Here’s	a	typical	situation.	You	find	out	about	a	feature	that	you	need	to	add	to	the	system.
You	sit	down	and	you	start	to	browse	the	code.	Sometimes	you	can	find	out	everything
you	need	to	know	quickly,	but	in	legacy	code,	it	can	take	some	time.	All	the	while,	you	are
making	a	mental	list	of	the	things	you	have	to	do,	trading	off	one	approach	against
another.	At	some	point,	you	might	feel	like	you	are	making	progress	and	you	feel
confident	enough	to	start.	In	other	cases,	you	might	start	to	get	dizzy	from	all	of	the	things
that	you	are	trying	to	assimilate.	Your	code	reading	doesn’t	seem	to	be	helping,	and	you
just	start	working	on	what	you	know	how	to	do,	hoping	for	the	best.

There	are	other	ways	of	gaining	understanding,	but	many	people	don’t	use	them	because
they	are	so	caught	up	in	trying	to	understand	the	code	in	the	most	immediate	way	that	they
can.	After	all,	spending	time	trying	to	understand	something	looks	and	feels	suspiciously
like	not	working.	If	we	can	get	through	the	understanding	bit	very	fast,	we	can	really	start
to	earn	our	pay.	Does	that	sound	silly?	It	does	to	me,	too,	but	often	people	do	act	that	way
—and	it’s	unfortunate	because	we	can	do	some	simple,	low-tech	things	to	start	work	on	a
more	solid	footing.

Notes/Sketching
When	reading	through	code	gets	confusing,	it	pays	to	start	drawing	pictures	and	making
notes.	Write	down	the	name	of	the	last	important	thing	that	you	saw,	and	then	write	down
the	name	of	the	next	one.	If	you	see	a	relationship	between	them,	draw	a	line.	These
sketches	don’t	have	to	be	full-blown	UML	diagrams	or	function	call	graphs	using	some
special	notation—although,	if	things	get	more	confusing,	you	might	want	to	get	more
formal	or	neater	to	organize	your	thoughts.	Sketching	things	out	often	helps	us	see	things
in	a	different	way.	It’s	also	a	great	way	of	maintaining	our	mental	state	when	we	are	trying
to	understand	something	particularly	complex.

Figure	16.1	is	a	re-creation	of	a	sketch	that	I	drew	with	another	programmer	the	other	day
as	we	were	browsing	code.	We	drew	it	on	the	back	of	a	memo	(the	names	in	the	sketch
have	been	changed	to	protect	the	innocent).

Figure	16.1	Sketch.

The	sketch	is	not	very	intelligible	now,	but	it	was	fine	for	our	conversation.	We	learned	a
bit	and	established	an	approach	for	our	work.

Doesn’t	everyone	do	this?	Well,	yes	and	no.	Few	people	use	it	frequently.	I	suspect	that
the	reason	is	because	there	really	isn’t	any	guidance	for	this	sort	of	thing,	and	it’s	tempting
to	think	that	every	time	we	put	pen	to	paper,	we	should	be	writing	a	snippet	of	code	or
using	UML	syntax.	UML	is	fine,	but	so	are	blobs	and	lines	and	shapes	that	would	be
indecipherable	to	anyone	who	wasn’t	there	when	we	drew	them.	The	precision	doesn’t
have	to	be	on	paper.	The	paper	is	just	a	tool	to	make	conversation	go	easier	and	help	us
remember	the	concepts	we’re	discussing	and	learning.

The	really	great	thing	about	sketching	parts	of	a	design	as	you	are	trying	to	understand
them	is	that	it	is	informal	and	infectious.	If	you	find	this	technique	useful,	you	don’t	have
to	push	for	your	team	to	make	it	part	of	its	process.	All	you	have	to	do	is	this:	Wait	until
you	are	working	with	someone	trying	to	understand	some	code,	and	then	make	a	little
sketch	of	what	you	are	looking	at	as	you	try	to	explain	it.	If	your	partner	is	really	engaged
in	learning	that	part	of	the	system	too,	he	or	she	will	look	at	the	sketch	and	go	back	and
forth	with	you	as	you	figure	out	the	code.

When	you	start	to	do	local	sketches	of	a	system,	often	you	are	tempted	to	take	some	time
to	understand	the	big	picture.	Take	a	look	at	Chapter	17,	My	Application	Has	No
Structure,	for	a	set	of	techniques	that	make	it	easier	to	understand	and	tend	a	large	code
base.

Listing	Markup
Sketching	isn’t	the	only	thing	that	aids	understanding.	Another	technique	that	I	often	use
is	listing	markup.	It	is	particularly	useful	with	very	long	methods.	The	idea	is	simple	and
nearly	everyone	has	done	it	at	some	time	or	another,	but,	frankly,	I	think	it	is	underused.

The	way	to	mark	up	a	listing	depends	on	what	you	want	to	understand.	The	first	step	is	to
print	the	code	that	you	want	to	work	with.	After	you	have,	you	can	use	listing	markup	as
you	try	to	do	any	of	the	following	activities.

Separating	Responsibilities

If	you	want	to	separate	responsibilities,	use	a	marker	to	group	things.	If	several	things
belong	together,	put	a	special	symbol	next	to	each	of	them	so	that	you	can	identify	them.

Use	several	colors,	if	you	can.

Understanding	Method	Structure

If	you	want	to	understand	a	large	method,	line	up	blocks.	Often	indentation	in	long
methods	can	make	them	impossible	to	read.	You	can	line	them	up	by	drawing	lines	from
the	beginnings	of	blocks	to	the	ends,	or	by	commenting	the	ends	of	blocks	with	the	text	of
the	loop	or	condition	that	started	them.

The	easiest	way	to	line	up	blocks	is	inside	out.	For	instance,	when	you	are	working	in	one
of	the	languages	in	the	C	family,	just	start	reading	from	the	top	of	the	listing	past	each
opening	brace	until	you	get	to	the	first	closing	brace.	Mark	that	one	and	then	go	back	and
mark	the	one	that	matches	it.	Keep	reading	until	you	get	to	the	next	closing	brace,	and	do
the	same	thing.	Look	backward	until	you	get	to	the	opening	brace	that	matches	it.

Extract	Methods

If	you	want	to	break	up	a	large	method,	circle	code	that	you’d	like	to	extract.	Annotate	it
with	its	coupling	count	(see	Chapter	22,	I	Need	to	Change	a	Monster	Method	and	I	Can’t
Write	Tests	for	It).

Understand	the	Effects	of	a	Change

If	you	want	to	understand	the	effect	of	some	change	you	are	going	to	make,	instead	of
making	an	effect	sketch	(155),	put	a	mark	next	to	the	code	lines	that	you	are	going	to
change.	Then	put	a	mark	next	to	each	variable	whose	value	can	change	as	a	result	of	that
change	and	every	method	call	that	could	be	affected.	Next,	put	marks	next	to	the	variables
and	methods	that	are	affected	by	the	things	you	just	marked.	Do	this	as	many	times	as	you
need	to,	to	see	how	effects	propagate	from	the	change.	When	you	do	that,	you’ll	have	a
better	sense	of	what	you	have	to	test.

Scratch	Refactoring
One	of	the	best	techniques	for	learning	about	code	is	refactoring.	Just	get	in	there	and	start
moving	things	around	and	making	the	code	clearer.	The	only	problem	is,	if	you	don’t	have
tests,	this	can	be	pretty	hazardous	business.	How	do	you	know	that	you	aren’t	breaking
anything	when	you	do	all	of	this	refactoring	to	understand	the	code?	The	fact	is,	you	can
work	in	a	way	in	which	you	don’t	need	to	care—and	it’s	pretty	easy	to	do.	Check	out	the
code	from	your	version-control	system.	Forget	about	writing	tests.	Extract	methods,	move
variables,	refactor	it	whatever	way	you	want	to	get	a	better	understanding	of	it—just	don’t
check	it	in	again.	Throw	that	code	away.	This	is	called	Scratch	refactoring.

The	first	time	I	mentioned	this	to	someone	I	was	working	with,	he	thought	it	was	wasteful,
but	we	learned	an	incredible	amount	about	the	code	that	we	were	working	on	in	that	half
hour	of	moving	things	around.	After	that,	he	was	sold	on	the	idea.

Scratch	refactoring	is	great	way	of	getting	down	to	the	essentials	and	really	learning	how
a	piece	of	code	works,	but	there	are	a	couple	of	risks.	The	first	risk	is	that	we	make	some
gross	mistake	when	we	refactor	that	leads	us	to	think	that	the	system	is	doing	something
that	it	isn’t.	When	that	happens,	we	have	a	false	view	of	the	system,	and	that	can	cause
some	anxiety	later	when	we	start	to	really	refactor.	The	second	risk	is	related.	We	could
get	so	attached	to	the	way	that	the	code	turns	out	that	we	start	to	think	about	it	in	those

terms	all	the	time.	It	doesn’t	sound	like	that	should	be	so	bad,	but	it	can	be.	There	are
many	reasons	why	we	might	not	end	up	with	the	same	structure	when	we	do	get	around	to
really	refactoring.	We	might	see	a	better	way	of	structuring	the	code	later.	Our	code	could
change	between	now	and	then,	and	we	might	have	different	insights.	If	we	are	too	attached
to	the	end	point	of	a	Scratch	refactoring,	we’ll	miss	out	on	those	insights.

Scratch	refactoring	is	a	good	way	to	convince	yourself	that	you	understand	the	most
important	things	about	the	code,	and	that,	in	itself,	can	make	the	work	go	easier.	You	feel
reasonably	confident	that	there	isn’t	something	scary	behind	every	corner—or,	if	there	is,
you’ll	at	least	have	some	notice	before	you	get	there.

Delete	Unused	Code
If	the	code	you	are	looking	at	is	confusing	and	you	can	determine	that	some	of	it	isn’t
used,	delete	it.	It	isn’t	doing	anything	for	you	except	getting	in	your	way.

Sometimes	people	feel	that	deleting	code	is	wasteful.	After	all,	someone	spent	time
writing	that	code—maybe	it	can	be	used	in	the	future.	Well,	that	is	what	version-control
systems	are	for.	That	code	will	be	in	earlier	versions.	You	can	always	look	for	if	you	ever
decide	that	you	need	it.

Chapter	17:	My	Application	Has	No	Structure

Long-lived	applications	tend	to	sprawl.	They	might	have	started	out	with	a	well-thought-
out	architecture,	but	over	the	years,	under	schedule	pressure,	they	can	get	to	the	point	at
which	nobody	really	understands	the	complete	structure.	People	can	work	for	years	on	a
project	and	not	have	any	idea	where	new	features	are	intended	to	go;	they	just	know	the
hacks	that	have	been	placed	in	the	system	recently.	When	they	add	new	features,	they	go
to	the	“hack	points”	because	those	are	the	areas	that	they	know	best.

There	is	no	easy	remedy	for	this	sort	of	thing,	and	the	urgency	of	the	situation	varies
widely.	In	some	cases,	programmers	run	up	against	a	wall.	It’s	difficult	to	add	new
features,	and	that	brings	the	entire	organization	into	crisis	mode.	People	are	charged	with
the	task	of	figuring	out	whether	it	would	be	better	to	rearchitect	or	rewrite	the	system.	In
other	organizations,	the	system	limps	along	for	years.	Yes,	it	takes	longer	than	it	should	to
add	new	features,	but	that	is	just	considered	the	price	of	doing	business.	Nobody	knows
how	much	better	it	could	be	or	how	much	money	is	being	lost	because	of	poor	structure.

When	teams	aren’t	aware	of	their	architecture,	it	tends	to	degrade.	What	gets	in	the	way	of
this	awareness?

•	The	system	can	be	so	complex	that	it	takes	a	long	time	to	get	the	big	picture.

•	The	system	can	be	so	complex	that	there	is	no	big	picture.

•	The	team	is	in	a	very	reactive	mode,	dealing	with	emergency	after	emergency	so	much
that	they	lose	sight	of	the	big	picture.

Traditionally,	many	organizations	have	used	the	role	of	architect	to	solve	these	problems.
Architects	are	usually	charged	with	the	task	of	working	out	the	big	picture	and	making
decisions	that	preserve	the	big	picture	for	the	team.	That	can	work,	but	there	is	one	strong
caveat.	An	architect	has	to	be	out	in	the	team,	working	with	the	members	day	to	day,	or
else	the	code	diverges	from	the	big	picture.	There	are	two	ways	this	can	happen:	Someone
could	be	doing	something	inappropriate	in	the	code	or	the	big	picture	itself	could	need	to
be	modified.	In	some	of	the	worst	situations	I’ve	encountered	with	teams,	the	architect	of
a	group	has	a	completely	different	view	of	the	system	than	the	programmers.	Often	this
happens	because	the	architect	has	other	responsibilities	and	can’t	get	into	the	code	or	can’t
communicate	with	the	rest	of	the	team	often	enough	to	really	know	what	is	there.	As	a
result,	communication	breaks	down	across	the	organization.

The	brutal	truth	is	that	architecture	is	too	important	to	be	left	exclusively	to	a	few	people.
It’s	fine	to	have	an	architect,	but	the	key	way	to	keep	an	architecture	intact	is	to	make	sure
that	everyone	on	the	team	knows	what	it	is	and	has	a	stake	in	it.	Every	person	who	is
touching	the	code	should	know	the	architecture,	and	everyone	else	who	touches	the	code
should	be	able	to	benefit	from	what	that	person	has	learned.	When	everyone	is	working	off
of	the	same	set	of	ideas,	the	overall	system	intelligence	of	the	team	is	amplified.	If	you
have,	say,	a	team	of	20	and	only	3	people	know	the	architecture	in	detail,	either	those	3
have	to	do	a	lot	to	keep	the	other	17	people	on	track	or	the	other	17	people	just	make
mistakes	caused	by	unfamiliarity	with	the	big	picture.

How	can	we	get	a	big	picture	of	a	large	system?	There	are	many	ways	to	do	this.	The	book

Object-Oriented	Reengineering	Patterns,	by	Serge	Demeyer,	Stephane	Ducasse,	and
Oscar	M.	Nierstrasz	(Morgan	Kaufmann	Publishers,	2002),	contains	a	catalog	of
techniques	that	deal	with	just	this	issue.	Here	I	describe	several	others	that	are	rather
powerful.	If	you	practice	them	often	on	a	team,	they	will	help	keep	architectural	concerns
alive	in	the	team—and	that’s	perhaps	the	most	important	thing	you	can	do	to	preserve
architecture.	It	is	hard	to	pay	attention	to	something	that	you	don’t	think	about	often.

Telling	the	Story	of	the	System
When	I	work	with	teams,	I	often	use	a	technique	that	I	call	“telling	the	story	of	the
system.”	To	do	it	well,	you	need	at	least	two	people.	One	person	starts	off	by	asking
another,	“What	is	the	architecture	of	the	system?”	Then	the	other	person	tries	to	explain
the	architecture	of	the	system	using	only	a	few	concepts,	maybe	as	few	as	two	or	three.	If
you	are	the	person	explaining,	you	have	to	pretend	that	the	other	person	knows	nothing
about	the	system.	In	only	a	few	sentences,	you	have	to	explain	what	the	pieces	of	the
design	are	and	how	they	interact.	After	you	say	those	few	sentences,	you	have	articulated
what	you	feel	are	the	most	essential	things	about	the	system.	Next,	you	pick	the	next	most
important	things	to	say	about	the	system.	You	keep	going	until	you’ve	said	just	about
everything	important	about	the	core	design	of	the	system.

When	you	start	to	do	this,	you’ll	notice	an	odd	feeling.	To	really	convey	the	system
architecture	that	briefly,	you	have	to	simplify.	You	might	say,	“The	gateway	gets	rule	sets
from	the	active	database,”	but	as	you	say	that,	part	of	you	might	be	screaming,	“No!	The
gateway	gets	rule	sets	from	the	active	database,	but	it	also	gets	them	from	the	current
working	set.”	When	you	say	the	simpler	thing,	it	kind	of	feels	like	you	are	lying;	you	just
aren’t	telling	the	whole	story.	But	you	are	telling	a	simpler	story	that	describes	an	easier-
to-understand	architecture.	For	instance,	why	does	the	gateway	have	to	get	rule	sets	from
more	than	one	place?	Wouldn’t	it	be	simpler	if	it	was	unified?

Pragmatic	considerations	often	keep	things	from	getting	simple,	but	there	is	value	in
articulating	the	simple	view.	At	the	very	least,	it	helps	everyone	understand	what	would’ve
been	ideal	and	what	things	are	there	as	expediencies.	The	other	important	thing	about	this
technique	is	that	it	really	forces	you	to	think	about	what	is	important	in	the	system.	What
are	the	most	important	things	to	communicate?

Teams	can	go	only	so	far	when	the	system	they	work	on	is	a	mystery	to	them.	In	an	odd
way,	having	a	simple	story	of	how	a	system	works	just	serves	as	a	roadmap,	a	way	of
getting	your	bearing	as	you	search	for	the	right	places	to	add	features.	It	can	also	make	a
system	a	lot	less	scary.

On	your	team,	tell	the	story	of	the	system	often,	just	so	that	you	share	a	view.	Tell	it	in
different	ways.	Trade	off	whether	one	concept	is	more	important	than	another.	As	you
consider	changes	to	the	system,	you’ll	notice	that	some	changes	fall	more	in	line	with	the
story.	That	is,	they	make	the	briefer	story	feel	like	less	of	a	lie.	If	you	have	to	choose
between	two	ways	of	doing	something,	the	story	can	be	a	good	way	to	see	which	one	will
lead	to	an	easier-to-understand	system.

Here	is	an	example	of	this	sort	of	story	telling	in	action.	Here’s	a	session	discussing	JUnit.
It	does	assume	that	you	know	a	little	bit	about	the	architecture	of	JUnit.	If	you	don’t,	take
a	little	while	to	look	at	JUnit’s	source	code.	You	can	download	it	from	www.junit.org.

http://www.junit.org

What	is	the	architecture	of	JUnit?

JUnit	has	two	primary	classes.	The	first	is	called	Test,	and	the	other	is	called	TestResult.
Users	create	tests	and	run	them,	passing	them	a	TestResult.	When	a	test	fails,	it	tells	the
TestResult	about	it.	People	can	then	ask	the	TestResult	for	all	of	the	failures	that	have	occurred.

Let’s	list	the	simplifications:

1.	There	are	many	other	classes	in	JUnit.	I’m	saying	that	Test	and	TestResult	are	primary
only	because	I	think	so.	To	me,	their	interaction	is	the	core	interaction	in	the	system.
Others	might	have	a	different,	equally	valid	view	of	the	architecture.

2.	Users	don’t	create	test	objects.	Test	objects	are	created	from	test	case	classes	via
reflection.

3.	Test	isn’t	a	class;	it’s	an	interface.	The	tests	that	run	in	JUnit	are	usually	written	in
subclasses	of	a	class	named	TestCase,	which	implements	Test.

4.	People	generally	don’t	ask	TestResults	for	failures.	TestResults	register	listeners,	which	are
notified	whenever	a	TestResult	receives	information	from	a	test.

5.	Tests	report	more	than	failures:	They	report	the	number	of	tests	run	and	the	number
of	errors.	(Errors	are	problems	that	occur	in	the	test	that	aren’t	explicitly	checked
for.	Failures	are	failed	checks.)

Do	these	simplifications	give	us	any	insight	into	how	JUnit	could	be	simpler?	A	little.
Some	simpler	xUnit	testing	frameworks	make	Test	a	class	and	drop	TestCase	entirely.	Other
frameworks	merge	errors	and	failures	so	that	they	are	reported	the	same	way.

Back	to	our	story.
Is	that	all?

No.	Tests	can	be	grouped	into	objects	called	suites.	We	can	run	a	suite	with	a	test	result
just	like	a	single	test.	All	of	the	tests	inside	it	run	and	tell	the	test	result	when	they	fail.

What	simplifications	do	we	have	here?

1.	TestSuites	do	more	than	just	hold	and	run	a	set	of	tests.	They	also	create	instances	of
TestCase-derived	classes	via	reflection.

2.	There	is	another	simplification,	sort	of	a	left	over	from	the	first	one.	Tests	don’t
actually	run	themselves.	They	pass	themselves	to	the	TestResult	class,	which,	in	turn,
calls	the	test-execution	method	back	on	the	test	itself.	This	back	and	forth	happens
at	a	rather	low	level.	Thinking	about	it	the	simple	way	is	kind	of	convenient.	It	is	a
bit	of	a	lie,	but	it	is	actually	the	way	JUnit	used	to	be	when	it	was	a	little	simpler.

Is	that	all?
No.	Actually,	Test	is	an	interface.	There	is	a	class	called	TestCase	that	implements	Test.	Users	subclass	TestCase	and
then	write	their	tests	as	public	void	methods	that	start	with	the	word	test	in	their	subclass.	The	TestSuite	class	uses
reflection	to	build	up	a	group	of	tests	that	can	be	run	in	a	single	call	to	TestSuite's	run	method.

We	can	go	further,	but	what	I’ve	shown	so	far	gives	a	sense	of	the	technique.	We	start	out
by	making	a	brief	description.	When	we	simplify	and	rip	away	detail	to	describe	a	system,
we	are	really	abstracting.	Often	when	we	force	ourselves	to	communicate	a	very	simple
view	of	a	system,	we	can	find	new	abstractions.

If	a	system	isn’t	as	simple	as	the	simplest	story	we	can	tell	about	it,	does	that	mean	that	it’s
bad?	No.	Invariably,	as	systems	grow,	they	get	more	complicated.	The	story	gives	us
guidance.

Suppose	that	we	were	going	to	add	a	new	feature	to	JUnit.	We	want	to	generate	a	report	of
all	the	tests	that	don’t	call	any	assertions	when	we	run	them.	What	options	do	we	have
given	what	was	described	in	JUnit?

One	option	is	to	add	a	method	to	the	TestCase	class	called	buildUsageReport	that	runs	each	method
and	then	builds	up	a	report	of	all	of	the	methods	that	don’t	call	an	assert	method.	Would	that
be	a	good	way	of	adding	this	feature?	What	would	it	do	to	our	story?	Well,	it	would	add
another	little	“lie	of	omission”	from	our	briefest	description	of	the	system:

JUnit	has	two	primary	classes.	The	first	is	called	Test,	and	the	other	is	called	TestResult.	Users	create	tests	and	run
them,	passing	along	a	TestResult.	When	a	test	fails,	it	tells	the	TestResult	about	it.	People	can	then	ask	the	TestResult	for
all	of	the	failures	that	have	occurred.

It	seems	that	Tests	now	have	this	completely	different	responsibility:	generating	reports,
which	we	never	mention.

What	if	we	went	about	adding	the	feature	in	a	different	way?	We	could	alter	the
interaction	between	TestCase	and	TestResult	so	that	TestResult	gets	a	count	of	the	number	of
assertions	run	whenever	a	test	runs.	Then	we	can	make	a	report-building	class	and	register
it	with	TestResult	as	a	listener.	How	does	that	impact	the	story	of	the	system?	It	could	be	a
good	reason	to	generalize	it	a	little.	Tests	don’t	just	tell	TestResults	about	the	number	of	failures;
they	also	tell	them	about	the	number	of	errors,	the	number	of	tests	run,	and	the	number	of
assertions	run.	We	could	change	our	brief	story	to	this:

JUnit	has	two	primary	classes.	The	first	is	called	Test,	and	the	other	is	called	TestResult.	Users	create	tests	and	run
them,	passing	them	a	TestResult.	When	a	test	runs,	it	passes	information	about	the	test	run	to	the	TestResult.	People
can	then	ask	the	TestResult	for	information	about	all	of	the	test	runs.

Is	that	better?	Frankly,	I	like	the	original,	the	version	that	described	recording	failures.	To
me,	it	is	one	of	the	core	behaviors	of	JUnit.	If	we	change	the	code	so	that	TestResults	record
the	number	of	assertions	run,	we’d	still	be	lying	a	bit,	but	we’re	already	glossing	over	the
other	information	that	we	send	from	tests	to	test	results.	The	alternative,	putting	the
responsibility	for	running	a	bunch	of	cases	and	building	a	report	from	them	on	TestCase,
would	be	a	bolder	lie:	We	aren’t	talking	about	this	additional	responsibility	of	TestCase	at	all.
We’re	better	off	having	tests	report	the	number	of	assertions	run	as	they	execute.	Our	first
story	is	generalized	a	little	bit	more	but	at	least	it	is	still	substantially	true.	That	means	that
our	changes	are	falling	more	in	line	with	the	architecture	of	the	system.

Naked	CRC
In	the	early	days	of	object	orientation,	many	people	struggled	with	the	issue	of	design.	It’s
hard	to	get	used	to	object	orientation	when	most	of	your	programming	experience	is	in	the
use	of	procedural	languages.	Simply	put,	the	way	that	you	think	about	your	code	is
different.	I	remember	the	first	time	someone	tried	to	show	me	an	object-oriented	design	on
a	piece	of	paper.	I	looked	at	all	the	shapes	and	lines	and	heard	the	description,	but	the
question	that	I	kept	wanting	to	ask	was	“Where’s	main()?	Where	is	the	entry	point	for	all	of
these	new	object	things?”	I	was	bewildered	for	a	little	while,	but	then	it	started	to	click.
The	problem	wasn’t	just	mine,	though.	It	seemed	like	most	of	the	industry	was	struggling

with	the	same	issues	at	roughly	the	same	time.	Frankly,	every	day	people	new	to	the
industry	confront	these	issues	when	they	encounter	object-oriented	code	for	the	first	time.

In	the	1980s,	Ward	Cunningham	and	Kent	Beck	were	dealing	with	this	issue.	They	were
trying	to	help	people	start	to	think	about	design	in	terms	of	objects.	At	the	time,	Ward	was
using	a	tool	named	Hypercard,	which	allows	you	to	create	cards	on	a	computer	display
and	form	links	among	them.	Suddenly,	the	insight	was	there.	Why	not	use	real	index	cards
to	represent	classes?	It	would	make	them	tangible	and	easy	to	discuss.	Should	we	talk
about	the	Transaction	class?	Sure,	here	is	its	card—on	it	we	have	its	responsibilities	and
collaborators.

CRC	stands	for	Class,	Responsibility,	and	Collaborations.	You	mark	up	each	card	with	a
class	name,	its	responsibilities,	and	a	list	of	its	collaborators	(other	classes	that	this	class
communicates	with).	If	you	think	that	a	responsibility	doesn’t	belong	on	a	particular	class,
cross	it	out	and	write	it	on	another	class	card,	or	create	another	class	card	altogether.

Although	CRC	became	rather	popular	for	a	while,	eventually	there	was	a	large	push
toward	diagrams.	Nearly	everyone	teaching	OO	on	the	planet	had	their	own	notation	for
classes	and	relationships.	Eventually,	there	was	a	large	multiyear	effort	to	consolidate
notations.	UML	was	the	result,	and	many	people	thought	that	ended	any	talk	of	how	to
design	systems.	People	started	to	think	that	the	notation	was	a	method,	that	UML	was	a
way	of	developing	systems:	Draw	plenty	of	diagrams,	and	then	write	code	afterward.	It
took	a	while	for	people	to	realize	that	although	UML	is	a	good	notation	for	documenting
systems,	it’s	not	the	only	way	of	working	with	the	ideas	that	we	use	to	build	systems.	At
this	point,	I	know	that	there	is	a	much	better	way	of	communicating	about	design	on	a
team.	It’s	a	technique	that	some	testing	friends	of	mine	dubbed	Naked	CRC	because	it	is
just	like	CRC,	except	that	you	don’t	write	on	the	cards.	Unfortunately,	it	isn’t	all	that	easy
to	describe	in	a	book.	Here’s	my	best	attempt.

Several	years	ago,	I	met	Ron	Jeffries	at	a	conference.	He’d	promised	me	that	he	would
show	me	how	he	could	explain	an	architecture	using	cards	in	a	way	that	made	the
interactions	rather	vivid	and	memorable.	Sure	enough,	he	did.	This	is	the	way	that	it
works.	The	person	describing	the	system	uses	a	set	of	blank	index	cards	and	lays	them
down	on	a	table	one	by	one.	He	or	she	can	move	the	cards,	point	at	them,	or	do	whatever
else	is	needed	to	convey	the	typical	objects	in	the	system	and	how	they	interact.

Here	is	an	example,	a	description	of	an	online	voting	system:

“Here’s	how	the	real-time	voting	system	works.	Here	is	a	client	session”	(points	at	card).

“Each	session	has	two	connections,	an	incoming	connection	and	an	outgoing	connection”
(lays	down	each	card	on	the	original	one	and	points	at	each,	in	turn).

“When	it	starts	up,	a	session	is	created	on	the	server	over	here”	(lays	down	the	card	on	the
right).

“Server	sessions	have	two	connections	apiece	also”	(puts	down	the	two	cards	representing
the	connections	on	the	card	on	the	right).

“When	a	server	session	comes	up,	it	registers	with	the	vote	manager	(lays	down	the	card
for	the	vote	manager	above	the	server	session).

“We	can	have	many	sessions	on	the	server	side”	(puts	down	another	set	of	cards	for	a	new
server	session	and	its	connections).

“When	a	client	votes,	the	vote	is	sent	to	the	session	on	the	server	side”	(motions	with
hands	from	one	of	the	connections	on	the	client-side	session	to	a	connection	on	a	server-
side	session).

“The	server	session	replies	with	an	acknowledgment	and	then	records	the	vote	with	the
vote	manager”	(points	from	the	server	session	back	to	the	client	session,	and	then	points
from	that	server	session	to	the	vote	manager).

“Afterward,	the	vote	manager	tells	each	server	session	to	tell	its	client	session	what	the
new	vote	count	is”	(points	from	the	vote	manager	card	to	each	server	session,	in	turn).

I’m	sure	that	this	description	is	lacking	something	because	I’m	not	able	to	move	the	cards
around	on	the	table	or	point	at	them	the	way	I	would	if	we	were	sitting	at	a	table	together.
Still,	this	technique	is	pretty	powerful.	It	makes	pieces	of	a	system	into	tangible	things.
You	don’t	have	to	use	cards;	anything	that	is	handy	is	fine.	The	key	is	that	you	are	able	to
use	motion	and	position	to	show	how	parts	of	the	system	interact.	Often	those	two	things
can	make	involved	scenarios	easier	to	grasp.	For	some	reason,	these	carding	sessions
make	designs	more	memorable	also.

There	are	just	two	guidelines	in	Naked	CRC:

1.	Cards	represent	instances,	not	classes.

2.	Overlap	cards	to	show	a	collection	of	them.

Conversation	Scrutiny
In	legacy	code,	it’s	tempting	to	avoid	creating	abstractions.	When	I’m	looking	at	four	or
five	classes	that	have	about	a	thousand	lines	of	code	apiece,	I’m	not	thinking	about	adding
new	classes	as	much	as	I’m	trying	to	figure	out	what	has	to	change.

Because	we	are	so	distracted	when	we’re	trying	to	figure	out	these	things,	often	we	miss
things	that	can	give	us	additional	ideas.	Here’s	an	example.	I	was	working	with	several
members	of	a	team	once,	and	they	were	going	through	the	exercise	of	making	a	large
chunk	of	code	executable	from	several	threads.	The	code	was	rather	complicated	and	there
were	several	opportunities	for	deadlock.	We	realized	that	if	we	could	guarantee	that
resources	were	locked	in	and	unlocked	in	a	particular	order,	we	could	avoid	deadlock	in
the	code.	We	started	to	look	at	how	we	could	modify	the	code	to	enable	this.	All	the	while,
we	were	talking	about	this	new	locking	policy	and	figuring	out	how	to	maintain	counts	in
arrays	to	enable	it.	When	one	of	the	other	programmers	started	to	write	the	policy	code
inline,	I	said,	“Wait,	we’re	talking	about	a	locking	policy,	right?	Why	don’t	we	create	a
class	called	LockingPolicy	and	maintain	the	counts	in	there?	We	can	use	method	names	that
really	describe	what	we	are	trying	to	do,	and	that	will	be	clearer	than	code	that	bumps
counts	in	an	array.”

The	terrible	thing	is	that	the	team	wasn’t	inexperienced.	There	were	some	other	very
good-looking	areas	of	the	code	base,	but	there	is	something	mesmerizing	about	large
chunks	of	procedural	code:	They	seem	to	beg	for	more.

Listen	to	conversations	about	your	design.	Are	the	concepts	you’re	using	in	conversation
the	same	as	the	concepts	in	the	code?	I	wouldn’t	expect	them	all	to	be.	Software	has	to
satisfy	stronger	constraints	than	just	being	easy	to	talk	about,	but	if	there	isn’t	a	strong
overlap	between	conversation	and	code,	it’s	important	to	ask	why.	The	answer	is	usually	a
mixture	of	two	things:	The	code	hasn’t	been	allowed	to	adapt	to	the	team’s	understanding,
or	the	team	needs	to	understand	it	differently.	In	any	case,	being	very	tuned	to	the	concepts
people	naturally	use	to	describe	the	design	is	powerful.	When	people	talk	about	design,
they	are	trying	to	make	other	people	understand	them.	Put	some	of	that	understanding	in
the	code.

In	this	chapter,	I’ve	described	a	couple	of	techniques	for	uncovering	and	communicating
the	architecture	of	large	existing	systems.	Many	of	the	techniques	are	also	perfectly	good
ways	of	working	out	the	design	of	new	systems.	Design	is	design,	regardless	of	when	it
happens	in	the	development	cycle.	One	of	the	worst	mistakes	a	team	can	make	is	it	to	feel
that	design	is	over	at	some	point	in	development.	If	design	is	“over”	and	people	are	still
making	changes,	chances	are	good	that	new	code	will	appear	in	poor	places,	and	classes
will	bloat	because	no	one	feels	comfortable	introducing	new	abstraction.	There	is	no	surer
way	to	make	a	legacy	system	worse.

Chapter	18:	My	Test	Code	Is	in	the	Way

When	you	first	start	writing	unit	tests,	it	might	feel	unnatural.	One	thing	that	people
commonly	encounter	is	a	sense	that	their	tests	are	just	in	the	way.	They	browse	around
their	project	and	sometimes	forget	whether	they	are	looking	at	test	code	or	production
code.	The	fact	that	you	start	to	end	up	with	a	lot	of	test	code	doesn’t	help.	Unless	you	start
to	establish	some	conventions,	you	can	end	up	swamped.

Class	Naming	Conventions
One	of	the	first	things	to	establish	is	a	class	naming	convention.	Generally,	you’ll	have	at
least	one	unit	test	class	for	each	class	that	you	work	on,	so	it	makes	sense	to	make	the	unit
test	class	name	a	variation	of	the	class	name.	A	couple	of	conventions	are	used.	The	most
common	ones	are	to	use	the	word	Test	as	a	prefix	or	a	suffix	of	the	class	name.	So,	if	we
have	a	class	named	DBEngine,	we	could	call	our	test	class	TestDBEngine	or	DBEngineTest.	Does	it	matter?
Not	really.	Personally,	I	like	the	Test	suffix	convention.	If	you	have	an	IDE	that	lists
classes	alphabetically,	each	class	lines	up	next	to	its	test	class,	and	that	makes	it	easier	to
navigate	among	them.

What	other	classes	come	up	in	testing?	Often	it’s	useful	to	fake	classes	for	some	of	the
collaborators	of	the	classes	in	a	package	or	directory.	The	convention	I	use	for	those	is	to
use	the	prefix	Fake.	This	groups	all	of	them	together	alphabetically	in	a	browser	but
somewhat	away	from	the	main	classes	in	the	package.	This	is	convenient	because	often
the	fake	classes	are	subclasses	of	classes	in	other	directories.

One	other	kind	of	class,	the	testing	subclass,	is	often	used	in	testing.	A	testing	subclass	is
a	class	that	you	write	just	because	you	want	to	test	a	class,	but	it	has	some	dependencies
that	you	want	to	separate	out.	It’s	the	subclass	that	you	write	when	you	use	Subclass	and
Override	Method	(401).	The	naming	convention	that	I	use	for	testing	subclasses	is	the
name	of	the	class	prefixed	by	the	word	Testing.	If	classes	in	a	package	or	directory	are
listed	alphabetically,	all	of	the	testing	subclasses	are	grouped	together.

Here	is	an	example	listing	of	a	directory	for	a	small	accounting	package:

•	CheckingAccount

•	CheckingAccountTest

•	FakeAccountOwner

•	FakeTransaction

•	SavingsAccount

•	SavingsAccountTest

•	TestingCheckingAccount

•	TestingSavingsAccount

Notice	that	each	production	class	is	next	to	its	test	class.	The	fakes	group	together	and	the
testing	subclasses	group	together.

I’m	not	dogmatic	about	this	arrangement.	It	works	in	many	cases,	but	there	are	lots	of
variations	and	reasons	to	vary	it.	The	key	thing	to	remember	is	that	ergonomics	is
important.	It’s	important	to	consider	how	easy	it	will	be	to	navigate	back	and	forth
between	your	classes	and	your	tests.

Test	Location
So	far	in	this	chapter,	I’ve	been	making	the	assumption	that	you’ll	place	your	testing	code
and	your	production	code	in	the	same	directories.	Generally,	this	is	the	easiest	way	to
structure	a	project,	but	there	are	definitely	some	things	that	you	have	to	consider	when	you
decide	whether	to	do	this.

The	main	thing	to	consider	is	whether	there	are	size	constraints	on	your	application’s
deployment.	An	application	that	runs	on	a	server	that	you	control	might	not	have	many
constraints.	If	you	can	stand	taking	up	essentially	twice	the	amount	of	space	in	the
deployment	(the	binaries	for	the	production	code	and	its	tests),	it	is	easy	enough	to	keep
the	code	and	the	tests	in	the	same	directories	and	to	deploy	all	of	the	binaries.

On	the	other	hand,	if	the	software	is	a	commercial	product	and	runs	on	someone	else’s
computer,	the	size	of	the	deployment	could	be	a	problem.	You	can	attempt	to	keep	all	of
the	testing	code	separate	from	the	production	source,	but	consider	whether	this	affects	how
you	navigate	your	code.

Sometimes	it	doesn’t	make	any	difference,	as	this	example	shows.	In	Java,	a	package	can
span	two	different	directories:
source
					com
									orderprocessing
														dailyorders

test
					com
									orderprocessing
														dailyorders

We	can	put	the	production	classes	in	the	dailyorders	directory	under	source,	and	test	classes
in	the	dailyorders	directory	under	test,	and	they	can	be	seen	as	being	in	the	same	package.
Some	IDEs	actually	show	you	classes	in	those	two	directories	in	the	same	view	so	that
you	don’t	have	to	care	where	they	are	physically	located.

In	many	other	languages	and	environments,	location	does	make	a	difference.	If	you	have
to	navigate	up	and	down	directory	structures	to	go	back	and	forth	between	your	code	and
its	tests,	it	is	like	paying	a	tax	as	you	work.	People	will	just	stop	writing	tests,	and	the
work	will	go	slower.

An	alternative	is	to	keep	the	production	code	and	the	test	code	in	the	same	location	but	to
use	scripts	or	build	settings	to	remove	the	test	code	from	the	deployment.	If	you	use	good
naming	conventions	for	your	classes,	this	can	work	out	fine.

Above	all,	if	you	choose	to	separate	test	and	production	code,	make	sure	it	is	for	a	good
reason.	Quite	often	teams	separate	the	code	for	aesthetic	reasons:	They	just	can’t	stand	the
idea	of	putting	their	production	code	and	tests	together.	Later	that	navigation	in	the	project
is	painful.	You	can	get	used	to	having	tests	right	next	to	your	production	source.	After	a

period	of	time	working	that	way,	it	just	feels	normal.

Chapter	19:	My	Project	Is	Not	Object	Oriented.	How	Do	I
Make	Safe	Changes?

The	title	of	this	chapter	is	a	bit	provocative.	We	can	make	safe	changes	in	any	language,
but	some	languages	make	change	easier	than	others.	Even	though	object	orientation	has
pretty	much	pervaded	the	industry,	there	are	many	other	languages	and	ways	of
programming.	There	are	rule-based	languages,	functional	programming	languages,
constraint-based	programming	languages—the	list	goes	on.	But	of	all	of	these,	none	are	as
widespread	as	the	plain	old	procedural	languages,	such	as	C,	COBOL,	FORTRAN,	Pascal,
and	BASIC.

Procedural	languages	are	especially	challenging	in	a	legacy	environment.	It’s	important	to
get	code	under	test	before	modifying	it,	but	the	number	of	things	you	can	do	to	introduce
unit	tests	in	procedural	languages	is	pretty	small.	Often	the	easiest	thing	to	do	is	think
really	hard,	patch	the	system,	and	hope	that	your	changes	were	right.

This	testing	dilemma	is	pandemic	in	procedural	legacy	code.	Procedural	languages	often
just	don’t	have	the	seams	that	OO	(and	many	functional)	programming	languages	do.
Savvy	developers	can	work	past	this	by	managing	their	dependencies	carefully	(there	is	a
lot	of	great	code	written	in	C,	for	instance),	but	it	is	also	easy	to	end	up	with	a	real	snarl
that	is	hard	to	change	incrementally	and	verifiably.

Because	breaking	dependencies	in	procedural	code	is	so	hard,	often	the	best	strategy	is	to
try	to	get	a	large	chunk	of	the	code	under	test	before	doing	anything	else	and	then	use
those	tests	to	get	some	feedback	while	developing.	The	techniques	in	Chapter	12,	I	Need
to	Make	Many	Changes	in	One	Area.	Do	I	Have	to	Break	Dependencies	for	All	the
Classes	Involved?	can	help.	They	apply	to	procedural	code	as	well	as	object-oriented
code.	In	short,	it	pays	to	look	for	a	pinch	point	(180)	and	then	use	the	link	seam	(36)	to
break	dependencies	well	enough	to	get	the	code	in	a	test	harness.	If	your	language	has	a
macro	preprocessor,	you	can	use	the	preprocessing	seam	(33)	as	well.

That’s	the	standard	course	of	action,	but	it	isn’t	the	only	one.	In	the	rest	of	this	chapter,	we
look	at	ways	to	break	dependencies	locally	in	procedural	programs,	how	to	make
verifiable	changes	more	easily,	and	ways	of	moving	forward	when	we’re	using	a	language
that	has	a	migration	path	to	OO.

An	Easy	Case
Procedural	code	isn’t	always	a	problem.	Here’s	an	example,	a	C	function	from	the	Linux
operating	system.	Would	it	be	hard	to	write	tests	for	this	function	if	we	had	to	make	some
changes	to	it?
void	set_writetime(struct	buffer_head	*	buf,	int	flag)
{
				int	newtime;

				if	(buffer_dirty(buf))	{
								/*	Move	buffer	to	dirty	list	if	jiffies	is	clear	*/
								newtime	=	jiffies	+	(flag	?	bdf_prm.b_un.age_super	:
												bdf_prm.b_un.age_buffer);
								if(!buf->b_flushtime	||	buf->b_flushtime	>	newtime)

												buf->b_flushtime	=	newtime;
				}	else	{
								buf->b_flushtime	=	0;
				}
}

To	test	this	function,	we	can	set	the	value	of	the	jiffies	variable,	create	a	buffer_head,	pass	it	into
the	function,	and	then	check	its	values	after	the	call.	In	many	functions,	we’re	not	so
lucky.	Sometimes	a	function	calls	a	function	that	calls	another	function.	Then	it	calls
something	hard	to	deal	with:	a	function	that	actually	does	I/O	someplace	or	comes	from
some	vendor’s	library.	We	want	to	test	what	the	code	does,	but	too	often	the	answer	is	“It
does	something	cool,	but	only	something	outside	the	program	will	know	about	it,	not
you.”

A	Hard	Case
Here	is	a	C	function	that	we	want	to	change.	It	would	be	nice	if	we	could	put	it	under	test
before	we	do:
#include	“ksrlib.h”

int	scan_packets(struct	rnode_packet	*packet,	int	flag)
{
				struct	rnode_packet	*current	=	packet;
				int	scan_result,	err	=	0;

				while(current)	{
								scan_result	=	loc_scan(current->body,	flag);
								if(scan_result	&	INVALID_PORT)	{
												ksr_notify(scan_result,	current);
								}
								…
								current	=	current->next;
				}
				return	err;
}

This	code	calls	a	function	named	ksr_notify	that	has	a	bad	side	effect.	It	writes	out	a
notification	to	a	third	party	system,	and	we’d	rather	that	it	didn’t	do	that	while	we’re
testing.

One	way	to	handle	this	is	to	use	a	link	seam	(36).	If	we	want	to	test	without	having	the
effect	of	all	the	functions	in	that	library,	we	can	make	a	library	that	contains	fakes:
functions	that	have	the	same	names	as	the	original	functions	but	that	don’t	really	do	what
they	are	intended	to	do.	In	this	case,	we	can	write	a	body	for	ksr_notify	that	looks	like	this:
void	ksr_notify(int	scan_code,	struct	rnode_packet	*packet)
{
}

We	can	build	it	in	a	library	and	link	to	it.	The	scan_packets	function	will	behave	exactly	the
same,	except	for	one	thing:	It	won’t	send	the	notification.	But	that’s	fine	if	we	want	to	pin
down	other	behavior	in	the	function	before	changing	it.

Is	that	the	strategy	we	should	use?	It	depends.	If	there	are	a	lot	of	functions	in	the	ksr
library	and	we	consider	their	calls	to	be	sort	of	peripheral	to	the	main	logic	of	the	system,
then,	yes,	it	would	make	sense	to	create	a	library	of	fakes	and	link	to	it	during	test.	On	the

other	hand,	if	we	want	to	sense	through	those	functions	or	we	want	to	vary	some	of	the
values	that	they	return,	using	link	seams	(36)	isn’t	as	nice;	it’s	actually	pretty	tedious.
Because	the	substitution	happens	at	link	time,	we	can	provide	only	one	function	definition
for	each	executable	that	we	build.	If	we	want	a	fake	ksr_notify	function	to	behave	one	way	in
one	test	and	another	way	in	another	test,	we	have	to	put	code	in	the	body	and	set	up
conditions	in	the	test	that	will	force	it	to	act	a	certain	way.	All	in	all,	it	is	kind	of	messy.
Unfortunately,	many	procedural	languages	don’t	leave	us	with	any	other	options.

In	C,	there	is	another	alternative.	C	has	a	macro	preprocessor	that	we	can	use	to	make	it
easier	to	write	tests	against	the	scan_packets	function.	Here	is	the	file	that	contains	scan_packets
after	we’ve	added	testing	code:
#include	“ksrlib.h”

#ifdef	TESTING
#define	ksr_notify(code,packet)
#endif

int	scan_packets(struct	rnode_packet	*packet,	int	flag)
{
				struct	rnode_packet	*current	=	packet;
				int	scan_result,	err	=	0;

				while(current)	{
								scan_result	=	loc_scan(current->body,	flag);
								if(scan_result	&	INVALID_PORT)	{
												ksr_notify(scan_result,	current);
								}
								…
								current	=	current->next;
				}
				return	err;
}

#ifdef	TESTING
#include	<assert.h>
int	main	()	{
				struct	rnode_packet	packet;
				packet.body	=	…
				…
				int	err	=	scan_packets(&packet,	DUP_SCAN);
				assert(err	&	INVALID_PORT);
				…
				return	0;
}
#endif

In	this	code,	we	have	a	preprocessing	define,	TESTING,	that	defines	the	call	to	ksr_notify	out	of
existence	when	we	are	testing.	It	also	provides	a	little	stub	that	contains	tests.

Mixing	tests	and	source	into	a	file	like	this	isn’t	really	the	clearest	thing	we	can	do.	Often
it	makes	code	harder	to	navigate.	An	alternative	is	to	use	file	inclusion	so	that	the	tests	and
production	code	are	in	different	files:
#include	“ksrlib.h”

#include	“scannertestdefs.h”

int	scan_packets(struct	rnode_packet	*packet,	int	flag)
{
				struct	rnode_packet	*current	=	packet;
				int	scan_result,	err	=	0;

				while(current)	{
								scan_result	=	loc_scan(current->body,	flag);
								if(scan_result	&	INVALID_PORT)	{
												ksr_notify(scan_result,	current);
								}
								…
								current	=	current->next;
				}
				return	err;
}

#include	“testscanner.tst”

With	this	change,	the	code	looks	reasonably	close	to	what	it	would	look	like	without	the
testing	infrastructure.	The	only	difference	is	that	we	have	an	#include	statement	at	the	end	of
the	file.	If	we	forward	declare	the	functions	we	are	testing,	we	can	move	everything	in	the
bottom	include	file	into	the	top	one.

To	run	the	tests,	we	just	have	to	define	TESTING	and	build	this	file	by	itself.	When	TESTING	is
defined,	the	main()	function	in	testscanner.tst	will	be	compiled	and	linked	into	an	executable
that	will	run	the	tests.	The	main()	function	we	have	in	that	file	runs	only	tests	for	the
scanning	routines.	We	can	set	up	things	to	run	groups	of	tests	at	the	same	time	by	defining
separate	testing	functions	for	each	of	our	tests.
#ifdef	TESTING
#include	<assert.h>
void	test_port_invalid()	{
				struct	rnode_packet	packet;
				packet.body	=	…
				…
				int	err	=	scan_packets(&packet,	DUP_SCAN);
				assert(err	&	INVALID_PORT);
}

void	test_body_not_corrupt()	{
				…
}

void	test_header()	{
				…
}
#endif

In	another	file,	we	can	call	them	from	main:
int	main()	{
				test_port_invalid();
				test_body_not_corrupt();
				test_header();

				return	0;
}

We	can	go	even	further	by	adding	registration	functions	that	make	test	grouping	easier.
See	the	various	C	unit-testing	frameworks	available	at	www.xprogramming.com	for

http://www.xprogramming.com

details.

Although	macro	preprocessors	are	easily	misused,	they	are	actually	very	useful	in	this
context.	File	inclusion	and	macro	replacement	can	help	us	get	past	dependencies	in	the
thorniest	code.	As	long	as	we	restrict	rampant	usage	of	macros	to	code	that	runs	under
test,	we	don’t	have	to	be	too	concerned	that	we’ll	misuse	macros	in	ways	that	will	affect
the	production	code.

C	is	one	of	the	few	mainstream	languages	that	have	a	macro	preprocessor.	In	general,	to
break	dependencies	in	other	procedural	languages,	we	have	to	use	the	link	seam	(36)	and
attempt	to	get	larger	areas	of	code	under	test.

Adding	New	Behavior
In	procedural	legacy	code,	it	pays	to	bias	toward	introducing	new	functions	rather	than
adding	code	to	old	ones.	At	the	very	least,	we	can	write	tests	for	the	new	functions	that	we
write.

How	do	we	avoid	introducing	dependency	traps	in	procedural	code?	One	way	(outlined	in
Chapter	8,	How	Do	I	Add	a	Feature?)	is	to	use	test-driven	development	(88)	(TDD).	TDD
works	in	both	object-oriented	and	procedural	code.	Often	the	work	of	trying	to	formulate	a
test	for	each	piece	of	code	that	we’re	thinking	of	writing	leads	us	to	alter	its	design	in
good	ways.	We	concentrate	on	writing	functions	that	do	some	piece	of	computational
work	and	then	integrate	them	into	the	rest	of	the	application.

Often	we	have	to	think	about	what	we	are	going	to	write	in	a	different	way	to	do	this.
Here’s	an	example.	We	need	to	write	a	function	called	send_command.	The	send_command	function	is
going	to	send	an	ID,	a	name,	and	a	command	string	to	another	system	through	a	function
called	mart_key_send.	The	code	for	the	function	won’t	be	too	bad.	We	can	imagine	that	it	will
look	something	like	this:
void	send_command(int	id,	char	*name,	char	*command_string)	{
				char	*message,	*header;
				if	(id	==	KEY_TRUM)	{
								message	=	ralloc(sizeof(int)	+	HEADER_LEN	+	…
								…
				}	else	{
								…
				}
				sprintf(message,	“%s%s%s”,	header,	command_string,	footer);
				mart_key_send(message);

				free(message);
}

But	how	would	we	write	a	test	for	a	function	like	that?	Especially	because	the	only	way	to
find	out	what	happens	is	to	be	right	where	the	call	to	mart_key_send	is?	What	if	we	took	a
slightly	different	approach?

We	could	test	all	of	that	logic	before	the	mart_key_send	call	if	it	was	in	another	function.	We
might	write	our	first	test	like	this:
char	*command	=	form_command(1,
																													“Mike	Ratledge”,
																													“56:78:cusp-:78”);
assert(!strcmp(“<-rsp-Mike	Ratledge><56:78:cusp-:78><-rspr>”,

															command));

Then	we	can	write	a	form_command	function,	which	returns	a	command:
char	*form_command(int	id,	char	*name,	char	*command_string)
{
				char	*message,	*header;
				if	(id	==	KEY_TRUM)	{
								message	=	ralloc(sizeof(int)	+	HEADER_LEN	+	…
								…
				}	else	{
								…
				}
				sprintf(message,	“%s%s%s”,	header,	command_string,	footer);

				return	message;
}

When	we	have	that,	we	can	write	the	simple	send_command	function	that	we	need:
void	send_command(int	id,	char	*name,	char	*command_string)	{
				char	*command	=	form_command(id,	name,	command_string);
				mart_key_send(command);

				free(message);
}

In	many	cases,	this	sort	of	a	reformulation	is	exactly	what	we	need	to	move	forward.	We
put	all	of	the	pure	logic	into	one	set	of	functions	so	we	can	keep	them	free	of	problematic
dependencies.	When	we	do	this,	we	end	up	with	little	wrapper	functions	such	as	send_command,
which	bind	our	logic	and	our	dependencies.	It’s	not	perfect,	but	it’s	workable	when	the
dependencies	aren’t	too	pervasive.

In	other	cases,	we	need	to	write	functions	that	will	be	littered	with	external	calls.	There
isn’t	much	computation	in	these	functions,	but	the	sequencing	of	the	calls	that	they	make
is	very	important.	For	example,	if	we	are	trying	to	write	a	function	that	calculates	interest
on	a	loan,	the	straightforward	way	of	doing	it	might	look	something	like	this:
void	calculate_loan_interest(struct	temper_loan	*loan,	int	calc_type)
{
				…
				db_retrieve(loan->id);
				…
				db_retrieve(loan->lender_id);
				…
				db_update(loan->id,	loan->record);
				…
				loan->interest	=	…
}

What	do	we	do	in	a	case	like	this?	In	many	procedural	languages,	the	best	choice	is	to	just
skip	writing	the	test	first	and	write	the	function	as	best	we	can.	Maybe	we	can	test	that	it
does	the	right	thing	at	a	higher	level.	But	in	C,	we	have	another	option.	C	supports
function	pointers,	and	we	can	use	them	to	get	another	seam	in	place.	Here’s	how:

We	can	create	a	struct	that	contains	pointers	to	functions:
struct	database
{
				void	(*retrieve)(struct	record_id	id);
				void	(*update)(struct	record_id	id,	struct	record_set	*record);

				…
};

We	can	initialize	those	pointers	to	the	addresses	of	the	database-access	functions.	We	can
pass	that	struct	to	any	new	functions	we	write	that	need	to	access	the	database.	In
production	code,	the	functions	can	point	to	the	real	database-access	functions.	We	can
have	them	point	at	fakes	when	we	are	testing.

With	earlier	compilers,	we	might	have	to	use	the	old-style	function	pointer	syntax:
extern	struct	database	db;
(*db.update)(load->id,	loan->record);

But	with	others,	we	can	call	these	functions	in	a	very	natural	object-oriented	style:
extern	struct	database	db;
db.update(load->id,	loan->record);

This	technique	isn’t	C	specific.	It	can	be	used	in	most	languages	that	support	function
pointers.

Taking	Advantage	of	Object	Orientation
In	object-oriented	languages,	we	have	object	seams	(40)	available.	They	have	some	nice
properties:

•	They	are	easy	to	notice	in	the	code.

•	They	can	be	used	to	break	code	down	into	smaller,	more	understandable	pieces.

•	They	provide	more	flexibility.	Seams	that	you	introduce	for	testing	might	be	useful
when	you	have	to	extend	your	software.

Unfortunately,	not	all	software	can	be	easily	migrated	to	objects,	but,	in	some	cases,	it	is
far	easier	than	others.	Many	procedural	languages	have	evolved	into	object-oriented
languages.	Microsoft’s	Visual	Basic	language	only	recently	became	fully	object	oriented,
there	are	OO	extensions	to	COBOL	and	Fortran,	and	most	C	compilers	give	you	capability
to	compile	C++,	too.

When	your	language	gives	you	the	option	to	move	toward	object	orientation,	you	have
more	options.	The	first	step	is	usually	to	use	Encapsulate	Global	References	(339)	to	get
the	pieces	you	are	changing	under	test.	We	can	use	it	to	get	out	of	the	bad	dependency
situation	we	had	in	the	scan_packets	function	earlier	in	the	chapter.	Remember	that	the	problem
we	had	was	with	the	ksr_notify	function:	We	didn’t	want	it	to	really	notify	whenever	we	ran
our	tests.
int	scan_packets(struct	rnode_packet	*packet,	int	flag)
{
				struct	rnode_packet	*current	=	packet;
				int	scan_result,	err	=	0;

				while(current)	{
								scan_result	=	loc_scan(current->body,	flag);
								if(scan_result	&	INVALID_PORT)	{
												ksr_notify(scan_result,	current);
								}
								…
								current	=	current->next;
				}

				return	err;
}

The	first	step	is	to	compile	under	C++	rather	than	under	C.	This	can	be	either	a	small	or	a
large	change,	depending	on	how	we	handle	it.	We	can	bite	the	bullet	and	attempt	to
recompile	the	entire	project	in	C++,	or	we	can	do	it	piece	by	piece,	but	it	does	take	some
time.

When	we	have	the	code	compiling	under	C++,	we	can	start	by	finding	the	declaration	of
the	ksr_notify	function	and	wrapping	it	in	a	class:
class	ResultNotifier
{
public:
				virtual	void	ksr_notify(int	scan_result,
																												struct	rnode_packet	*packet);
};

We	can	also	introduce	a	new	source	file	for	the	class	and	put	the	default	implementation
there:
extern	“C”	void	ksr_notify(int	scan_result,
																											struct	rnode_packet	*packet);

void	ResultNotifier::ksr_notify(int	scan_result,
																																struct	rnode_packet	*packet)
{
				::ksr_notify(scan_result,	packet);
}

Notice	that	we’re	not	changing	the	name	of	the	function	or	its	signature.	We’re	using
Preserve	Signatures	(312)	so	that	we	minimize	any	chance	of	errors.

Next,	we	declare	a	global	instance	of	ResultNotifier	and	put	it	into	a	source	file:
ResultNotifier	globalResultNotifier;

Now	we	can	recompile	and	let	the	errors	tell	us	where	we	have	to	change	things.	Because
we’ve	put	the	declaration	of	ksr_notify	in	a	class,	the	compiler	doesn’t	see	a	declaration	of	it
at	global	scope	any	longer.

Here’s	the	original	function:
#include	“ksrlib.h”

int	scan_packets(struct	rnode_packet	*packet,	int	flag)
{
				struct	rnode_packet	*current	=	packet;
				int	scan_result,	err	=	0;
				while(current)	{
								scan_result	=	loc_scan(current->body,	flag);
								if(scan_result	&	INVALID_PORT)	{
												ksr_notify(scan_result,	current);
								}
								…
								current	=	current->next;
				}
				return	err;
}

To	make	it	compile	now,	we	can	use	an	extern	declaration	to	make	the	globalResultNotifier

object	visible	and	preface	ksr_notify	with	the	name	of	the	object:
#include	“ksrlib.h”

extern	ResultNotifier	globalResultNotifier;

int	scan_packets(struct	rnode_packet	*packet,	int	flag)
{
				struct	rnode_packet	*current	=	packet;
				int	scan_result,	err	=	0;

				while(current)	{
								scan_result	=	loc_scan(current->body,	flag);
								if(scan_result	&	INVALID_PORT)	{
												globalResultNotifier.ksr_notify(scan_result,	current);
								}
								…
								current	=	current->next;
				}
				return	err;
}

At	this	point,	the	code	works	the	same	way.	The	ksr_notify	method	on	ResultNotifier	delegates	to
the	ksr_notify	function.	How	does	that	do	us	any	good?	Well,	it	doesn’t—yet.	The	next	step	is
to	find	some	way	of	setting	things	up	so	that	we	can	use	this	ResultNotifier	object	in
production	and	use	another	one	when	we	are	testing.	There	are	many	ways	of	doing	this,
but	one	that	carries	us	further	in	this	direction	is	to	Encapsulate	Global	References	(339)
again	and	put	scan_packets	in	another	class	that	we	can	call	Scanner.
class	Scanner
{
public:
				int	scan_packets(struct	rnode_packet	*packet,	int	flag);
};

Now	we	can	apply	Parameterize	Constructor	(379)	and	change	the	class	so	that	it	uses	a
ResultNotifier	that	we	supply:
class	Scanner
{
private:
				ResultNotifier&	notifier;
public:
								Scanner();
								Scanner(ResultNotifier&	notifier);

				int	scan_packets(struct	rnode_packet	*packet,	int	flag);
};

//	in	the	source	file

Scanner::Scanner()
:	notifier(globalResultNotifier)
{}

Scanner::Scanner(ResultNotifier&	notifier)
:	notifier(notifier)
{}

When	we	make	this	change,	we	can	find	the	places	where	scan_packets	is	being	used,	create	an
instance	of	Scanner,	and	use	it.

These	changes	are	pretty	safe	and	pretty	mechanical.	They	aren’t	great	examples	of	object-
oriented	design,	but	they	are	good	enough	to	use	as	a	wedge	to	break	dependencies	and
allow	us	to	test	as	we	move	forward.

It’s	All	Object	Oriented
Some	procedural	programmers	like	to	beat	up	on	object	orientation;	they	consider	it
unnecessary	or	think	that	its	complexity	doesn’t	buy	anything.	But	when	you	really	think
about	it,	you	begin	to	realize	that	all	procedural	programs	are	object	oriented;	it’s	just	a
shame	that	many	contain	only	one	object.	To	see	this,	imagine	a	program	with	about	100
functions.	Here	are	their	declarations:
…

int	db_find(char	*id,	unsigned	int	mnemonic_id,
												struct	db_rec	**rec);
…
…
void	process_run(struct	gfh_task	**tasks,	int	task_count);
…

Now	imagine	that	we	can	put	all	of	the	declarations	in	one	file	and	surround	them	with	a
class	declaration:
class	program
{
public:
				…
				int	db_find(char	*id,	unsigned	int	mnemonic_id,
																struct	db_rec	**rec);
				…
				…
				void	process_run(struct	gfh_task	**tasks,	int	task_count);
				…
};

Now	we	can	find	each	function	definition	(here’s	one):
int	db_find(char															*id,
												unsigned	int							mnemonic_id,
												struct	db_rec						**rec);
{
				…
}

And	prefix	its	name	with	the	name	of	the	class:
int	program::db_find(char															*id,
																					unsigned	int							mnemonic_id,
																					struct	db_rec						**rec)
{
				…
}

Now	we	have	to	write	a	new	main()	function	for	the	program:
int	main(int	ac,	char	**av)
{
				program	the_program;

				return	the_program.main(ac,	av);
}

Does	that	change	the	behavior	of	the	system?	Not	really.	That	change	was	just	a
mechanical	process,	and	it	kept	the	meaning	and	behavior	of	the	program	exactly	the
same.	The	old	C	system	was,	in	reality,	just	one	big	object.	When	we	start	using
Encapsulate	Global	References	(339)	we’re	making	new	objects,	and	subdividing	the
system	in	ways	which	make	it	easier	to	work	with.

When	procedural	languages	have	object-oriented	extensions,	they	allow	us	to	move	in	this
direction.	This	isn’t	deep	object-orientation;	it’s	just	using	objects	enough	to	break	up	the
program	for	testing.

What	can	we	do	besides	extracting	dependencies	when	our	language	supports	OO?	For
one	thing,	we	can	incrementally	move	it	toward	a	better	object	design.	In	general,	this
means	that	you	have	to	group	related	functions	in	classes	and	extract	plenty	of	methods	so
that	you	can	break	apart	tangled	responsibilities.	For	more	advice	on	this,	see	Chapter	20,
This	Class	Is	Too	Big	and	I	Don’t	Want	It	to	Get	Any	Bigger.

Procedural	code	doesn’t	present	us	with	as	many	options	as	object-oriented	code	does,	but
we	can	make	headway	in	procedural	legacy	code.	The	particular	seams	that	a	procedural
language	presents	critically	affect	the	ease	of	the	work.	If	the	procedural	language	you	are
using	has	an	object-oriented	successor,	I	recommend	moving	toward	it.	Object	seams	(40)
are	good	for	far	more	than	getting	tests	in	place.	Link	and	preprocessing	seams	are	great
for	getting	code	under	test,	but	they	really	don’t	do	much	to	improve	design	beyond	that.

Chapter	20:	This	Class	Is	Too	Big	and	I	Don’t	Want	It	to
Get	Any	Bigger

Many	of	the	features	that	people	add	to	systems	are	little	tweaks.	They	require	the	addition
of	a	little	code	and	maybe	a	few	more	methods.	It’s	tempting	to	just	make	these	changes	to
an	existing	class.	Chances	are,	the	code	that	you	need	to	add	must	use	data	from	some
existing	class,	and	the	easiest	thing	is	to	just	add	code	to	it.	Unfortunately,	this	easy	way	of
making	changes	can	lead	to	some	serious	trouble.	When	we	keep	adding	code	to	existing
classes,	we	end	up	with	long	methods	and	large	classes.	Our	software	turns	into	a	swamp,
and	it	takes	more	time	to	understand	how	to	add	new	features	or	even	just	understand	how
old	features	work.

I	visited	a	team	once	that	had	what	looked	like	a	nice	architecture	on	paper.	They	told	me
what	the	primary	classes	were	and	how	they	communicated	with	each	other	in	the	normal
cases.	Then,	they	showed	me	a	couple	of	nice	UML	diagrams	that	showed	the	structure.	I
was	surprised	when	I	started	to	look	at	the	code.	Each	of	their	classes	could	really	be
broken	out	into	about	10	or	so,	and	doing	that	would	help	them	get	past	their	most
pressing	problems.

What	are	the	problems	with	big	classes?	The	first	is	confusion.	When	you	have	50	or	60
methods	on	a	class,	it’s	often	hard	to	get	a	sense	of	what	you	have	to	change	and	whether
it	is	going	to	affect	anything	else.	In	the	worst	cases,	big	classes	have	an	incredible
number	of	instance	variables,	and	it	is	hard	to	know	what	the	effects	are	of	changing	a
variable.	Another	problem	is	task	scheduling.	When	a	class	has	20	or	so	responsibilities,
chances	are,	you’ll	have	an	incredible	number	of	reasons	to	change	it.	In	the	same
iteration,	you	might	have	several	programmers	who	have	to	do	different	things	to	the
class.	If	they	are	working	concurrently,	this	can	lead	to	some	serious	thrashing,
particularly	because	of	the	third	problem:	Big	classes	are	a	pain	to	test.	Encapsulation	is	a
good	thing,	right?	Well,	don’t	ask	testers	about	that;	they	are	liable	to	bite	your	head	off.
Classes	that	are	too	big	often	hide	too	much.	Encapsulation	is	great	when	it	helps	us
reason	about	our	code	and	when	we	know	that	certain	things	can	be	changed	only	under
certain	circumstances.	However,	when	we	encapsulate	too	much,	the	stuff	inside	rots	and
festers.	There	isn’t	any	easy	way	to	sense	the	effects	of	change,	so	people	fall	back	on	Edit
and	Pray	(9)	programming.	At	that	point,	either	changes	take	far	too	long	or	the	bug	count
increases.	You	have	to	pay	for	the	lack	of	clarity	somehow.

The	first	issue	to	confront	when	we	have	big	classes	is	this:	How	can	we	work	without
making	things	worse?	The	key	tactics	we	can	use	here	are	Sprout	Class	(63)	and	Sprout
Method	(59).	When	we	have	to	make	changes,	we	should	consider	putting	the	code	into	a
new	class	or	a	new	method.	Sprout	Class	(63)	really	keeps	things	from	getting	much
worse.	When	you	put	new	code	into	a	new	class,	sure,	you	might	have	to	delegate	from
the	original	class,	but	at	least	you	aren’t	making	it	much	bigger.	Sprout	Method	(59)	helps
also,	but	in	a	more	subtle	way.	If	you	add	code	in	a	new	method,	yes,	you	will	have	an
additional	method,	but	at	the	very	least,	you	are	identifying	and	naming	another	thing	that
the	class	does;	often	the	names	of	methods	can	give	you	hints	about	how	to	break	down	a
class	into	smaller	pieces.

The	key	remedy	for	big	classes	is	refactoring.	It	helps	to	break	down	classes	into	sets	of
smaller	classes.	But	the	biggest	issue	is	figuring	out	what	the	smaller	classes	should	look
like.	Fortunately,	we	have	some	guidance.

Single-Responsibility	Principle	(SRP)
Every	class	should	have	a	single	responsibility:	It	should	have	a	single	purpose	in	the	system,	and	there	should	be
only	one	reason	to	change	it.

The	single-responsibility	principle	is	kind	of	hard	to	describe	because	the	idea	of	a
responsibility	is	kind	of	nebulous.	If	we	look	at	it	in	a	very	naïve	way,	we	might	say,	“Oh,
that	means	that	every	class	should	have	only	a	single	method,	right?”	Well,	methods	can
be	seen	as	responsibilities.	A	Task	is	responsible	for	running	using	its	run	method,	for	telling
us	how	many	subtasks	it	has	with	taskCount	method,	and	so	on.	But	what	we	mean	by	a
responsibility	really	comes	into	focus	when	we	talk	about	main	purpose.	Figure	20.1
shows	an	example.

Figure	20.1	Rule	parser.

We	have	a	little	class	here	that	evaluates	strings	containing	rule	expressions	in	some
obscure	language.	What	responsibilities	does	it	have?	We	can	look	at	the	name	of	the	class
to	find	one	responsibility:	It	parses.	But	is	that	its	main	purpose?	Parsing	doesn’t	seem	to
be	it.	It	seems	that	it	evaluates	also.

What	else	does	it	do?	It	holds	on	to	a	current	string,	the	string	that	it	is	parsing.	It	also
holds	on	to	a	field	that	indicates	the	current	position	while	it	is	parsing.	Both	of	those
mini-responsibilities	seem	to	fit	under	the	category	of	parsing.

Let’s	take	a	look	at	the	other	variable,	the	variables	field.	It	holds	on	to	a	set	of	variables	that
the	parser	uses	so	that	it	can	evaluate	arithmetic	expressions	in	rules	such	as	a	+	3.	If
someone	calls	the	method	addVariable	with	the	arguments	a	and	1,	the	expression	a	+	3	will
evaluate	to	4.	So,	it	seems	that	there	is	this	other	responsibility,	variable	management,	in
this	class.

Are	there	more	responsibilities?	Another	way	to	find	them	is	to	look	at	method	names.	Is
there	a	natural	way	to	group	the	names	of	the	methods?	It	seems	that	the	methods	kind	of
fall	into	these	groups:

The	evaluate	method	is	an	entry	point	of	the	class.	It	is	one	of	only	two	public	methods,	and
it	denotes	a	key	responsibility	of	the	class:	evaluation.	All	of	the	methods	that	end	with	the
Expression	suffix	are	kind	of	the	same.	Not	only	are	they	named	similarly,	but	they	all
accept	Nodes	as	arguments	and	return	an	int	that	indicates	the	value	of	a	subexpression.	The
nextTerm	and	hasMoreTerms	methods	are	similar,	too.	They	seem	to	be	about	some	special	form	of
tokenization	for	terms.	As	we	said	earlier,	the	addVariable	method	is	concerned	with	variable
management.

To	summarize,	it	seems	that	Parser	has	the	following	responsibilities:

•	Parsing

•	Expression	evaluation

•	Term	tokenization

•	Variable	management

If	we	had	to	come	up	with	a	design	from	scratch	that	separated	all	of	these	responsibilities,
it	might	look	something	like	Figure	20.2.

Figure	20.2	Rule	classes	with	responsibilities	separated.

Is	this	overkill?	It	could	be.	Often	people	who	write	little	language	interpreters	merge
parsing	and	expression	evaluation;	they	just	evaluate	as	they	parse.	But	although	that	can
be	convenient,	often	it	doesn’t	scale	well	as	a	language	grows.	Another	responsibility	that
is	kind	of	meager	is	that	of	SymbolTable.	If	the	only	responsibility	of	SymbolTable	is	to	map	variable
names	to	integers,	the	class	isn’t	giving	us	much	advantage	over	just	using	a	hash	table	or
a	list.	Nice	design,	but	guess	what?	It	is	pretty	hypothetical.	Unless	we	are	choosing	to
rewrite	this	part	of	the	system,	our	little	multiclass	design	is	a	castle	in	the	sky.

In	real-world	cases	of	big	classes,	the	key	is	to	identify	the	different	responsibilities	and
then	figure	out	a	way	to	incrementally	move	toward	more	focused	responsibilities.

Seeing	Responsibilities
In	the	RuleParser	example	in	the	last	section,	I	showed	a	particular	decomposition	of	a	class
into	smaller	classes.	When	I	did	that	breakdown,	I	did	it	pretty	much	by	rote.	I	listed	all	of
the	methods	and	started	to	think	about	what	their	purposes	were.	The	key	questions	I
asked	were	“Why	is	this	method	here?”	and	“What	is	it	doing	for	the	class?”	Then	I
grouped	them	into	lists,	putting	together	methods	that	had	a	similar	reason	for	being	there.

I	call	this	way	of	seeing	responsibilities	method	grouping.	It’s	only	one	of	many	ways	of
seeing	responsibilities	in	existing	code.

Learning	to	see	responsibilities	is	a	key	design	skill,	and	it	takes	practice.	It	might	seem
odd	to	talk	about	a	design	skill	in	this	context	of	working	with	legacy	code,	but	there
really	is	little	difference	between	discovering	responsibilities	in	existing	code	and
formulating	them	for	code	that	you	haven’t	written	yet.	The	key	thing	is	to	be	able	to	see
responsibilities	and	learn	how	to	separate	them	well.	If	anything,	legacy	code	offers	far
more	possibilities	for	the	application	of	design	skill	than	new	features	do.	It	is	easier	to
talk	about	design	tradeoffs	when	you	can	see	the	code	that	will	be	affected,	and	it	is	also
easier	to	see	whether	structure	is	appropriate	in	a	given	context	because	the	context	is	real
and	right	in	front	of	us.

This	section	describes	a	set	of	heuristics	that	we	can	use	to	see	responsibilities	in	existing
code.	Note	that	we	are	not	inventing	responsibilities;	we’re	just	discovering	what	is	there.
Regardless	of	what	structure	legacy	code	has,	its	pieces	do	identifiable	things.	Sometimes
they	are	hard	to	see,	but	these	techniques	can	help.	Try	to	apply	them	even	with	code	that
you	don’t	have	to	change	immediately.	The	more	you	start	noticing	the	responsibilities
inherent	in	code,	the	more	you	learn	about	it.

Heuristic	#1:	Group	Methods
Look	for	similar	method	names.	Write	down	all	of	the	methods	on	a	class,	along	with	their	access	types	(public,
private,	and	so	on),	and	try	to	find	ones	that	seem	to	go	together.

This	technique,	method	grouping,	is	a	pretty	good	start,	particularly	with	very	large
classes.	The	important	thing	is	to	recognize	that	you	don’t	have	to	categorize	all	of	the
names	into	new	classes.	Just	see	if	you	can	find	some	that	look	like	they	are	part	of	a
common	responsibility.	If	you	can	identify	some	of	these	responsibilities	that	are	a	bit	off
to	the	side	of	the	main	responsibility	of	the	class,	you	have	a	direction	in	which	you	can
take	the	code	over	time.	Wait	until	you	have	to	modify	one	of	the	methods	you’ve
categorized,	and	then	decide	whether	you	want	to	extract	a	class	at	that	point.

Method	grouping	is	a	great	team	exercise	also.	Put	up	poster	boards	in	your	team	room
with	lists	of	the	method	names	for	each	of	your	major	classes.	Team	members	can	mark	up
the	posters	over	time,	showing	different	groupings	of	methods.	The	whole	team	can	hash
out	which	groupings	are	better	and	decide	on	directions	for	the	code	to	go	in.

Heuristic	#2:	Look	at	Hidden	Methods

Pay	attention	to	private	and	protected	methods.	If	a	class	has	many	of	them,	it	often	indicates	that	there	is	another
class	in	the	class	dying	to	get	out.

Big	classes	can	hide	too	much.	This	question	comes	up	over	and	over	again	from	people
new	to	unit	testing:	“How	do	I	test	private	methods?”	Many	people	spend	a	lot	of	time
trying	to	figure	out	how	to	get	around	this	problem,	but,	as	I	mentioned	in	an	earlier
chapter,	the	real	answer	is	that	if	you	have	the	urge	to	test	a	private	method,	the	method
shouldn’t	be	private;	if	making	the	method	public	bothers	you,	chances	are,	it	is	because	it
is	part	of	a	separate	responsibility.	It	should	be	on	another	class.

The	RuleParser	class	earlier	in	this	section	is	the	quintessential	example	of	this.	It	has	two
public	methods:	evaluate	and	addVariable.	Everything	else	is	private.	What	would	the	RuleParser
class	be	like	if	we	made	nextTerm	and	hasMoreTerms	public?	Well,	it	would	seem	pretty	odd.	Users
of	the	parser	might	get	the	idea	that	they	have	to	use	those	two	methods	along	with	evaluate
to	parse	and	evaluate	expressions.	It	would	be	odd	to	have	those	methods	public	on	the
RuleParser	class,	but	it	is	far	less	odd—and,	actually,	perfectly	fine—to	make	them	public
methods	on	a	TermTokenizer	class.	This	doesn’t	make	RuleParser	any	less	encapsulated.	Even
though	nextTerm	and	hasMoreTerms	are	public	on	TermTokenizer,	they	are	accessed	privately	in	a	parser.
This	is	shown	in	Figure	20.3.

Figure	20.3	RuleParser	and	TermTokenizer.

Heuristic	#3:	Look	for	Decisions	That	Can	Change
Look	for	decisions—not	decisions	that	you	are	making	in	the	code,	but	decisions	that	you’ve	already	made.	Is	there
some	way	of	doing	something	(talking	to	a	database,	talking	to	another	set	of	objects,	and	so	on)	that	seems	hard-
coded?	Can	you	imagine	it	changing?

When	you	are	trying	to	break	up	a	big	class,	it’s	tempting	to	pay	a	lot	of	attention	to	the
names	of	the	methods.	After	all,	they	are	one	of	the	most	noticeable	things	about	a	class.
But	the	names	of	methods	don’t	tell	the	whole	story.	Often	big	classes	house	methods	that
do	many	things	at	many	different	levels	of	abstraction.	For	instance,	a	method	named
updateScreen()might	generate	text	for	a	display,	format	it,	and	send	it	to	several	different	GUI
objects.	Looking	at	the	method	name	alone,	you’d	have	no	idea	how	much	work	is	going
on	and	how	many	responsibilities	are	nestled	in	that	code.

For	this	reason,	it	pays	to	do	a	little	extract	method	refactoring	before	really	settling	on
classes	to	extract.	What	methods	should	you	extract?	I	handle	this	by	looking	for
decisions.	How	many	things	are	assumed	in	the	code?	Is	the	code	calling	methods	from	a
particular	API?	Is	it	assuming	that	it	will	always	be	accessing	the	same	database?	If	the
code	is	doing	these	things,	it’s	a	good	idea	to	extract	methods	that	reflect	what	you	intend
at	a	high	level.	If	you	are	getting	particular	information	from	a	database,	extract	a	method
named	after	the	information	you	are	getting.	When	you	do	these	extractions,	you	have
many	more	methods,	but	you	also	might	find	that	method	grouping	is	easier.	Better	than
that,	you	might	find	that	you	completely	encapsulated	some	resource	behind	a	set	of

methods.	When	you	extract	a	class	for	them,	you’ll	have	broken	some	dependencies	on
low-level	details.

Heuristic	#4:	Look	for	Internal	Relationships
Look	for	relationships	between	instance	variables	and	methods.	Are	certain	instance	variables	used	by	some	methods
and	not	others?

It’s	really	hard	to	find	classes	in	which	all	the	methods	use	all	of	the	instance	variables.
Usually	there	is	some	sort	of	“lumping”	in	a	class.	Two	or	three	methods	might	be	the
only	ones	that	use	a	set	of	three	variables.	Often	the	names	help	you	see	this.	For	instance,
in	the	RulerParser	class,	there	is	a	collection	named	variables	and	a	method	named	addVariable.
That	shows	us	that	there	is	an	obvious	relationship	between	that	method	and	that	variable.
It	doesn’t	tell	us	that	there	aren’t	other	methods	that	access	that	variable,	but	at	least	we
have	a	place	to	start	looking.

Another	technique	we	can	use	to	find	these	“lumps”	is	to	make	a	little	sketch	of	the
relationships	inside	a	class.	These	are	called	feature	sketches.	They	show	which	methods
and	instance	variables	each	method	in	a	class	uses,	and	they	are	pretty	easy	to	make.	Here
is	an	example:
class	Reservation
{
				private	int	duration;
				private	int	dailyRate;
				private	Date	date;
				private	Customer	customer;
				private	List	fees	=	new	ArrayList();

				public	Reservation(Customer	customer,	int	duration,
												int	dailyRate,	Date	date)	{
								this.customer	=	customer;
								this.duration	=	duration;
								this.dailyRate	=	dailyRate;
								this.date	=	date;
				}

				public	void	extend(int	additionalDays)	{
								duration	+=	additionalDays;
				}

				public	void	extendForWeek()	{
								int	weekRemainder	=	RentalCalendar.weekRemainderFor(date);
								final	int	DAYS_PER_WEEK	=	7;
								extend(weekRemainder);
								dailyRate	=	RateCalculator.computeWeekly(
																																customer.getRateCode())
																								/	DAYS_PER_WEEK;
				}

				public	void	addFee(FeeRider	rider)	{
								fees.add(rider);
				}

				int	getAdditionalFees()	{
								int	total	=	0;
								for(Iterator	it	=	fees.iterator();	it.hasNext();)	{
												total	+=	((FeeRider)(it.next())).getAmount();

								}
								return	total;
				}

				int	getPrincipalFee()	{
								return	dailyRate
															*	RateCalculator.rateBase(customer)
															*	duration;
				}

				public	int	getTotalFee()	{
								return	getPrincipalFee()	+	getAdditionalFees();
				}
}

The	firststep	is	to	draw	circles	for	each	of	the	variables,	as	shown	in	Figure	20.4.

Figure	20.4	Variables	in	the	Reservation	class.

Next,	we	look	at	each	method	and	put	down	a	circle	for	it.	Then	we	draw	a	line	from	each
method	circle	to	the	circles	for	any	instance	variables	and	methods	that	it	accesses	or
modifies.	It’s	usually	okay	to	skip	the	constructors.	Generally,	they	modify	each	instance
variable.

Figure	20.5	shows	the	diagram	after	we’ve	added	a	circle	for	the	extend	method:

Figure	20.5	extend	uses	duration.

If	you’ve	already	read	the	chapters	that	describe	effect	sketching,	you	might	notice	that	these	feature	sketches	look	a
lot	like	effect	sketches	(155).	Essentially,	they	are	pretty	close.	The	main	difference	is	that	the	arrows	are	reversed.	In
feature	sketches,	arrows	point	in	the	direction	of	a	method	or	variable	that	is	used	by	another	method	or	variable.	In
effect	sketches,	the	arrow	points	toward	methods	or	variables	that	are	impacted	by	other	methods	and	variables.

These	are	two	different,	completely	legitimate	ways	of	looking	at	interactions	in	a	system.	Feature	sketches	are	great
for	mapping	the	internal	structure	of	classes.	Effect	sketches	(155)	are	great	for	reasoning	forward	from	a	point	of
change.

Is	it	confusing	that	they	look	somewhat	the	same?	Not	really.	These	sketches	are	disposable	tools.	They	are	the	sort
of	thing	that	you	sit	down	and	draw	up	with	a	partner	for	about	10	minutes	before	you	make	your	changes.	Afterward
you	throw	them	away.	There	is	little	value	in	keeping	them	around,	so	there	is	little	likelihood	that	they	will	be
confused	with	each	other.

Figure	20.6	shows	the	sketch	after	we’ve	added	circles	for	each	feature	and	lines	for	all	of
the	features	they	use:

Figure	20.6	Feature	sketch	for	Reservation.

What	can	we	learn	from	this	sketch?	One	obvious	thing	is	that	there	is	a	little	bit	of
clustering	in	this	class.	The	duration,	dailyRate,	date,	and	customer	variables	are	used	primarily	by
getPrincipalFee,	extend,	and	extendForWeek.	Are	any	of	these	methods	public?	Yes,	extend	and	extendForWeek
are,	but	getPrincipalFee	isn’t.	What	would	our	system	be	like	if	we	made	this	cluster	into	its
own	class	(see	Figure	20.7)?

Figure	20.7	A	cluster	in	Reservation.

The	big	bubble	in	the	diagram	could	be	a	new	class.	It	would	need	to	have	extend,	extendForWeek,
and	getPrincipalFee	as	public	methods,	but	all	of	the	other	methods	could	be	private.	We	could
keep	fees,	addFee,	getAdditionalFees,	and	getTotalFee	in	the	Reservation	class	and	delegate	to	the	new	class
(see	Figure	20.8).

Figure	20.8	Reservation	using	a	new	class.

The	key	thing	to	figure	out	before	attempting	this	is	whether	this	new	class	has	a	good,
distinct	responsibility.	Can	we	come	up	with	a	name	for	it?	It	seems	to	do	two	things:
extend	a	reservation	and	calculate	its	principal	fee.	It	seems	that	Reservation	is	a	good	name,
but	we	are	already	using	it	for	the	original	class.

Here’s	another	possibility.	We	could	flip	things	around.	Instead	of	extracting	all	of	the
code	in	the	big	circle,	we	can	extract	the	other	code,	as	in	Figure	20.9.

Figure	20.9	Seeing	Reservation	in	another	way.

We	can	call	the	class	that	we	extract	FeeCalculator.	That	could	work,	but	the	getTotalFee	method
needs	to	call	getPrincipalFee	on	Reservation—or	does	it?

What	if	we	call	getPrincipalFee	in	Reservation	and	then	pass	that	value	to	the	FeeCalculator?	Here	is	a
sketch	of	the	code:
public	class	Reservation
{
				…
				private	FeeCalculator	calculator	=	new	FeeCalculator();

				private	int	getPrincipalFee()	{
								…
				}

				public	Reservation(Customer	customer,	int	duration,
												int	dailyRate,	Date	date)	{
								this.customer	=	customer;
								this.duration	=	duration;
								this.dailyRate	=	dailyRate;
								this.date	=	date;
				}

				…

				public	void	addFee(FeeRider	fee)	{
								calculator.addFee(fee);
				}

				public	getTotalFee()	{
								int	baseFee	=	getPrincipalFee();
								return	calculator.getTotalFee(baseFee);
				}
}

Our	structure	ends	up	looking	like	Figure	20.10.

Figure	20.10	Reservation	using	FeeCalculator.

We	can	even	consider	moving	getPrincipalFee	over	to	FeeCalculator	to	make	the	responsibilities
align	with	the	class	names	better,	but	considering	that	getPrincipalFee	depends	on	a	number	of
variables	in	Reservation,	it	might	be	better	to	keep	it	where	it	is.

Feature	sketches	are	a	great	tool	for	finding	separate	responsibilities	in	classes.	We	can	try
to	group	the	features	and	figure	out	what	classes	we	can	extract	based	upon	the	names.	But
in	addition	to	helping	us	find	responsibilities,	feature	sketches	allow	us	to	see	the
dependency	structure	inside	classes,	and	that	can	often	be	just	as	important	as
responsibility	when	we	are	deciding	what	to	extract.	In	this	example,	there	were	two
strong	clusters	of	variables	and	methods.	The	only	connection	between	them	is	the	call	of
getPrincipalFee	inside	getTotalFee.	In	feature	sketches,	we	often	see	these	connections	as	a	small	set
of	lines	connecting	larger	clusters.	I	call	this	a	pinch	point	(180),	and	I	talk	about	them
more	in	Chapter	12,	I	Need	to	Make	Many	Changes	in	One	Area.	Do	I	Have	to	Break
Dependencies	for	All	the	Classes	Involved?

Sometimes	when	you	draw	a	sketch,	you	don’t	find	any	pinch	points.	They	aren’t	always
there.	But	at	the	very	least,	seeing	the	names	and	the	dependencies	among	the	features	can
help.

When	you	have	the	sketch,	you	can	play	around	with	different	ways	of	breaking	up	the
class.	To	do	this,	circle	groups	of	features.	When	you	circle	features,	the	lines	that	you
cross	can	define	the	interface	of	a	new	class.	As	you	circle,	try	to	come	up	with	a	class
name	for	each	group.	Frankly,	aside	from	anything	that	you	choose	to	do	or	not	do	when
you	extract	classes,	this	is	a	great	way	of	increasing	your	naming	skill.	It’s	also	a	good
way	of	exploring	design	alternatives.

Heuristic	#5:	Look	for	the	Primary	Responsibility
Try	to	describe	the	responsibility	of	the	class	in	a	single	sentence.

The	Single	Responsibility	Principle	tells	us	that	classes	should	have	a	single	responsibility.
If	that’s	the	case,	it	should	be	easy	to	write	it	down	in	a	single	sentence.	Try	it	with	one	of
the	big	classes	in	your	system.	As	you	think	of	what	the	clients	need	and	expect	from	the
class,	add	clauses	to	the	sentence.	The	class	does	this,	and	this,	and	this,	and	that.	Is	there
any	one	thing	that	seems	more	important	than	anything	else?	If	there	is,	you	might	have

found	the	key	responsibility	of	the	class.	The	other	responsibilities	should	probably	be
factored	out	into	other	classes.

There	are	two	ways	to	violate	the	Single	Responsibility	Principle.	It	can	be	violated	at	the
interface	level	and	at	the	implementation	level.	SRP	is	violated	at	the	interface	level	when
a	class	presents	an	interface	that	makes	it	appear	that	it	is	responsible	for	a	very	large
number	of	things.	For	instance,	the	interface	to	this	class	(see	Figure	20.11)	looks	like	it
can	be	broken	into	three	or	four	classes.

Figure	20.11	The	ScheduledJob	class.

The	SRP	violation	that	we	care	most	about	is	violation	at	the	implementation	level.	Plainly
put,	we	care	whether	the	class	really	does	all	of	that	stuff	or	whether	it	just	delegates	to	a
couple	of	other	classes.	If	it	delegates,	we	don’t	have	a	large	monolithic	class;	we	just
have	a	class	that	is	a	facade,	a	front	end	for	a	bunch	of	little	classes	and	that	can	be	easier
to	manage.

Figure	20.12	shows	the	ScheduledJob	class	with	responsibilities	delegated	to	a	few	other
classes.

Figure	20.12	ScheduledJob	with	extracted	classes.

The	Single	Responsibility	Principle	is	still	violated	at	the	interface	level,	but	at	the
implementation	level	things	are	a	bit	better.

How	would	we	solve	the	problem	at	the	interface	level?	That’s	a	bit	harder.	The	general
approach	is	to	see	if	some	of	the	classes	we	delegate	to	can	actually	be	used	directly	by
clients.	For	instance,	if	only	some	clients	are	interested	in	running	ScheduledJobs,	we	could
refactor	toward	something	like	this:

Figure	20.13	A	client-specific	interface	for	ScheduledJob.

Now	clients	that	are	concerned	only	with	controlling	jobs	can	accept	ScheduledJobs	as

JobControllers.	This	technique	of	making	an	interface	for	a	particular	set	of	clients	keeps	the
design	in	line	with	the	Interface	Segregation	Principle.

Interface	Segregation	Principle	(ISP)
When	a	class	is	large,	rarely	do	all	of	its	clients	use	all	of	its	methods.	Often	we	can	see	different	groupings	of
methods	that	particular	clients	use.	If	we	create	an	interface	for	each	of	these	groupings	and	have	the	large	class
implement	those	interfaces,	each	client	can	see	the	big	class	through	that	particular	interface.	This	helps	us	hide
information	and	also	decreases	dependency	in	the	system.	The	clients	no	longer	have	to	recompile	whenever	the	large
class	does.

When	we	have	interfaces	for	particular	sets	of	clients,	we	can	often	start	to	move	code
from	the	big	class	to	a	new	class	that	uses	the	original	class,	as	you	can	see	in	Figure
20.14.

Figure	20.14	Segregating	the	interface	of	ScheduledJob.

Instead	of	having	ScheduledJob	delegate	to	a	JobController,	we’ve	made	a	JobController	delegate	to
ScheduledJob.	Now	whenever	a	client	wants	to	run	a	ScheduledJob,	it	creates	a	JobController,	passing	it	a
ScheduledJob,	and	uses	the	JobController	to	handle	its	execution.

This	sort	of	refactoring	is	nearly	always	tougher	than	it	sounds.	Often	to	do	it,	you	have	to
expose	more	methods	in	the	public	interface	of	the	original	class	(ScheduledJob)	so	that	the	new
front	(StandardJobController)	has	access	to	everything	it	needs	to	do	its	work.	Often	it	takes	quite
a	bit	of	work	to	make	a	change	like	this.	Client	code	now	has	to	be	changed	to	use	the	new
class	rather	than	the	old	one;	to	do	that	safely,	you	need	to	have	tests	around	those	clients.
The	nice	thing	about	this	refactoring,	though,	is	that	it	does	allow	you	to	whittle	away	at
the	interface	of	a	big	class.	Notice	that	ScheduledJob	no	longer	has	the	methods	that	are	on
JobController.

Heuristic	#6:	When	All	Else	Fails,	Do	Some	Scratch	Refactoring
If	you	are	having	a	lot	of	trouble	seeing	responsibilities	in	a	class,	do	some	scratch	refactoring.

Scratch	refactoring	(212)	is	a	powerful	tool.	Just	remember	that	it	is	an	artificial	exercise.

The	things	you	see	when	you	“scratch”	are	not	necessarily	the	things	you’ll	end	up	with
when	you	refactor.

Heuristic	#7:	Focus	on	the	Current	Work
Pay	attention	to	what	you	have	to	do	right	now.	If	you	are	providing	a	different	way	of	doing	anything,	you	might
have	identified	a	responsibility	that	you	should	extract	and	then	allow	substitution	for.

It	is	easy	to	become	overwhelmed	by	the	number	of	distinct	responsibilities	you	can
identify	in	a	class.	Remember	that	the	changes	you	currently	are	making	are	telling	you
about	some	particular	way	that	the	software	can	change.	Often	just	recognizing	that	way
of	changing	is	enough	to	see	the	new	code	you	write	as	a	separate	responsibility.

Other	Techniques
The	heuristics	for	identifying	responsibilities	can	really	help	you	dig	in	and	find	new
abstractions	in	old	classes,	but	they	are	just	tricks.	The	way	to	really	get	better	at
identification	is	to	read	more.	Read	books	about	design	patterns.	More	important,	read
other	people’s	code.	Look	at	open-source	projects,	and	just	take	some	time	to	browse	and
see	how	other	people	do	things.	Pay	attention	to	how	classes	are	named	and	the
correspondence	between	class	names	and	the	names	of	methods.	Over	time,	you’ll	get
better	at	identifying	hidden	responsibilities,	and	you’ll	just	start	to	see	them	when	you
browse	unfamiliar	code.

Moving	Forward
When	you’ve	identified	a	bunch	of	different	responsibilities	in	a	large	class,	there	are	only
two	other	issues	to	deal	with:	strategy	and	tactics.	Let’s	talk	about	strategy	first.

Strategy

What	should	we	do	when	we’ve	identified	all	of	these	separate	responsibilities?	Should	we
take	a	week	and	start	to	whack	at	the	big	classes	in	the	system?	Should	we	break	them	all
down	into	little	bits?	If	you	have	time	to	do	that,	it’s	great,	but	it’s	rare.	It	can	also	be
risky.	In	nearly	every	case	that	I’ve	seen,	when	teams	go	on	a	large	refactoring	binge,
system	stability	breaks	down	for	a	little	while,	even	if	they	are	being	careful	and	writing
tests	as	they	go.	If	you	are	early	in	your	release	cycle,	are	willing	to	accept	the	risk,	and
have	time,	a	refactoring	binge	can	be	fine.	Just	don’t	let	the	bugs	dissuade	you	from	other
refactoring.

The	best	approach	to	breaking	down	big	classes	is	to	identify	the	responsibilities,	make
sure	that	everyone	else	on	the	team	understands	them,	and	then	break	down	the	class	on	an
as-needed	basis.	When	you	do	that,	you	spread	out	the	risk	of	the	changes	and	can	get
other	work	done	as	you	go.

Tactics

In	most	legacy	systems,	the	most	that	you	can	hope	for	in	the	beginning	is	to	start	to	apply
the	SRP	at	the	implementation	level:	Essentially,	extract	classes	from	your	big	class	and
delegate	to	them.	Introducing	SRP	at	the	interface	level	requires	more	work.	The	clients	of
your	class	have	to	change,	and	you	need	tests	for	them.	Nicely,	introducing	SRP	at	the

implementation	level	makes	it	easier	to	introduce	it	at	the	interface	level	later.	Let’s	look
at	the	implementation	case	first.

The	techniques	that	you	use	to	extract	classes	depend	upon	a	number	of	factors.	One	is
how	easily	you	can	get	tests	around	the	methods	that	could	be	affected.	It	pays	to	take	a
look	at	the	class	and	list	all	of	the	instance	variables	and	methods	that	you’ll	have	to
move.	From	this,	you	should	get	a	good	idea	of	what	methods	you	should	write	tests	for.
In	the	case	of	the	RuleParser	class	that	we	looked	at	previously,	if	we	were	considering
breaking	out	a	TermTokenizer	class,	we’d	want	to	move	the	string	field	named	current	and	the
currentPosition	field,	as	well	as	hasMoreTerms	and	nextTerm.	The	fact	that	hasMoreTerms	and	nextTerm	are	private
means	that	we	can’t	really	write	tests	directly	for	them.	We	could	make	them	public	(after
all,	we	are	going	to	move	them	anyway),	but	it	might	be	just	as	easy	to	create	a	RuleParser	in	a
test	harness	and	give	it	a	set	of	strings	to	evaluate.	If	we	do	that,	we’ll	have	tests	that	cover
hasMoreTerms	and	nextTerm,	and	we’ll	be	able	to	move	them	to	a	new	class	safely.

Unfortunately,	many	big	classes	are	hard	to	instantiate	in	test	harnesses.	See	Chapter	9,	I
Can’t	Get	This	Class	into	a	Test	Harness,	for	a	set	of	tips	that	you	can	use	to	move
forward.	If	you	are	able	to	get	the	class	instantiated,	you	might	have	to	use	the	tips	in
Chapter	10,	I	Can’t	Run	This	Method	in	a	Test	Harness,	to	get	tests	in	place	also.

If	you	are	able	to	get	tests	in	place,	you	can	start	to	extract	a	class	in	a	very
straightforward	way,	using	the	Extract	Class	refactoring	described	in	Martin	Fowler’s
book	Refactoring:	Improving	the	Design	of	Existing	Code	(Addison-Wesley,	1999).
However,	if	you	aren’t	able	to	get	tests	in	place,	you	can	still	move	forward,	albeit	in	a
slightly	riskier	way.	This	is	a	very	conservative	approach,	and	it	works	regardless	of
whether	you	have	a	refactoring	tool.	Here	are	the	steps:

1.	Identify	a	responsibility	that	you	want	to	separate	into	another	class.

2.	Figure	out	whether	any	instance	variables	will	have	to	move	to	the	new	class.	If	so,
move	them	to	a	separate	part	of	the	class	declaration,	away	from	the	other	instance
variables.

3.	If	you	have	whole	methods	that	you	want	to	move	to	the	new	class,	extract	the
bodies	of	each	of	them	to	new	methods.	The	name	of	each	new	method	should	be
the	same	as	its	old	name,	but	with	a	unique	common	prefix	in	front	of	the	name,
something	like	MOVING,	all	in	capital	letters.	If	you	are	not	using	a	refactoring	tool,
remember	to	Preserve	Signatures	(312)	when	you	extract	the	methods.	As	you
extract	each	method,	put	it	in	that	separate	part	of	the	class	declaration,	next	to	the
variables	you	are	moving.

4.	If	parts	of	methods	should	go	to	the	other	class,	extract	them	from	the	original
methods.	Use	that	prefix	MOVING	again	for	their	names,	and	put	them	in	the	separate
section.

5.	At	this	point,	you	should	have	a	section	of	your	class	that	has	instance	variables	that
you	need	to	move,	along	with	a	bunch	of	methods	that	you	want	to	move	also.	Do	a
text	search	of	the	current	class	and	all	of	its	subclasses,	to	make	sure	that	none	of	the
variables	that	you	are	going	to	move	is	used	outside	of	the	methods	you	are	going	to
move.	It	is	important	not	to	Lean	on	the	Compiler	(315)	in	this	step.	In	many	OO
languages,	a	derived	class	can	declare	variables	with	the	same	name	as	variables	in

a	base	class.	Often	this	is	called	shadowing.	If	your	class	shadows	any	variables	and
other	uses	of	the	variables	are	hanging	around,	you	could	change	the	behavior	of
your	code	when	you	move	the	variables.	Likewise,	if	you	Lean	on	the	Compiler
(315)	to	find	uses	of	a	variable	that	is	shadowing	another,	you	won’t	find	all	of	the
places	it	is	being	used.	Commenting	out	the	declaration	of	a	shadowed	variable	just
makes	the	one	that	it	shadows	visible.

6.	At	this	point,	you	can	move	all	of	the	instance	variables	and	methods	you’ve
separated	directly	to	the	new	class.	Create	an	instance	of	the	new	class	in	the	old
class,	and	Lean	on	the	Compiler	(315)	to	find	places	where	the	moved	methods	have
to	be	called	on	the	instance	rather	than	on	the	old	class.

7.	After	you’ve	done	the	move	and	the	code	compiles,	you	can	start	to	remove	the	MOVING
prefix	on	all	of	the	moved	methods.	Lean	on	the	Compiler	(315)	to	navigate	to	the
places	where	you	need	to	change	the	names.

The	steps	for	this	refactoring	are	rather	involved,	but	if	you	are	in	a	very	complex	piece	of
code,	they	are	necessary	if	you	want	to	extract	classes	safely	without	tests.

There	are	a	couple	of	things	that	can	go	wrong	when	you	extract	classes	without	tests.	The
most	subtle	bugs	that	we	can	inject	are	bugs	related	to	inheritance.	Moving	a	method	from
one	class	to	another	is	pretty	safe.	You	can	Lean	on	the	Compiler	(xx)	to	aid	your	work,
but	in	most	languages	all	bets	are	off	if	you	attempt	to	move	a	method	that	overrides
another	method.	If	you	do,	callers	of	the	method	on	the	original	class	will	now	call	a
method	with	the	same	name	from	a	base	class.	A	similar	situation	can	occur	with
variables.	A	variable	in	a	subclass	can	hide	a	variable	with	the	same	name	in	a	superclass.
Moving	it	just	makes	the	one	that	was	hidden	visible.

To	get	past	these	problems,	we	don’t	move	the	original	methods	at	all.	We	create	new
methods	by	extracting	the	bodies	of	the	old	ones.	The	prefix	is	just	a	mechanical	way	of
generating	a	new	name	and	making	sure	that	it	doesn’t	clash	with	other	names	before	the
move.	Instance	variables	are	a	little	trickier:	We	have	that	manual	step	of	searching	for
uses	of	variables	before	we	use	them.	It	is	possible	to	make	mistakes	with	this.	Be	very
careful,	and	do	it	with	a	partner.

After	Extract	Class
Extracting	classes	from	a	big	class	is	often	a	good	first	step.	In	practice,	the	biggest	danger
for	teams	doing	this	is	getting	overambitious.	You	might	have	done	a	Scratch	refactoring
(212)	or	developed	some	other	view	of	what	the	system	should	look	like.	But	remember,
the	structure	you	have	in	your	application	works.	It	supports	the	functionality;	it	just	might
not	be	tuned	toward	moving	forward.	Sometimes	the	best	thing	that	you	can	do	is
formulate	a	view	of	how	a	large	class	is	going	to	look	after	refactoring	and	then	just	forget
about	it.	You	did	it	to	discover	what	is	possible.	To	move	forward,	you	have	to	be	sensitive
to	what	is	there	and	move	that	not	necessarily	toward	the	ideal	design,	but	at	least	in	a
better	direction.

Chapter	21:	I’m	Changing	the	Same	Code	All	Over	the
Place

This	can	be	one	of	the	most	frustrating	things	in	legacy	systems.	You	need	to	make	a
change,	and	you	think,	“Oh,	that’s	all.”	Then	you	discover	that	you	have	to	make	the	same
change	over	and	over	again	because	there	are	about	a	dozen	places	with	similar	code	in
your	system.	You	might	get	the	sense	that	if	you	reengineered	or	restructured	your	system,
you	might	not	have	this	problem,	but	who	has	time	for	that?	So	you	are	left	with	another
sore	point	in	the	system,	something	that	adds	up	to	general	yuckiness.

If	you	know	about	refactoring,	you’re	in	a	better	position.	You	know	that	removing
duplication	doesn’t	have	to	be	a	grand	effort	such	as	in	reengineering	or	re-architecting.
It’s	something	that	you	can	do	in	small	chunks	as	you	do	your	work.	Over	time,	the	system
will	get	better	as	long	as	people	aren’t	introducing	duplication	behind	your	back.	If	they
are,	you	can	take	steps	with	them	short	of	physical	violence,	but	that	is	another	issue.	The
key	question	is,	is	it	worth	it?	What	do	we	get	when	we	zealously	squeeze	duplication	out
of	an	area	of	code?	The	results	are	surprising.	Let’s	take	a	look	at	an	example.

We	have	a	little	Java-based	networking	system,	and	we	have	to	send	commands	to	a
server.	The	two	commands	that	we	have	are	called	AddEmployeeCmd	and	LogonCommand.	When	we	need
to	issue	a	command,	we	instantiate	it	and	pass	an	output	stream	to	its	write	method.

Here	are	the	listings	for	both	command	classes.	Do	you	see	any	duplication	here?
import	java.io.OutputStream;

public	class	AddEmployeeCmd	{
				String	name;
				String	address;
				String	city;
				String	state;
				String	yearlySalary;
				private	static	final	byte[]	header	=	{(byte)0xde,	(byte)0xad};
				private	static	final	byte[]	commandChar	=	{0x02};
				private	static	final	byte[]	footer	=	{(byte)0xbe,	(byte)0xef};
				private	static	final	int	SIZE_LENGTH	=	1;
				private	static	final	int	CMD_BYTE_LENGTH	=	1;

				private	int	getSize()	{
								return	header.length	+
																SIZE_LENGTH	+
																CMD_BYTE_LENGTH	+
																footer.length	+
																name.getBytes().length	+	1	+
																address.getBytes().length	+	1	+
																city.getBytes().length	+	1	+
																state.getBytes().length	+	1	+
																yearlySalary.getBytes().length	+	1;
				}

				public	AddEmployeeCmd(String	name,	String	address,
																										String	city,	String	state,
																										int	yearlySalary)	{
								this.name	=	name;
								this.address	=	address;

								this.city	=	city;
								this.state	=	state;
								this.yearlySalary	=	Integer.toString(yearlySalary);
				}

				public	void	write(OutputStream	outputStream)
																throws	Exception	{
								outputStream.write(header);
								outputStream.write(getSize());
								outputStream.write(commandChar);
								outputStream.write(name.getBytes());
								outputStream.write(0x00);
								outputStream.write(address.getBytes());
								outputStream.write(0x00);
								outputStream.write(city.getBytes());
								outputStream.write(0x00);
								outputStream.write(state.getBytes());
								outputStream.write(0x00);
								outputStream.write(yearlySalary.getBytes());
								outputStream.write(0x00);
								outputStream.write(footer);
				}
}
import	java.io.OutputStream;

public	class	LoginCommand	{
				private	String	userName;
				private	String	passwd;
				private	static	final	byte[]	header
																=	{(byte)0xde,	(byte)0xad};
				private	static	final	byte[]	commandChar	=	{0x01};
				private	static	final	byte[]	footer
																=	{(byte)0xbe,	(byte)0xef};
				private	static	final	int	SIZE_LENGTH	=	1;
				private	static	final	int	CMD_BYTE_LENGTH	=	1;

				public	LoginCommand(String	userName,	String	passwd)	{
								this.userName	=	userName;
								this.passwd	=	passwd;
				}

				private	int	getSize()	{
								return	header.length	+	SIZE_LENGTH	+	CMD_BYTE_LENGTH	+
																footer.length	+	userName.getBytes().length	+	1	+
																passwd.getBytes().length	+	1;
				}

				public	void	write(OutputStream	outputStream)
																throws	Exception	{
								outputStream.write(header);
								outputStream.write(getSize());
								outputStream.write(commandChar);
								outputStream.write(userName.getBytes());
								outputStream.write(0x00);
								outputStream.write(passwd.getBytes());
								outputStream.write(0x00);
								outputStream.write(footer);
					}
}

Figure	21.1	shows	the	classes	in	UML.

Figure	21.1	AddEmployeeCmd	and	LoginCommand.

It	looks	like	there	is	a	lot	of	duplication,	but	so	what?	The	amount	of	code	is	pretty	small.
We	could	refactor	it,	cutting	out	duplication,	and	make	it	smaller,	but	is	that	going	to	make
our	lives	easier?	Maybe	yes,	maybe	no;	it’s	hard	to	tell	just	by	looking	at	it.

Let’s	try	to	identify	pieces	of	duplication	and	remove	it,	and	see	where	we	end	up.	Then
we	can	decide	whether	the	duplication	removal	was	really	helpful.

The	first	thing	that	we	need	is	a	set	of	tests	that	we’ll	run	after	each	refactoring.	We’ll	cut
them	out	of	the	description	here	for	brevity,	but	remember	that	they	are	there.

First	Steps
My	first	reaction	when	I	am	confronted	by	duplication	is	to	step	back	and	get	a	sense	of
the	full	scope	of	it.	When	I	do	that,	I	start	thinking	about	what	kind	of	classes	I’ll	end	up
with	and	what	the	extracted	bits	of	duplication	will	look	like.	Then	I	realize	that	I’m	really
over-thinking	it.	Removing	small	pieces	of	duplication	helps,	and	it	makes	it	easier	to	see
larger	areas	of	duplication	later.	For	instance,	in	the	write	method	of	LoginCommand,	we	have	this
code:
outputStream.write(userName.getBytes());
outputStream.write(0x00);
outputStream.write(passwd.getBytes());
outputStream.write(0x00);

When	we	write	out	a	string,	we	also	write	a	terminating	null	character	(0x00).	We	can
extract	the	duplication	like	this.	Create	a	method	named	writeField	that	accepts	a	string	and	an
output	stream.	The	method	then	writes	the	string	to	the	stream	and	finishes	up	by	writing	a
null.
void	writeField(OutputStream	outputStream,	String	field)	{
				outputStream.write(field.getBytes());

				outputStream.write(0x00);

}

Deciding	Where	to	Start
When	we	go	through	a	series	of	refactorings	to	remove	duplication,	we	can	end	up	with	different	structures,
depending	on	where	we	start.	For	instance,	imagine	that	we	have	a	method	like	this:

void	c()	{	a();	a();	b();	a();	b();	b();	}

It	can	be	broken	down	like	this:
void	c()	{	aa();	b();	a();	bb();	}

or	like	this:
void	c()	{	a();	ab();	ab();	b();	}

So,	which	should	we	choose?	The	truth	is,	it	doesn’t	make	much	difference	structurally.	Both	groupings	are	better
than	what	we	had,	and	we	can	refactor	them	into	the	other	grouping,	if	we	need	to.	These	aren’t	final	decisions.	I
decide	by	paying	attention	to	the	names	that	I	would	use.	If	I	can	find	a	name	for	two	repeated	calls	to	a(),	that	makes
more	sense,	in	context,	than	a	name	for	a	call	to	a()	followed	by	a	call	to	b(),	then	I’ll	use	it.

Another	heuristic	that	I	use	is	to	start	small.	If	I	can	remove	tiny	pieces	of	duplication,	I	do	those	first	because	often	it
makes	the	big	picture	clearer.

When	we	have	that	method,	we	can	replace	each	pair	of	string/null	writes,	running	our
tests	periodically	to	make	sure	we	haven’t	broken	anything.	Here	is	the	write	method	of
LoginCommand	after	the	change:
public	void	write(OutputStream	outputStream)
												throws	Exception	{
				outputStream.write(header);
				outputStream.write(getSize());
				outputStream.write(commandChar);
				writeField(outputstream,	username);
				writeField(outputStream,	passwd);
				outputStream.write(footer);
}

That	takes	care	of	the	problem	for	the	LoginCommand	class,	but	it	doesn’t	do	a	thing	for	us	in	the
AddEmployeeCmd	class.	AddEmployeeCmd	has	similar	repeating	sequences	of	string/null	writes	in	its	write
method	also.	Because	both	classes	are	commands,	we	can	introduce	a	superclass	for	them
called	Command.	When	we	have	it,	we	can	pull	writeField	up	into	the	superclass	so	that	it	can	be
used	in	both	commands	(see	Figure	21.2).

Figure	21.2	Command	hierarchy.

We	can	go	back	over	to	AddEmployeeCmd	now	and	replace	its	string/null	writes	with	calls	to
writeField.	When	we’re	done,	the	write	method	for	AddEmployeeCmd	looks	like	this:
public	void	write(OutputStream	outputStream)
												throws	Exception	{
				outputStream.write(header);
				outputStream.write(getSize());
				outputStream.write(commandChar);
				writeField(outputStream,	name);
				writeField(outputStream,	address);
				writeField(outputStream,	city);

				writeField(outputStream,	state);
				writeField(outputStream,	yearlySalary);
				outputStream.write(footer);
}

The	write	for	LoginCommand	looks	like	this:
public	void	write(OutputStream	outputStream)
												throws	Exception	{
				outputStream.write(header);
				outputStream.write(getSize());
				outputStream.write(commandChar);
				writeField(outputstream,	userName);
				writeField(outputStream,	passwd);
				outputStream.write(footer);
}

The	code	is	a	little	cleaner,	but	we’re	not	done	yet.	The	write	methods	for	AddEmployeeCmd	and
LoginCommand	have	the	same	form:	write	the	header,	the	size,	and	the	command	char;	then	write
a	bunch	of	fields;	and,	finally,	write	the	footer.	If	we	can	extract	the	difference,	writing	the
fields,	we	end	up	with	a	LoginCommand	write	method	that	looks	like	this:
public	void	write(OutputStream	outputStream)
												throws	Exception	{
				outputStream.write(header);
				outputStream.write(getSize());
				outputStream.write(commandChar);
				writeBody(outputstream);
				outputStream.write(footer);
}

Here	is	the	extracted	writeBody:
private	void	writeBody(OutputStream	outputStream)
												throws	Exception	{
				writeField(outputstream,	userName);
				writeField(outputStream,	passwd);
}

The	write	method	for	AddEmployeeCmd	looks	exactly	the	same,	but	its	writeBody	looks	like	this:
private	void	writeBody(OutputStream	outputStream)	throws	Exception	{
				writeField(outputStream,	name);
				writeField(outputStream,	address);
				writeField(outputStream,	city);
				writeField(outputStream,	state);
				writeField(outputStream,	yearlySalary);
}

When	two	methods	look	roughly	the	same,	extract	the	differences	to	other	methods.	When	you	do	that,	you	can	often
make	them	exactly	the	same	and	get	rid	of	one.

The	write	methods	for	both	classes	look	exactly	the	same.	Can	we	move	the	write	method	up
into	the	Command	class?	Not	yet.	Even	though	both	writes	look	the	same,	they	use	data	from
their	classes:	header,	footer,	and	commandChar.	If	we	are	going	to	try	to	make	a	single	write	method,	it
would	have	to	call	methods	from	the	subclasses	to	get	that	data.	Let’s	take	a	look	at	the
variables	in	AddEmployeeCmd	and	LoginCommand:
public	class	AddEmployeeCmd	extends	Command	{
				String	name;
				String	address;

				String	city;
				String	state;
				String	yearlySalary;
				private	static	final	byte[]	header
																=	{(byte)0xde,	(byte)0xad};
				private	static	final	byte[]	commandChar	=	{0x02};
				private	static	final	byte[]	footer
																=	{(byte)0xbe,	(byte)0xef};
				private	static	final	int	SIZE_LENGTH	=	1;
				private	static	final	int	CMD_BYTE_LENGTH	=	1;
				…
}

public	class	LoginCommand	extends	Command	{
				private	String	userName;
				private	String	passwd;

				private	static	final	byte[]	header
																=	{(byte)0xde,	(byte)0xad};
				private	static	final	byte[]	commandChar	=	{0x01};
				private	static	final	byte[]	footer
																=	{(byte)0xbe,	(byte)0xef};
				private	static	final	int	SIZE_LENGTH	=	1;
				private	static	final	int	CMD_BYTE_LENGTH	=	1;
				…
}

Both	classes	have	a	lot	of	common	data.	We	can	pull	header,	footer,	SIZE_LENGTH,	and	CMD_BYTE_LENGTH	up
to	the	Command	class	because	they	all	have	the	same	values.	I’m	going	to	make	them	protected
temporarily	so	that	we	can	recompile	and	test:
public	class	Command	{
				protected	static	final	byte[]	header
																		=	{(byte)0xde,	(byte)0xad};
				protected	static	final	byte[]	footer
																		=	{(byte)0xbe,	(byte)0xef};
				protected	static	final	int	SIZE_LENGTH	=	1;
				protected	static	final	int	CMD_BYTE_LENGTH	=	1;
				…
}

Now	we’re	left	with	the	commandChar	variable	in	both	subclasses.	It	has	a	different	value	for
each	of	them.	One	simple	way	of	handling	this	is	to	introduce	an	abstract	getter	on	the
Command	class:
public	class	Command	{
				protected	static	final	byte[]	header
																=	{(byte)0xde,	(byte)0xad};
				protected	static	final	byte[]	footer
																=	{(byte)0xbe,	(byte)0xef};
				protected	static	final	int	SIZE_LENGTH	=	1;
				protected	static	final	int	CMD_BYTE_LENGTH	=	1;
				protected	abstract	char	[]	getCommandChar();
				…
}

Now	we	can	replace	the	commandChar	variables	on	each	subclass	with	a	getCommandChar	override:
public	class	AddEmployeeCmd	extends	Command	{
				protected	char	[]	getCommandChar()	{
								return	new	char	[]	{	0x02};
				}
				…

}

public	class	LoginCommand	extends	Command	{
				protected	char	[]	getCommandChar()	{
								return	new	char	[]	{	0x01};
				}
				…
}

Okay,	now,	it	is	safe	to	pull	up	the	write	method.	Once	we	do,	we	end	up	with	a	Command	class
that	looks	like	this:
public	class	Command	{
				protected	static	final	byte[]	header
																=	{(byte)0xde,	(byte)0xad};
				protected	static	final	byte[]	footer
																=	{(byte)0xbe,	(byte)0xef};
				protected	static	final	int	SIZE_LENGTH	=	1;
				protected	static	final	int	CMD_BYTE_LENGTH	=	1;

				protected	abstract	char	[]	getCommandChar();

				protected	abstract	void	writeBody(OutputStream	outputStream);

				protected	void	writeField(OutputStream	outputStream,
																														String	field)	{
								outputStream.write(field.getBytes());
								outputStream.write(0x00);
				}

				public	void	write(OutputStream	outputStream)
																throws	Exception	{
								outputStream.write(header);
								outputStream.write(getSize());
								outputStream.write(commandChar);
								writeBody(outputstream);
								outputStream.write(footer);
				}
}

Notice	that	we	had	to	introduce	an	abstract	method	for	writeBody	and	put	it	up	in	Command	also
(see	Figure	21.3).

Figure	21.3	Pulling	up	writeField.

After	we’ve	moved	up	the	write	method,	the	only	things	that	remain	in	each	of	the
subclasses	are	the	getSize	methods,	the	getCommandChar	method,	and	the	constructors.	Here’s	the
LoginCommand	class	again:

public	class	LoginCommand	extends	Command	{
				private	String	userName;
				private	String	passwd;

				public	LoginCommand(String	userName,	String	passwd)	{
								this.userName	=	userName;
								this.passwd	=	passwd;
				}

				protected	char	[]	getCommandChar()	{
								return	new	char	[]	{	0x01};
				}

				protected	int	getSize()	{
								return	header.length	+	SIZE_LENGTH	+	CMD_BYTE_LENGTH	+
															footer.length	+	userName.getBytes().length	+	1	+
																passwd.getBytes().length	+	1;
			}
}

That	is	a	pretty	slim	class.	AddEmployeeCmd	looks	pretty	similar.	It	has	a	getSize	method	and	a
getCommandChar	method,	and	not	much	else.	Let’s	look	at	the	getSize	methods	a	little	more	closely:

Here	is	the	one	for	LoginCommand:
protected	int	getSize()	{
				return	header.length	+	SIZE_LENGTH	+
													CMD_BYTE_LENGTH	+	footer.length	+
													userName.getBytes().length	+	1	+
													passwd.getBytes().length	+	1;
}

And	here	is	the	one	for	AddEmployeeCmd:
private	int	getSize()	{
				return	header.length	+	SIZE_LENGTH	+
													CMD_BYTE_LENGTH	+	footer.length	+
													name.getBytes().length	+	1	+
													address.getBytes().length	+	1	+
													city.getBytes().length	+	1	+
													state.getBytes().length	+	1	+
													yearlySalary.getBytes().length	+	1;
}

What	is	the	same	and	what	is	different?	It	looks	like	they	both	add	the	header,	the	size
length,	the	command	byte	length,	and	the	footer	length.	Then	they	add	the	sizes	of	each	of
their	fields.	What	if	we	extract	what	is	computed	differently:	the	size	of	the	fields?	We	call
the	resulting	method	getBodySize().
private	int	getSize()	{
				return	header.length	+	SIZE_LENGTH
								+	CMD_BYTE_LENGTH	+	footer.length	+	getBodySize();
}

If	we	do	that,	we	end	up	with	the	same	code	in	each	method.	We	add	up	the	size	of	all	of
the	bookkeeping	data,	and	then	we	add	the	size	of	the	body,	which	is	the	total	of	the	sizes
of	all	of	the	fields.	After	we	do	this,	we	can	move	getSize	up	into	the	Command	class	and	have
different	implementations	for	getBodySize	in	each	subclass	(see	Figure	21.4).

Figure	21.4	Pulling	up	getSize.

Let’s	look	at	where	we	are	now.	We	have	this	implementation	of	getBody	in	AddEmployeeCmd:
protected	int	getBodySize()	{
				return	name.getBytes().length	+	1	+
											address.getBytes().length	+	1	+
											city.getBytes().length	+	1	+
											state.getBytes().length	+	1	+
											yearlySalary.getBytes().length	+	1;
}

We’ve	ignored	some	rather	blatant	duplication	here.	It	is	kind	of	small,	but	let’s	be	zealous
and	remove	it	completely:
protected	int	getFieldSize(String	field)	{
				return	field.getBytes().length	+	1;
}

protected	int	getBodySize()	{
				return	getFieldSize(name)	+
											getFieldSize(address)	+
											getFieldSize(city)	+
											getFieldSize(state)	+
											getFieldSize(yearlySalary);
}

If	we	move	the	getFieldSize	method	up	to	the	Command	class,	we	can	use	it	in	the	getBodySize	method
of	LoginCommand	also:
protected	int	getBodySize()	{
				return	getFieldSize(name)	+	getFieldSize(password);
}

Is	there	more	duplication	here	at	all?	Actually,	there	is,	but	just	a	little.	Both	LoginCommand	and
AddEmployeeCmd	accept	a	list	of	parameters,	get	their	sizes,	and	write	them	out.	Except	for	the
commandChar	variable,	that	accounts	for	all	of	the	remaining	differences	between	the	two
classes:	What	if	we	remove	the	duplication	by	generalizing	it	a	little?	If	we	declare	a	list	in
the	base	class,	we	can	add	to	it	in	each	subclass	constructor	like	this:
class	LoginCommand	extends	Command
{
				…
				public	AddEmployeeCmd(String	name,	String	password)	{
								fields.add(name);
								fields.add(password);
				}
				…

}

When	we	add	to	the	fields	list	in	each	subclass,	we	can	use	the	same	code	to	get	the	body
size:
int	getBodySize()	{
					int	result	=	0;
					for(Iterator	it	=	fields.iterator();	it.hasNext();)	{
								String	field	=	(String)it.next();
								result	+=	getFieldSize(field);
					}
					return	result;
}

Likewise,	the	writeBody	method	can	look	like	this:
void	writeBody(Outputstream	outputstream)	{
				for(Iterator	it	=	fields.iterator();	it.hasNext();)	{
								String	field	=	(String)it.next();
								writeField(outputStream,	field);
				}
}

We	can	pull	up	those	methods	to	the	superclass.	When	we’ve	done	that,	we’ve	truly
removed	all	of	the	duplication.	Here	is	what	the	Command	class	looks	like.	To	make	things
more	sensible,	we’ve	made	all	the	methods	that	are	no	longer	accessed	in	subclasses
private:
public	class	Command	{
				private	static	final	byte[]	header
																=	{(byte)0xde,	(byte)0xad};
				private	static	final	byte[]	footer
																=	{(byte)0xbe,	(byte)0xef};
				private	static	final	int	SIZE_LENGTH	=	1;
				private	static	final	int	CMD_BYTE_LENGTH	=	1;
				protected	List	fields	=	new	ArrayList();
				protected	abstract	char	[]	getCommandChar();

				private	void	writeBody(Outputstream	outputstream)	{
								for(Iterator	it	=	fields.iterator();	it.hasNext();)	{
												String	field	=	(String)it.next();
												writeField(outputStream,	field);
								}
				}

				private	int	getFieldSize(String	field)	{
								return	field.getBytes().length	+	1;
				}

				private	int	getBodySize()	{
								int	result	=	0;
								for(Iterator	it	=	fields.iterator();	it.hasNext();)	{
												String	field	=	(String)it.next();
												result	+=	getFieldSize(field);
								}
								return	result;
				}

				private	int	getSize()	{
								return	header.length	+	SIZE_LENGTH
												+	CMD_BYTE_LENGTH	+	footer.length
												+	getBodySize();
				}

				private	void	writeField(OutputStream	outputStream,
																												String	field)	{
								outputStream.write(field.getBytes());
								outputStream.write(0x00);
				}

				public	void	write(OutputStream	outputStream)
																throws	Exception	{
								outputStream.write(header);
								outputStream.write(getSize());
								outputStream.write(commandChar);
								writeBody(outputstream);
								outputStream.write(footer);
				}
}

The	LoginCommand	and	AddEmployeeCmd	classes	are	now	incredibly	thin:
public	class	LoginCommand	extends	Command	{
				public	LoginCommand(String	userName,	String	passwd)	{
								fields.add(username);
								fields.add(passwd);
				}

				protected	char	[]	getCommandChar()	{
								return	new	char	[]	{	0x01};
				}
}

public	class	AddEmployeeCmd	extends	Command	{
				public	AddEmployeeCmd(String	name,	String	address,
																										String	city,	String	state,
																										int	yearlySalary)	{
								fields.add(name);
								fields.add(address);
								fields.add(city);
								fields.add(state);
								fields.add(Integer.toString(yearlySalary));
				}

				protected	char	[]	getCommandChar()	{
								return	new	char	[]	{	0x02	};
				}
}

Figure	21.5	is	a	UML	diagram	that	shows	where	we	end	up.

Figure	21.5	Command	hierarchy	with	duplication	pulled	up.

Okay,	so	where	are	we	now?	We’ve	removed	so	much	duplication	that	we	have	just	shells
of	classes.	All	of	the	functionality	is	in	the	Command	class.	In	fact,	it	makes	sense	to	wonder
whether	we	really	need	separate	classes	for	these	two	commands	at	all.	What	are	the
alternatives?

We	could	get	rid	of	the	subclasses	and	add	a	static	method	to	the	Command	class	that	allows	us
to	send	a	command:
List	arguments	=	new	ArrayList();
arguments.add(“Mike”);
arguments.add(“asdsad”);
Command.send(stream,	0x01,	arguments);

But	that	would	be	a	lot	of	work	for	clients.	One	thing	is	for	sure:	We	do	have	to	send	two
different	command	chars,	and	we	don’t	want	the	user	to	have	to	keep	track	of	them.

Instead,	we	could	add	a	different	static	method	for	each	command	that	we	want	to	send:
Command.SendAddEmployee(stream,
								“Mike”,	“122	Elm	St”,	“Miami”,	“FL”,	10000);

Command.SendLogin(stream,	“Mike”,	“asdsad”);

But	that	would	force	all	of	our	client	code	to	change.	Right	now,	there	are	many	places	in
our	code	where	we	construct	AddEmployeeCmd	and	LoginCommand	objects.

Maybe	we	are	better	off	leaving	the	classes	the	way	that	they	are	now.	Sure,	the	subclasses
are	pretty	tiny,	but	does	that	really	hurt	anything?	Not	really.

Are	we	done?	No,	there	is	one	little	thing	that	we	need	do	to	now,	something	we	should’ve
done	earlier.	We	can	rename	AddEmployeeCmd	to	AddEmployeeCommand.	That	would	make	the	names	of	the
two	subclasses	consistent.	We’re	less	likely	to	be	wrong	when	we	use	names	consistently.

Abbreviations
Abbreviations	in	class	and	method	names	are	problematic.	They	can	be	okay	when	they	are	used	consistently,	but	in

general,	I	don’t	like	to	use	them.

One	team	I	worked	with	attempted	to	use	the	words	manager	and	management	in	nearly	every	class	name	in	the
system.	That	naming	convention	didn’t	help	much,	but	what	made	it	worse	was	the	fact	that	they	abbreviated
manager	and	management	in	an	incredible	number	of	different	ways.	For	example,	some	classes	were	named	XXXXMgr,
and	others	were	named	XXXXMngr.	When	you	were	ready	to	use	a	class,	you	actually	had	to	look	it	up	most	of	the	time
to	see	if	you	had	the	name	right.	More	than	50	percent	of	the	time,	I	was	wrong	when	I	attempted	to	guess	which
suffix	was	used	for	a	particular	class

So,	we’ve	removed	all	of	this	duplication.	Has	it	made	things	better	or	worse?	Let’s	play
out	a	couple	of	scenarios.	What	happens	when	we	need	to	add	a	new	command?	Well,	we
can	just	subclass	Command	and	create	it.	Let’s	compare	that	to	what	we	would	have	to	do	in	the
original	design.	We	could	create	a	new	command	and	then	cut/copy	and	paste	code	from
another	command,	changing	all	of	the	variables.	But	if	we	do	that,	we	are	introducing
more	duplication	and	making	things	worse.	Beyond	that,	it	is	error	prone.	We	could	mess
up	the	use	of	the	variables	and	get	it	wrong.	No,	it	would	definitely	take	a	little	longer	to
do	it	before	we	removed	duplication.

Do	we	lose	any	flexibility	because	of	what	we’ve	done?	What	if	we	had	to	send
commands	that	are	made	of	something	other	than	strings?	We’ve	already	solved	that
problem,	in	a	way.	The	AddEmployeeCommand	class	already	accepts	an	integer,	and	we	convert	it	to	a
string	to	send	it	as	a	command.	We	can	do	the	same	thing	with	any	other	type.	We	have	to
convert	it	to	a	string	somehow	to	send	it.	We	can	do	it	in	the	constructor	of	any	new
subclass.

What	if	we	have	a	command	with	a	different	format?	Suppose	that	we	need	a	new
command	type	that	can	nest	other	commands	in	its	body.	We	can	do	that	easily	by
subclassing	Command	and	overriding	its	writeBody	method:
public	class	AggregateCommand	extends	Command
{
				private	List	commands	=	new	ArrayList();
				protected	char	[]	getCommandChar()	{
								return	new	char	[]	{	0x03	};
				}

				public	void	appendCommand(Command	newCommand)	{
								commands.add(newCommand);
				}

				protected	void	writeBody(OutputStream	out)	{
								out.write(commands.getSize());
								for(Iterator	it	=	commands.iterator();	it.hasNext();)	{
												Command	innerCommand	=	(Command)it.next();
												innerCommand.write(out);
								}
				}
}

Everything	else	just	works.

Imagine	doing	this	if	we	hadn’t	removed	the	duplication.

This	last	example	highlights	something	very	important.	When	you	remove	duplication
across	classes,	you	end	up	with	very	small	focused	methods.	Each	of	them	does	something
that	no	other	method	does,	and	that	gives	us	an	incredible	advantage:	orthogonality.

Orthogonality	is	a	fancy	word	for	independence.	If	you	want	to	change	existing	behavior
in	your	code	and	there	is	exactly	one	place	you	have	to	go	to	make	that	change,	you’ve	got
orthogonality.	It	is	as	if	your	application	is	a	big	box	with	knobs	surrounding	the	outside.
If	there	is	only	one	knob	per	behavior	for	your	system,	changes	are	easy	to	make.	When
you	have	rampant	duplication,	you	have	more	than	one	knob	for	each	behavior.	Think
about	writing	fields.	In	the	original	design,	if	we	had	to	use	a	0x01	terminator	for	fields
rather	than	a	0x00	terminator,	we	would	have	had	to	go	through	the	code	and	make	that
change	in	many	places.	Imagine	if	someone	asked	us	to	write	out	two	0x00	terminators	for
each	field.	That	would	be	pretty	bad,	too:	no	single-purpose	knobs.	But	in	the	code	we’ve
refactored,	we	can	edit	or	override	writeField	if	we	want	to	change	how	fields	are	written,	and
we	can	override	writeBody	when	we	need	to	handle	special	cases	such	as	command
aggregation.	When	behavior	is	localized	in	single	methods,	it’s	easy	to	replace	it	or	add	to
it.

In	this	example,	we’ve	been	doing	many	things—moving	methods	and	variables	from
class	to	class,	breaking	down	methods—but	most	of	it	has	been	mechanical.	We’ve	just
paid	attention	to	duplication	and	removed	it.	The	only	creative	thing	that	we’ve	really
done	is	come	up	with	names	for	the	new	methods.	The	original	code	didn’t	have	the
concept	of	a	field	or	a	command	body,	but	in	a	way,	the	concept	was	there	in	the	code.	For
instance,	some	variables	were	being	treated	differently,	and	we	called	them	fields.	At	the
end	of	the	process,	we	ended	up	with	a	much	neater	orthogonal	design,	but	it	didn’t	feel
like	we	were	designing.	It	was	more	like	we	were	noticing	what	was	there	and	moving	the
code	closer	to	its	essence,	what	it	really	was.

One	of	the	startling	things	that	you	discover	when	you	start	removing	duplication
zealously	is	that	designs	emerge.	You	don’t	have	to	plan	most	of	the	knobs	in	your
application;	they	just	happen.	It	isn’t	perfect.	For	instance,	it	would	be	nice	if	this	method
on	Command:
public	void	write(OutputStream	outputStream)
												throws	Exception	{
				outputStream.write(header);
				outputStream.write(getSize());
				outputStream.write(commandChar);
				writeBody(outputstream);
				outputStream.write(footer);
}

Looked	like	this:
public	void	write(OutputStream	outputStream)
												throws	Exception	{
				writeHeader(outputStream);
				writeBody(outputstream);
				writeFooter(outputStream);
}

Now	we	have	a	knob	for	writing	headers	and	another	for	writing	footers.	We	can	add
knobs	as	we	need	to,	but	it’s	nice	when	they	happen	naturally.

Duplication	removal	is	a	powerful	way	of	distilling	a	design.	It	not	only	makes	a	design
more	flexible,	but	it	also	makes	change	faster	and	easier.

Open/Closed	Principle

The	open/closed	principle	is	a	principle	that	was	first	articulated	by	Bertrand	Meyer.	The	idea	behind	it	is	that	code
should	be	open	for	extension	but	closed	to	modification.	What	does	that	mean?	It	means	that	when	we	have	good
design,	we	just	don’t	have	to	change	code	much	to	add	new	features.

Does	the	code	that	we	ended	up	with	in	this	chapter	exhibit	these	properties?	Yes.	We	just	looked	at	a	number	of
change	scenarios.	In	many	of	them,	very	few	methods	had	to	change.	In	some	cases,	we	were	able	to	add	the	feature
just	by	subclassing.	Of	course,	after	subclassing,	it	is	important	to	remove	duplication	(see	Programming	by
Difference	(101)	for	more	information	about	how	to	add	features	by	subclassing	and	integrate	them	by	refactoring).

When	we	remove	duplication,	our	code	often	naturally	starts	to	fall	in	line	with	the	Open/Closed	Principle.

Chapter	22:	I	Need	to	Change	a	Monster	Method	and	I
Can’t	Write	Tests	for	It

One	of	the	hardest	things	about	working	in	legacy	code	is	dealing	with	large	methods.	In
many	cases,	you	can	avoid	refactoring	long	methods	by	using	the	Sprout	Method	(59)	and
Sprout	Class	(63)	techniques.	Even	when	you	are	able	to	avoid	it,	though,	it’s	just	a	shame
that	you	have	to.	Long	methods	are	quagmires	in	a	code	base.	Whenever	you	have	to
change	them,	you	have	to	go	back	and	attempt	to	understand	them	again,	and	then	you
have	to	make	your	changes.	Often	that	takes	longer	than	it	would	if	the	code	was	cleaner.

Long	methods	are	a	pain,	but	monster	methods	are	worse.	A	monster	method	is	a	method
that	is	so	long	and	so	complex	that	you	really	don’t	feel	comfortable	touching	it.	Monster
methods	can	be	hundreds	or	thousands	of	lines	long,	with	enough	scattered	indentation	to
make	navigation	nearly	impossible.	When	you	have	monster	methods	you’re	tempted	to
print	them	on	a	couple	of	yards	of	continuous-feed	paper	and	lay	them	out	in	a	hallway	so
that	you	and	your	coworkers	can	figure	them	out.

I	was	once	on	the	road	at	a	meeting,	and	as	we	were	walking	back	to	our	hotel	rooms,	a
friend	of	mine	said,	“Hey,	you’ve	got	to	see	this.”	He	went	into	his	room	and	pulled	out
his	laptop	and	showed	me	a	method	that	went	on	for	more	than	a	thousand	lines.	My
friend	knew	that	I’d	been	studying	refactoring	and	said,	“How	in	the	world	would	you
refactor	this?”	We	started	thinking	it	through.	We	knew	that	testing	was	key,	but	where	do
you	even	begin	with	such	a	big	method?

This	chapter	outlines	what	I’ve	learned	since	then.

Varieties	of	Monsters
Monster	methods	come	in	a	couple	of	varieties.	These	aren’t	necessarily	distinct	types.
Methods	out	in	the	field	are	kind	of	like	platypuses—they	look	like	mixtures	of	several
types.

Bulleted	Methods

A	bulleted	method	is	a	method	with	nearly	no	indentation.	It	is	just	a	sequence	of	code
chunks	that	reminds	you	of	a	bulleted	list.	Some	of	the	code	in	the	chunks	might	be
indented,	but	the	method	itself	isn’t	dominated	by	indentation.	When	you	look	at	a
bulleted	method	and	squint	your	eyes,	you	see	something	like	Figure	22.1.

Figure	22.1	Bulleted	method.

This	is	the	general	form	of	a	bulleted	method.	If	you	are	lucky,	someone	will	have	put
extra	lines	between	the	sections	or	comments	to	show	you	that	they	do	somewhat	distinct
things.	In	an	ideal	world,	you’d	be	able	to	just	extract	a	method	for	each	of	the	sections,
but	often	the	methods	don’t	refactor	easily	that	way.	The	space	between	the	sections	is	a
little	bit	deceptive	because	often	temporary	variables	are	declared	in	one	section	and	used
in	the	next.	Breaking	down	the	method	often	isn’t	as	easy	as	just	copying	and	pasting	out
code.	Despite	this,	bulleted	methods	are	a	little	less	intimidating	than	the	other	varieties,
mainly	because	that	lack	of	wild	indentation	allows	us	to	keep	our	bearings.

Snarled	Methods

A	snarled	method	is	a	method	dominated	by	a	single	large,	indented	section.	The	simplest
case	is	a	method	that	has	one	large	conditional	statement,	as	in	Figure	22.2.

Figure	22.2	Simple	snarled	method.

But	that	sort	of	a	snarl	nearly	has	the	same	qualities	as	a	bulleted	method.	The	snarls	that
demand	your	full	appreciation	are	methods	with	the	form	shown	in	Figure	22.3.

Figure	22.3	Very	snarled	method.

The	best	way	to	know	whether	you	have	a	real	snarl	is	to	try	to	line	up	the	blocks	in	a	long
method.	If	you	start	to	feel	vertigo,	you’ve	run	into	a	snarled	method.

Most	methods	are	not	purely	bulleted	or	snarled,	but	something	in	between.	Many	snarls
have	long	bulleted	sections	hidden	deep	in	their	nesting,	but	because	they	are	nested	it	is
hard	to	write	tests	that	pin	down	their	behavior.	Snarls	present	unique	challenges.

When	you	are	refactoring	long	methods,	the	presence	or	absence	of	a	refactoring	tool

makes	a	difference.	Nearly	every	refactoring	tool	supports	the	extract	method	refactoring
because	there	is	an	incredible	amount	of	leverage	in	that	support.	If	a	tool	can	extract
methods	for	you	safely,	you	don’t	need	tests	to	verify	your	extractions.	The	tool	does	the
analysis	for	you,	and	all	that	is	left	is	learning	how	to	use	extractions	to	put	a	method	into
decent	shape	for	further	work.

When	you	don’t	have	extract	method	support,	cleaning	up	monster	methods	is	more
challenging.	You	often	have	to	be	more	conservative	because	your	work	is	bounded	by	the
tests	you	can	get	in	place.

Tackling	Monsters	with	Automated	Refactoring	Support
When	you	have	a	tool	that	extracts	methods	for	you,	you	have	to	be	clear	about	what	it	can
and	can’t	do	for	you.	Most	refactoring	tools	today	do	simple	extract	methods	and	a	variety
of	other	refactorings,	but	they	don’t	handle	all	the	auxiliary	refactoring	that	people	often
want	to	do	when	they	break	up	large	methods.	For	instance,	often	we’re	tempted	to	reorder
statements	to	group	them	for	extraction.	No	current	tool	does	the	analysis	needed	to	see
whether	reordering	can	be	done	safely.	That’s	a	shame	because	it	can	be	a	source	of	bugs.

To	use	refactoring	tools	effectively	with	large	methods,	it	pays	to	make	a	series	of	changes
solely	with	the	tool	and	to	avoid	all	other	edits	to	the	source.	This	might	feel	like
refactoring	with	one	hand	behind	your	back,	but	it	gives	you	a	clean	separation	between
changes	that	are	known	to	be	safe	and	changes	that	aren’t.	When	you	refactor	like	this,
you	should	avoid	even	simple	things,	such	as	reordering	statements	and	breaking	apart
expressions.	If	your	tool	supports	variable	renaming,	that’s	great,	but	if	it	doesn’t,	put	that
off	until	later.

When	doing	automated	refactoring	without	tests,	use	the	tool	exclusively.	After	a	series	of	automated	refactorings,
you	can	often	get	tests	in	place	that	you	can	use	to	verify	any	manual	edits	that	you	make.

When	you	do	your	extractions,	these	should	be	your	key	goals:

1.	To	separate	logic	from	awkward	dependencies

2.	To	introduce	seams	that	make	it	easier	to	get	tests	in	place	for	more	refactoring

Here	is	an	example:
class	CommoditySelectionPanel
{
				…
				public	void	update()	{
								if	(commodities.size()	>	0
																&&	commodities.GetSource().equals(“local”))	{
												listbox.clear();
												for	(Iterator	it	=	commodities.iterator();
																								it.hasNext();)	{
																Commodity	current	=	(Commodity)it.next();
																if	(commodity.isTwilight()
																												&&	!commodity.match(broker))
																				listbox.add(commodity.getView());
												}
								}
								…
				}
				…

}

In	this	method,	a	lot	of	things	could	be	cleaned	up.	One	of	the	odd	things	is	that	this	sort
of	filtering	work	is	happening	on	a	panel	class,	something	that	should	ideally	just	be
responsible	for	display.	Untangling	this	code	is	bound	to	be	difficult.	If	we	want	to	start
writing	tests	against	the	method	as	it	stands	now,	we	could	write	them	against	the	list	box
state,	but	that	wouldn’t	move	us	too	far	along	toward	making	the	design	better.

With	refactoring	support,	we	can	start	to	name	high-level	pieces	of	the	method	and	break
dependencies	at	the	same	time.	This	is	what	the	code	would	look	like	after	a	series	of
extractions.
class	CommoditySelectionPanel
{
				…
				public	void	update()	{
								if	(commoditiesAreReadyForUpdate())	{
												clearDisplay();
												updateCommodities();
								}

								…
				}

				private	boolean	commoditiesAreReadyForUpdate()	{
								return	commodities.size()	>	0
																&&	commodities.GetSource().equals(“local”);
				}
				private	void	clearDisplay()	{
								listbox.clear();
				}

				private	void	updateCommodities()	{
								for	(Iterator	it	=	commodities.iterator();	it.hasNext();)	{
												Commodity	current	=	(Commodity)it.next();)
												if	(singleBrokerCommodity(commodity))	{
																displayCommodity(current.getView());
												}
								}
				}

				private	boolean	singleBrokerCommodity(Commodity	commodity)	{
								return	commodity.isTwilight()	&&	!commodity.match(broker);
				}

				private	void	displayCommodity(CommodityView	view)	{
								listbox.add(view);
				}

				…
}

Frankly,	the	code	in	update	doesn’t	look	that	different	structurally;	it	is	still	just	an	if-
statement	with	some	work	inside	of	it.	But	the	work	has	been	delegated	to	methods	now.
The	update	method	looks	like	a	skeleton	of	the	code	that	it	came	from.	And	what	about	those
names?	They	seem	a	little	hokey,	don’t	they?	But	they	are	a	good	starting	point.	At	the
very	least,	they	allow	the	code	to	communicate	at	a	higher	level,	and	they	introduce	seams
that	allow	us	to	break	dependencies.	We	can	Subclass	and	Override	Method	(401)	to	sense
through	displayCommodity	and	clearDisplay.	After	we’ve	done	that,	we	can	look	at	the	possibility	of

making	a	display	class	and	moving	those	methods	over	it,	using	those	tests	as	leverage.	In
this	case,	however,	it	would	be	more	appropriate	to	see	if	we	can	move	update	and
updateCommodities	to	another	class	and	leave	clearDisplay	and	displayCommodity	here	so	that	we	can	take
advantage	of	the	fact	that	this	class	is	a	panel,	a	display.	We	can	rename	methods	later	as
they	settle	into	place.	After	additional	refactoring,	our	design	can	end	up	looking
something	like	Figure	22.4.

Figure	22.4	Logic	class	extracted	from	CommoditySelectionPanel.

The	key	thing	to	remember	when	you	use	an	automated	tool	to	extract	methods	is	that	you
can	do	a	lot	of	coarse	work	safely	and	handle	the	details	after	you	get	other	tests	in	place.
Don’t	be	too	concerned	about	methods	that	seem	like	they	don’t	fit	the	class.	Often	they
point	toward	the	need	to	extract	a	new	class	later.	See	Chapter	20,	This	Class	Is	Too	Big
and	I	Don’t	Want	It	to	Get	Any	Bigger,	for	more	ideas	on	how	to	do	this.

The	Manual	Refactoring	Challenge
When	you	have	automated	refactoring	support,	you	don’t	have	to	do	anything	special	to
start	breaking	down	large	methods.	Good	refactoring	tools	check	each	refactoring	that	you
attempt	and	disallow	ones	that	they	can’t	perform	safely.	But	when	you	don’t	have	a
refactoring	tool,	correctness	is	something	that	you	have	to	work	to	maintain,	and	tests	are
the	strongest	tool	around.

Monster	methods	make	testing,	refactoring,	and	feature	addition	very	difficult.	If	you	are
able	to	create	instances	of	the	class	housing	the	method	in	a	test	harness,	you	can	attempt
to	devise	some	set	of	test	cases	that	will	give	you	confidence	as	you	break	down	the
method.	If	the	logic	in	the	method	is	particularly	complex,	this	can	be	a	nightmare.
Fortunately,	in	those	cases,	we	can	use	a	couple	of	techniques.	Before	we	look	at	them,
though,	let’s	look	at	what	can	go	wrong	when	we	extract	methods.

Here	is	a	little	list.	It	doesn’t	contain	every	possible	error,	but	it	has	the	most	common
ones:

1.	We	can	forget	to	pass	a	variable	into	the	extracted	method.	Often	the	compiler	tells
us	about	the	missing	variable	(unless	it	has	the	same	name	as	an	instance	variable),
but	we	could	just	think	that	it	needs	to	be	a	local	variable	and	declare	it	in	the	new
method.

2.	We	could	give	the	extracted	method	a	name	that	hides	or	overrides	a	method	with
the	same	name	in	a	base	class.

3.	We	could	make	a	mistake	when	we	pass	in	parameters	or	assign	return	values.	We
could	do	something	really	silly,	such	as	return	the	wrong	value.	More	subtly,	we
could	return	or	accept	the	wrong	types	in	the	new	method.

Quite	a	few	things	can	go	wrong.	The	techniques	in	this	section	can	help	make	extraction
less	risky	when	we	don’t	have	tests	in	place.

Introduce	Sensing	Variable

We	might	not	want	to	add	features	to	production	code	when	we’re	refactoring	it,	but	that
doesn’t	mean	that	we	can’t	add	any	code.	Sometimes	it	helps	to	add	a	variable	to	a	class
and	use	it	to	sense	conditions	in	the	method	that	we	want	to	refactor.	When	we’ve	done
the	refactoring	that	we	need	to	do,	we	can	get	rid	of	that	variable,	and	our	code	will	be	in	a
clean	state.	This	is	called	Introduce	Sensing	Variable.	Here	is	an	example.	We	start	with	a
method	on	a	Java	class	named	DOMBuilder.	We	want	to	clean	it	up,	but,	unfortunately,	we	don’t
have	a	refactoring	tool:
public	class	DOMBuilder
{
				…
				void	processNode(XDOMNSnippet	root,	List	childNodes)
				{
								if	(root	!=	null)	{
												if	(childNodes	!=	null)
																root.addNode(new	XDOMNSnippet(childNodes));
												root.addChild(XDOMNSnippet.NullSnippet);
								}
								List	paraList	=	new	ArrayList();
								XDOMNSnippet	snippet	=	new	XDOMNReSnippet();
								snippet.setSource(m_state);
								for	(Iterator	it	=	childNodes.iterator();
																it.hasNext();)	{
												XDOMNNode	node	=	(XDOMNNode)it.next();
												if	(node.type()	==	TF_G	||	node.type()	==	TF_H	||
																				(node.type()	==	TF_GLOT	&&	node.isChild()))	{
																paraList.addNode(node);
												}
												…
								}
								…
				}
				…
}

In	this	example,	it	seems	like	a	lot	of	the	work	in	the	method	happens	to	an	XDOMNSnippet.	That
means	that	we	should	be	able	to	write	whatever	tests	we	need	by	passing	different	values
as	arguments	to	this	method.	But,	in	actuality,	a	lot	of	work	happens	tangentially,	things
that	can	be	sensed	in	only	a	very	indirect	way.	In	a	situation	like	this,	we	can	introduce
sensing	variables	to	aid	our	work;	we	could	introduce	an	instance	variable	to	see	that	a
node	is	added	to	the	paraList	when	it	has	the	proper	node	type.
public	class	DOMBuilder
{
				public	boolean	nodeAdded	=	false;
				…
				void	processNode(XDOMNSnippet	root,	List	childNodes)
				{
								if	(root	!=	null)	{
												if	(childNodes	!=	null)
																root.addNode(new	XDOMNSnippet(childNodes));
												root.addChild(XDOMNSnippet.NullSnippet);
								}
								List	paraList	=	new	ArrayList();
								XDOMNSnippet	snippet	=	new	XDOMNReSnippet();
								snippet.setSource(m_state);
								for	(Iterator	it	=	childNodes.iterator();

																				it.hasNext();)	{
												XDOMNNode	node	=	(XDOMNNode)it.next();
												if	(node.type()	==	TF_G	||	node.type()	==	TF_H	||
																				(node.type()	==	TF_GLOT	&&	node.isChild()))	{
																paraList.add(node);
																nodeAdded	=	true;
												}
												…
								}
								…
				}
				…
}

With	that	variable	in	place,	we	still	have	to	engineer	the	input	to	produce	a	case	that
covers	that	condition.	When	we	do,	we	can	extract	that	piece	of	logic,	and	our	tests	should
still	pass.

Here	is	a	test	that	shows	us	that	we	add	a	node	when	the	node	type	is	TF_G:
void	testAddNodeOnBasicChild()
{
				DOMBuilder	builder	=	new	DomBuilder();
				List	children	=	new	ArrayList();
				children.add(new	XDOMNNode(XDOMNNode.TF_G));
				Builder.processNode(new	XDOMNSnippet(),	children);

				assertTrue(builder.nodeAdded);
}

Here	is	a	test	that	shows	that	we	don’t	add	a	node	when	we	have	the	wrong	node	type:
void	testNoAddNodeOnNonBasicChild()
{
				DOMBuilder	builder	=	new	DomBuilder();
				List	children	=	new	ArrayList();
				children.add(new	XDOMNNode(XDOMNNode.TF_A));
				Builder.processNode(new	XDOMNSnippet(),	children);
				assertTrue(!builder.nodeAdded);
}

With	these	tests	in	place,	we	should	feel	better	about	extracting	the	body	of	the	condition
that	determines	whether	nodes	are	added.	We	are	copying	the	entire	condition,	and	the	test
shows	that	the	node	was	added	when	the	condition	was	exercised.
public	class	DOMBuilder
{
				void	processNode(XDOMNSnippet	root,	List	childNodes)
				{
								if	(root	!=	null)	{
												if	(childNodes	!=	null)
																root.addNode(new	XDOMNSnippet(childNodes));
												root.addChild(XDOMNSnippet.NullSnippet);
								}
								List	paraList	=	new	ArrayList();
								XDOMNSnippet	snippet	=	new	XDOMNReSnippet();
								snippet.setSource(m_state);
								for	(Iterator	it	=	childNodes.iterator();
																it.hasNext();)	{
												XDOMNNode	node	=	(XDOMNNode)it.next();
												if	(isBasicChild(node))	{
																paraList.addNode(node);

																nodeAdded	=	true;
												}
												…
								}
								…
				}
				private	boolean	isBasicChild(XDOMNNode	node)	{
								return	node.type()	==	TF_G
												||	node.type()	==	TF_H
												||	node.type()	==	TF_GLOT	&&	node.isChild());
				}
				…
}

Later,	we	can	remove	the	flag	and	the	test.

In	this	case,	I	used	a	boolean	variable.	I	just	wanted	to	see	whether	the	node	was	still
added	after	we	extracted	the	condition.	I	felt	pretty	confident	that	I	could	extract	the	entire
body	of	the	condition	without	introducing	errors,	so	I	didn’t	test	all	of	the	logic	of	the
condition.	These	tests	just	provided	a	quick	way	of	checking	to	make	sure	that	the
condition	was	still	part	of	the	code	path	after	the	extraction.	For	more	guidance	on	how
much	testing	to	do	during	method	extraction	see	Targeted	Testing	(189)	in	Chapter	13,	I
Need	to	Make	a	Change	but	I	Don’t	Know	What	Tests	to	Write.

When	you	are	using	sensing	variables,	it	is	a	good	idea	to	keep	them	in	the	class	over	a
series	of	refactorings	and	delete	them	only	after	your	refactoring	session.	I	often	do	this	so
that	I	can	see	all	of	the	tests	that	I	write	to	do	the	extractions	and	undo	them	easily	if	I	find
that	I	want	to	extract	in	a	different	way.	When	I’m	done,	I	end	up	deleting	these	tests	or
refactoring	them	so	that	they	test	the	methods	I	extract	rather	than	the	original	method.

Sensing	variables	are	a	key	tool	for	teasing	apart	monster	methods.	You	can	use	them	to
do	some	refactoring	deep	inside	snarled	methods,	but	you	can	also	use	them	to
progressively	de-snarl	methods.	For	example,	if	we	have	a	method	that	nests	most	of	its
code	deep	inside	a	set	of	conditional	statements,	we	can	use	sensing	variables	to	extract
conditional	statements	or	extract	bodies	of	conditional	statements	into	new	methods.	We
can	use	sensing	variables	to	work	on	those	new	methods	as	well	until	we’ve	de-snarled	the
code.

Extract	What	You	Know

Another	strategy	that	we	can	use	when	we	are	working	with	monster	methods	is	to	start
small	and	find	little	pieces	of	code	that	we	can	extract	confidently	without	tests,	and	then
add	tests	to	cover	them.	Okay,	I	need	to	say	this	in	a	different	way	because	everyone’s	idea
of	“little”	is	different.	When	I	say	“little,”	I	mean	two	or	three	lines—five,	at	most,	a
chunk	of	code	that	you	can	easily	name.	The	key	thing	to	pay	attention	to	when	you	do
these	little	extractions	is	the	coupling	count	of	the	extraction.	The	coupling	count	is	the
number	of	values	that	pass	into	and	out	of	the	method	you	are	extracting.	For	example,	if
we	extract	a	max	method	out	of	the	following	method,	its	count	will	be	3:
void	process(int	a,	int	b,	int	c)	{
				int	maximum;
				if	(a	>	b)
								maximum	=	a;
				else
								maximum	=	b;

				…
}

Here	is	the	code	after	the	extraction:
void	process(int	a,	int	b,	int	c)	{
				int	maximum	=	max(a,b);
				…
}

The	coupling	count	of	the	method	is	3:	two	variables	in	and	one	variable	out.	It	is	good	to
favor	extractions	with	a	small	count	because	it	is	not	as	easy	to	make	a	mistake.	When	you
are	trying	to	pick	extractions,	look	for	a	small	number	of	lines	and	start	counting	the
variables	that	come	in	and	go	out.	Accesses	of	instance	variables	don’t	count	because	we
are	just	cut/copy	pasting	them	out;	they	don’t	pass	through	the	interface	of	the	method	we
are	extracting.

The	key	danger	in	a	method	extraction	is	a	type	conversion	error.	We	have	a	better	chance
of	avoiding	those	if	we	extract	only	methods	that	have	a	low	coupling	count.	When	we’ve
identified	a	possible	extraction,	we	should	look	back	and	find	where	each	variable	that	is
passed	is	declared,	to	make	sure	that	we	get	the	method	signature	right.

If	extractions	with	a	low	coupling	count	are	safer,	then	extractions	with	a	count	of	0	must
be	the	safest	of	all—and	they	are.	You	can	make	a	lot	of	headway	in	a	monster	method	by
just	extracting	methods	that	don’t	accept	any	parameters	and	don’t	return	any	values.
These	methods	are	really	commands	to	do	something.	You	tell	the	object	to	do	something
to	its	state,	or,	more	sleazily,	you	tell	the	object	to	do	things	with	some	global	state.
Regardless,	when	you	attempt	to	name	chunks	of	code	like	this,	you	often	end	up	getting
more	insight	into	what	the	chunk	is	about	and	how	it	is	supposed	to	affect	the	object.	This
sort	of	insight	can	cascade	into	more	insights	and	cause	you	to	see	your	design	from
different,	more	productive	perspectives.

When	you	use	Extract	What	You	Know,	make	sure	that	you	don’t	choose	chunks	that	are
too	large.	And	if	the	coupling	count	is	greater	than	0,	often	it	pays	to	use	a	sensing
variable.	After	you	extract,	write	a	few	tests	for	the	method	you	extracted.

When	you	use	this	technique	with	small	chunks,	it	is	hard	to	see	progress	as	you	whittle
away	at	a	monster	method,	but	progress	has	a	way	of	sneaking	up	on	you.	Every	time	that
you	go	back	and	extract	another	little	piece	that	you	know,	you	clarify	the	method	a	little
bit.	Over	time,	you	might	get	a	better	sense	of	the	method’s	scope	and	what	directions
you’d	like	to	take	it	in.

When	I	don’t	have	a	refactoring	tool,	I	often	start	to	extract	0-count	methods	just	to	get	a
sense	of	the	overall	structure.	Often	it	is	a	good	prelude	to	testing	and	further	work.

If	you	have	a	bulleted	method,	you	might	think	that	you’ll	be	able	to	extract	many	0-count
methods	and	that	each	chunk	will	be	a	good	one.	Sometimes	you’ll	find	a	chunk	that	is
like	that,	but	often	chunks	use	temporary	variables	declared	before	them.	Sometimes	you
have	to	ignore	the	“chunk	structure”	of	a	bulleted	method	and	look	for	low-count	methods
inside	chunks	and	across	chunks.

Gleaning	Dependencies

Sometimes	there	is	code	in	a	monster	method	that	is	kind	of	secondary	to	the	method’s

main	purpose.	It	is	necessary,	but	it	isn’t	terribly	complex,	and	if	you	accidentally	break	it,
it	will	be	obvious.	But	although	all	of	that	is	true,	you	simply	cannot	take	a	chance	on
breaking	the	main	logic	of	the	method.	In	cases	like	these,	you	can	use	a	technique	called
gleaning	dependencies.	You	write	tests	for	the	logic	that	you	need	to	preserve.	Afterward,
you	extract	things	that	the	tests	do	not	cover.	When	you	do	this,	you	can	at	least	have
confidence	that	you	are	preserving	the	important	behavior.	Here	is	a	simple	example:
void	addEntry(Entry	entry)	{
				if	(view	!=	null	&&	DISPLAY	==	true)	{
								view.show(entry);
				}
				…
				if	(entry.category().equals(“single”)
																||	entry.category(“dual”))	{
								entries.add(entry);
								view.showUpdate(entry,	view.GREEN);
				}
				else	{
								…
				}
}

If	we	make	a	mistake	with	the	display	code,	we’ll	see	it	pretty	quickly.	An	error	in	the	add
logic,	though,	is	something	that	might	take	quite	a	while	to	find.	In	a	case	like	this,	we	can
write	tests	for	the	method	and	verify	that	the	adds	happen	under	the	right	conditions.	Then
when	we	are	confident	that	all	of	that	behavior	is	covered,	we	can	extract	the	display	code
and	know	that	our	extraction	will	not	affect	entry	addition.

In	some	ways,	Gleaning	Dependencies	feels	like	a	cop-out.	You	are	preserving	one	set	of
behaviors	and	working	with	another	in	an	unprotected	way.	But	not	all	behaviors	are	equal
in	an	application.	Some	are	more	critical,	and	we	can	recognize	that	when	we	work.

Gleaning	Dependencies	is	particularly	powerful	when	critical	behavior	is	tangled	with
other	behavior.	When	you	have	solid	tests	for	the	critical	behavior,	you	can	do	a	lot	of
editing	that	technically	isn’t	all	covered	by	tests,	but	it	helps	you	to	preserve	key	behavior.

Break	Out	a	Method	Object

Sensing	variables	are	very	powerful	tools	in	our	arsenal,	but	sometimes	you	notice	that
you	already	have	variables	that	would	be	ideal	for	sensing	but	that	are	local	to	the	method.
If	they	were	instance	variables,	you	could	sense	through	them	after	a	method	runs.	You
can	turn	local	variables	into	instance	variables,	but,	in	many	cases,	that	can	be	confusing.
The	state	that	you	put	there	will	be	common	only	to	the	monster	method	and	the	methods
that	you	extract	from	it.	Although	it	will	be	reinitialized	every	time	the	monster	method	is
called,	it	can	be	hard	to	understand	what	the	variables	will	hold	if	you	want	to	call
methods	that	you’ve	extracted	independently.

One	alternative	is	Break	Out	Method	Object	(330).	This	technique	was	first	described	by
Ward	Cunningham,	and	it	epitomizes	the	idea	of	an	invented	abstraction.	When	you	break
out	a	method	object,	you	create	a	class	whose	only	responsibility	is	to	do	the	work	of	your
monster	method.	The	parameters	of	the	method	become	parameters	to	a	constructor	on	the
new	class,	and	the	code	of	the	monster	method	can	go	into	a	method	named	run	or	execute	on
the	new	class.	When	the	code	has	been	moved	to	the	new	class,	we’re	in	a	great	position
to	refactor.	We	can	turn	the	temporary	variables	in	the	method	into	instance	variables	and

sense	through	them	as	we	break	down	the	method.

Breaking	out	a	method	object	is	a	pretty	drastic	move,	but	unlike	introducing	a	sensing
variable,	the	variables	that	you	are	using	are	needed	for	production.	This	allows	you	to
build	up	tests	that	you	can	keep.	See	Break	Out	Method	Object	(330)	for	a	detailed
example.

Strategy
The	techniques	I’ve	described	in	this	chapter	can	help	you	break	up	monster	methods	for
additional	refactoring	or	just	feature	addition.	This	section	contains	some	guidance	about
how	to	make	structural	tradeoffs	as	you	do	this	work.

Skeletonize	Methods

When	you	have	a	conditional	statement	and	you	are	looking	for	places	to	extract	a
method,	you	have	two	choices.	You	can	extract	the	condition	and	the	body	together,	or	you
can	extract	them	separately.	Here	is	an	example:
if	(marginalRate()	>	2	&&	order.hasLimit())	{
				order.readjust(rateCalculator.rateForToday());
				order.recalculate();
}

If	you	extract	the	condition	and	the	body	to	two	different	methods,	you	are	in	a	better
position	to	reorganize	the	logic	of	the	method	later:
if	(orderNeedsRecalculation(order))	{
				recalculateOrder(order,	rateCalculator);
}

I	call	this	skeletonizing	because	when	you	are	done,	all	that	is	left	in	the	method	is	a
skeleton:	the	control	structure	and	delegations	to	other	methods.

Find	Sequences

When	you	have	a	conditional	statement	and	you	are	looking	for	places	to	extract	a
method,	you	have	two	choices.	You	can	extract	the	condition	and	the	body	together	or	you
can	extract	them	separately.	Here	is	another	example:
…
if	(marginalRate()	>	2	&&	order.hasLimit())	{
				order.readjust(rateCalculator.rateForToday());
				order.recalculate();
}
…

If	you	extract	the	condition	and	the	body	to	the	same	method,	you	are	in	a	better	position
to	identify	a	common	sequence	of	operations:

…
				recalculateOrder(order,	rateCalculator);
				…

void	recalculateOrder(Order	order,
																						RateCalculator	rateCalculator)	{
				if	(marginalRate()	>	2	&&	order.hasLimit())	{
								order.readjust(rateCalculator.rateForToday());
								order.recalculate();

				}
}

It	might	turn	out	that	the	rest	of	the	method	is	just	a	sequence	of	operations	that	happen
one	after	another,	and	it	will	be	clearer	if	we	are	able	to	see	that	sequence.

Wait,	did	I	just	give	completely	conflicting	advice?	Yes,	I	did.	The	fact	is,	I	often	go	back
and	forth	between	skeletonizing	methods	and	finding	sequences.	Chances	are,	you	will,
too.	I	skeletonize	when	I	feel	that	the	control	structure	will	need	to	be	refactored	after	it	is
clarified.	I	attempt	to	find	sequences	when	I	feel	that	identifying	an	overarching	sequence
will	make	the	code	clearer.

Bulleted	methods	lean	me	toward	finding	sequences,	and	snarled	methods	lean	me	toward
skeletonizing,	but	your	choice	of	strategy	really	depends	upon	the	design	insights	you	get
when	you	are	doing	your	extractions.

Extract	to	the	Current	Class	First

When	you	start	to	extract	methods	from	a	monster	method,	you’ll	probably	notice	that
some	of	the	chunks	of	code	that	you	are	extracting	really	belong	in	other	classes.	One
strong	indication	is	the	name	you’re	tempted	to	use.	If	you	look	at	a	piece	of	code	and	you
are	tempted	to	use	the	name	of	one	of	the	variables	you	are	using	in	it,	chances	are	good
that	the	code	belongs	on	the	class	of	that	variable.	That	would	be	the	case	in	this	snippet:
if	(marginalRate()	>	2	&&	order.hasLimit())	{
				order.readjust(rateCalculator.rateForToday());
				order.recalculate();
}

It	looks	like	we	could	call	this	piece	of	code	recalculateOrder.	That	would	be	a	decent	name,	but
if	we	are	using	the	word	order	in	the	method	name,	maybe	this	piece	of	code	should	move
onto	the	Order	class	and	be	called	recalculate.	Yes,	there	is	a	method	named	recalculate	already,	so
we	might	want	to	think	about	what	makes	this	recalculation	different	and	use	that
information	in	the	name,	or	rename	the	recalculate	method	that	is	already	there.	Regardless,	it
looks	like	this	piece	of	code	belongs	on	that	class.

Although	it	is	tempting	to	extract	directly	to	another	class,	don’t	do	it.	Use	the	awkward
name	first.	The	name	recalculateOrder	is	awkward,	but	it	lets	us	do	some	easily	undoable
extractions	and	explore	whether	we’ve	extracted	the	right	chunk	of	code	to	move	forward.
We	can	always	move	the	method	to	another	class	later	when	the	best	direction	for	our
changes	presents	itself.	In	the	meantime,	extracting	to	the	current	class	moves	us	forward
and	it	is	less	error	prone.

Extract	Small	Pieces

I	mentioned	this	earlier,	but	I	want	to	underscore	it:	Extract	small	pieces	first.	Before	you
extract	this	small	piece	of	a	monster	method,	it	looks	like	it	won’t	make	any	difference	at
all.	After	you	extract	more	pieces,	you’ll	probably	see	the	original	method	in	a	different
way.	You	might	see	a	sequence	that	was	obscured	before	or	see	a	better	way	for	the
method	to	be	organized.	When	you	see	those	directions,	you	can	move	toward	them.	This
is	a	far	better	strategy	than	trying	to	break	up	a	method	into	large	chunks	from	the
beginning.	Too	often	that	isn’t	as	easy	as	it	looks;	it	isn’t	as	safe.	It’s	easier	to	miss	the
details,	and	the	details	are	what	make	the	code	work.

Be	Prepared	to	Redo	Extractions

There	are	many	ways	to	slice	a	pie	and	many	ways	to	break	down	a	monster	method.	After
you	make	some	extractions,	you’ll	usually	find	better	ways	to	accommodate	new	features
more	easily.	Sometimes	the	best	way	to	move	forward	is	to	undo	an	extraction	or	two	and
re-extract.	When	you	do	this,	it	doesn’t	mean	that	the	first	extractions	were	wasted	effort.
They	gave	you	something	very	important:	insight	into	old	design	and	into	a	better	way	of
moving	forward.

Chapter	23:	How	Do	I	Know	That	I’m	Not	Breaking
Anything?

Code	is	a	strange	sort	of	building	material.	Most	materials	that	you	can	make	things	from,
such	as	metal,	wood,	and	plastic,	fatigue.	They	break	when	you	use	them	over	time.	Code
is	different.	If	you	leave	it	alone,	it	never	breaks.	Short	of	the	stray	cosmic	ray	flipping	a
bit	on	your	storage	media,	the	only	way	it	gets	a	fault	is	for	someone	to	edit	it.	Run	a
machine	made	of	metal	over	and	over	again,	and	it	will	eventually	break.	Run	the	same
code	over	and	over	again,	and,	well,	it	will	just	run	over	and	over	again.

This	puts	a	large	burden	on	us	as	developers.	Not	only	are	we	the	primary	agents	that
introduce	faults	in	software,	but	it’s	also	pretty	easy	to	do	so.	How	easy	is	it	to	change
code?	Mechanically,	it	is	pretty	simple.	Anyone	can	open	a	text	editor	and	spew	the	most
arcane	nonsense	into	it.	Type	in	a	poem.	Some	of	them	compile	(go	to	www.ioccc.org	and
see	the	Obfuscated	C	code	contest	for	details).	Humor	aside,	it	really	is	amazing	how	easy
it	is	to	break	software.	Have	you	ever	tracked	down	a	mysterious	bug	only	to	discover	that
it	was	some	stray	character	that	you	accidentally	typed?	Some	character	that	was	entered
when	the	cover	of	a	book	dropped	down	as	you	passed	it	to	someone	over	your	keyboard?
Code	is	pretty	fragile	material.

In	this	chapter,	we	discuss	a	variety	of	ways	to	reduce	risk	when	we	edit.	Some	of	them
are	mechanical	and	some	are	psychological	(ouch!),	but	focusing	on	them	is	important,
especially	as	we	break	dependencies	in	legacy	code	to	get	tests	in	place.

Hyperaware	Editing
What	do	we	do	when	we	edit	code,	really?	What	are	we	trying	to	accomplish?	We	usually
have	large	goals.	We	want	to	add	a	feature	or	fix	a	bug.	It’s	great	to	know	what	those	goals
are,	but	how	do	we	translate	them	into	action?

When	we	sit	down	at	a	keyboard,	we	can	classify	every	keystroke	that	we	make	into	one
of	two	categories.	The	keystroke	either	changes	the	behavior	of	the	software	or	it	doesn’t.
Typing	text	in	a	comment?	That	doesn’t	change	behavior.	Typing	text	in	a	string	literal?
That	does,	most	of	the	time.	If	the	string	literal	is	in	code	that	is	never	called,	behavior
won’t	change.	The	keystroke	that	you	do	later	to	finish	a	method	call	that	uses	that	string
literal,	well,	that	one	changes	behavior.	So	technically,	holding	down	the	spacebar	when
you	are	formatting	your	code	is	refactoring	in	a	very	micro	sense.	Sometimes	typing	code
is	refactoring	also.	Changing	a	numeric	literal	in	an	expression	that	is	used	in	your	code
isn’t	refactoring;	it’s	a	functional	change,	and	it’s	important	to	know	that	when	you	are
typing.

This	is	the	meat	of	programming,	knowing	exactly	what	each	of	our	keystrokes	does.	This
doesn’t	mean	that	we	have	to	be	omniscient,	but	anything	that	helps	us	know—really
know—how	we	are	affecting	software	when	we	type	can	help	us	reduce	bugs.	Test-driven
development	(88)	is	very	powerful	in	this	way.	When	you	can	get	your	code	into	a	test
harness	and	run	tests	against	it	in	less	than	a	second,	you	can	run	the	tests	whenever	you
need	to	incredibly	fast	and	really	know	what	the	effects	of	a	change	are.

http://www.ioccc.org

If	it	isn’t	out	by	the	time	this	book	is	released,	I	suspect	that	someone	will	soon	develop	an	IDE	that	allows	you	to
specify	a	set	of	tests	that	will	run	at	every	keystroke.	It	would	be	an	incredible	way	of	closing	the	feedback	loop.

It	has	to	happen.	It	just	seems	inevitable.	There	are	already	IDEs	that	check	syntax	on	each	keystroke	and	change	the
color	of	code	when	there	are	errors.	Edit-triggered	testing	is	the	next	step.

Tests	foster	hyperaware	editing.	Pair	programming	does	also.	Does	hyperaware-editing
sound	exhausting?	Well,	too	much	of	anything	is	exhausting.	The	key	thing	is	that	it	isn’t
frustrating.	Hyperaware	editing	is	a	flow	state,	a	state	in	which	you	can	just	shut	out	the
world	and	work	sensitively	with	the	code.	It	can	actually	be	very	refreshing.	Personally,	I
get	far	more	tired	when	I’m	not	getting	any	feedback.	At	that	point,	I	get	scared	that	I’m
breaking	the	code	without	knowing	it.	I’m	struggling	to	maintain	all	of	this	state	in	my
head,	remembering	what	I’ve	changed	and	what	I	haven’t,	and	thinking	about	how	I’ll	be
able	to	convince	myself	later	that	I’ve	really	done	what	I	set	out	to	do.

Single-Goal	Editing
I	don’t	expect	that	everyone’s	first	impressions	of	the	computer	industry	are	the	same,	but
when	I	first	thought	about	becoming	a	programmer,	I	was	really	captivated	by	stories
about	super-smart	programmers,	those	guys	and	gals	who	could	keep	the	state	of	an	entire
system	in	their	heads,	write	correct	code	on	the	fly,	and	know	immediately	whether	some
change	was	right	or	wrong.	It’s	true	that	people	vary	widely	in	their	ability	to	hold	on	to
large	amounts	of	arcane	detail	in	their	heads.	I	can	do	that,	to	some	degree.	I	used	to	know
many	of	the	obscure	parts	of	the	C++	programming	language,	and,	at	one	point,	I	had
decent	recall	of	the	details	of	the	UML	metamodel	before	I	realized	that	being	a
programmer	and	knowing	that	much	about	the	details	of	UML	was	really	pointless	and
somewhat	sad.

The	truth	is,	there	are	many	different	kinds	of	“smart.”	Holding	on	to	a	lot	of	state
mentally	can	be	useful,	but	it	doesn’t	really	make	us	better	at	decision-making.	At	this
point	in	my	career,	I	think	I’m	a	much	better	programmer	than	I	used	to	be,	even	though	I
know	less	about	the	details	of	each	language	I	work	in.	Judgment	is	a	key	programming
skill,	and	we	can	get	into	trouble	when	we	try	to	act	like	super-smart	programmers.

Has	this	ever	happened	to	you?	You	start	to	work	on	one	thing,	and	then	you	think,
“Hmm,	maybe	I	should	clean	this	up.”	So	you	stop	to	refactor	a	bit,	but	you	start	to	think
about	what	the	code	should	really	look	like,	and	then	you	pause.	That	feature	you	were
working	on	still	needs	to	be	done,	so	you	go	back	to	the	original	place	where	you	were
editing	code.	You	decide	that	you	need	to	call	a	method,	and	then	you	hop	over	to	where
the	method	is,	but	you	discover	that	the	method	is	going	to	need	to	do	something	else,	so
you	start	to	change	it	while	the	original	change	was	pending	and	(catching	breath)	your
pair	partner	is	next	to	you	yelling	“Yeah,	yeah,	yeah!	Fix	that	and	then	we’ll	do	this.”	You
feel	like	a	racehorse	running	down	the	track,	and	your	partner	isn’t	really	helping.	He’s
riding	you	like	a	jockey	or,	worse,	a	gambler	in	the	stands.

Well,	that’s	how	it	goes	on	some	teams.	A	pair	has	an	exciting	programming	episode,	but
the	last	three	quarters	of	it	involve	fixing	all	of	the	code	they	broke	in	the	previous	quarter.
Sounds	horrible,	right?	But,	no,	sometimes	it’s	fun.	You	and	your	partner	get	to	saunter
away	from	the	machine	like	heroes.	You	met	the	beast	in	its	lair	and	killed	it.	You’re	top
dog.

Is	it	worth	it?	Let’s	look	at	another	way	of	doing	this.

You	need	to	make	a	change	to	a	method.	You	already	have	the	class	in	a	test	harness,	and
you	start	to	make	the	change.	But	then	you	think,	“Hey,	I’ll	need	to	change	this	other
method	over	here,”	so	you	stop	and	you	navigate	to	it.	It	looks	messy,	so	you	start	to
reformat	a	line	or	two	to	see	what	is	going	on.	Your	partner	looks	at	you	and	says,	“What
are	you	doing?”	You	say,	“Oh,	I	was	checking	to	see	if	we’ll	have	to	change	method	X.”
Your	partner	says,	“Hey	let’s	do	one	thing	at	a	time.”	Your	partner	writes	down	the	name
of	method	X	on	a	piece	of	paper	next	to	the	computer,	and	you	go	back	and	finish	the	edit.
You	run	your	tests	and	notice	that	all	of	them	pass.	Then	you	go	over	and	look	at	the	other
method.	Sure	enough,	you	have	to	change	it.	You	start	to	write	another	test.	After	a	bit
more	programming,	you	run	your	tests	and	start	to	integrate.	You	and	your	partner	look
over	to	the	other	side	of	the	table.	There	you	see	two	other	programmers.	One	is	yelling
“Yeah,	yeah,	yeah!	Fix	that	and	then	we’ll	do	this.”	They’ve	been	working	on	that	task	for
hours,	and	they	look	pretty	exhausted.	If	history	is	any	guide,	they’ll	fail	integration	and
spend	a	few	more	hours	working	together.

I	have	this	little	mantra	that	I	repeat	to	myself	when	I’m	working:	“Programming	is	the	art
of	doing	one	thing	at	a	time.”	When	I’m	pairing,	I	always	ask	my	partner	to	challenge	me
on	that,	to	ask	me	“What	are	you	doing?”	If	I	answer	more	than	one	thing,	we	pick	one.	I
do	the	same	for	my	partner.	Frankly,	it’s	just	faster.	When	you	are	programming,	it	is
pretty	easy	to	pick	off	too	big	of	a	chunk	at	a	time.	If	you	do,	you	end	up	thrashing	and
just	trying	things	out	to	make	things	work	rather	than	working	very	deliberately	and	really
knowing	what	your	code	does.

Preserve	Signatures
When	we	edit	code	there	are	many	ways	we	can	make	mistakes.	We	can	misspell	things,
we	can	use	the	wrong	data	type,	we	can	type	one	variable	and	mean	another—the	list	is
endless.	Refactoring	is	particularly	error-prone.	Often	it	involves	very	invasive	editing.
We	copy	things	around	and	make	new	classes	and	methods;	the	scale	is	much	larger	than
just	adding	in	a	new	line	of	code.

In	general,	the	way	to	handle	the	situation	is	to	write	tests.	When	we	have	tests	in	place,
we’re	able	to	catch	many	of	the	errors	that	we	make	when	we	change	code.	Unfortunately,
in	many	systems,	we	have	to	refactor	a	bit	just	to	make	the	system	testable	enough	to
refactor	more.	These	initial	refactorings	(the	dependency-breaking	techniques	in	the
catalog	in	Chapter	25)	are	meant	to	be	done	without	tests,	and	they	have	to	be	particularly
conservative.

When	I	first	started	using	these	techniques,	it	was	tempting	to	do	too	much.	When	I
needed	to	extract	the	entire	body	of	a	method,	rather	than	just	copying	and	pasting	the
arguments	when	I	declared	a	method,	I	did	other	cleanup	work	as	well.	For	example,	when
I	had	to	extract	the	body	of	a	method	and	make	it	static	(Expose	Static	Method	(345)),	like
this:
public	void	process(List	orders,
																				int	dailyTarget,
																				double	interestRate,
																				int	compensationPercent)	{
					…

					//	complicated	code	here
					…
}

I	extracted	it	like	this,	creating	a	couple	of	helper	classes	along	the	way.
public	void	process(List	orders,
																				int	dailyTarget,
																				double	interestRate,
																				int	compensationPercent)	{
					processOrders(new	OrderBatch(orders),
																			new	CompensationTarget(dailyTarget,
																					interestRate	*	100,
																					compensationPercent));
}

I	had	good	intentions.	I	wanted	to	make	the	design	better	as	I	was	breaking	dependencies,
but	it	didn’t	work	out	very	well.	I	ended	up	making	foolish	mistakes,	and	with	no	tests	to
catch	them,	often	they	were	found	far	later	than	they	needed	to	be.

When	you	are	breaking	dependencies	for	test,	you	have	to	apply	extra	care.	One	thing	that
I	do	is	Preserve	Signatures	whenever	I	can.	When	you	avoid	changing	signatures	at	all,
you	can	cut/copy	and	paste	entire	method	signatures	from	place	to	place	and	minimize	any
chances	of	errors.

In	the	previous	example,	I	would	end	up	with	code	like	this:
public	void	process(List	orders,
																				int	dailyTarget,
																				double	interestRate,
																				int	compensationPercent)	{
								processOrders(orders,	dailyTarget,	interestRate,
																											compensationPercent);
}

private	static	void	processOrders(List	orders,
																											int	dailyTarget,
																											double	interestRate,
																											int	compensationPercent)	{
				…
}

The	argument	editing	that	I	had	to	perform	to	do	this	was	very	easy.	Essentially,	only	a
couple	of	steps	were	involved:

1.	I	copied	the	entire	argument	list	into	my	cut/copy	paste	buffer:
List	orders,
int	dailyTarget,
double	interestRate,
int	compensationPercent

2.	Then	I	typed	the	new	method	declaration:
private	void	processOrders()	{
}

3.	I	pasted	the	buffer	into	the	new	method	declaration:
private	void	processOrders(List	orders,
																											int	dailyTarget,
																											double	interestRate,
																											int	compensationPercent)	{

}

4.	I	then	typed	the	call	for	the	new	method:
processOrders();

5.	I	pasted	the	buffer	into	the	call:
processOrders(List	orders,
														int	dailyTarget,
														double	interestRate,
														int	compensationPercent);

6.	Finally,	I	deleted	the	types,	leaving	the	names	of	the	arguments:
processOrders(orders,
														dailyTarget,
														interestRate,
														compensationPercent);

When	you	do	these	moves	over	and	over	again,	they	become	automatic	and	you	can	feel
more	confidence	in	your	changes.	You	can	concentrate	on	some	of	the	other	lingering
issues	that	can	cause	errors	when	you	break	dependencies.	For	instance,	is	your	new
method	hiding	a	method	with	the	same	name	signature	in	a	base	class?

A	couple	of	different	scenarios	exist	for	Preserve	Signatures.	You	can	use	the	technique	to
make	new	method	declarations.	You	can	also	use	it	to	create	a	set	of	instance	methods	for
all	of	the	arguments	to	a	method	when	you	are	doing	the	Break	out	Method	Object
refactoring.	See	Break	out	Method	Object	(330)	for	details.

Lean	on	the	Compiler
The	primary	purpose	of	a	compiler	is	to	translate	source	code	into	some	other	form,	but	in
statically	typed	languages,	you	can	do	much	more	with	a	compiler.	You	can	take
advantage	of	its	type	checking	and	use	it	to	identify	changes	you	need	to	make.	I	call	this
practice	leaning	on	the	compiler.	Here	is	an	example	of	how	to	do	it.

In	a	C++	program,	I	have	a	couple	of	global	variables.
double	domestic_exchange_rate;
double	foreign_exchange_rate;

A	set	of	methods	in	the	same	file	uses	the	variables,	but	I	want	to	find	some	way	to	change
them	under	test	so	I	use	the	Encapsulate	Global	References	(339)	technique	from	the
catalog.

To	do	this,	I	write	a	class	around	the	declarations	and	declare	a	variable	of	that	class.
class	Exchange
{
public:
				double	domestic_exchange_rate;
				double	foreign_exchange_rate;
};

Exchange	exchange;

Now	I	compile	to	find	all	of	the	places	where	the	compiler	can’t	find	domestic_exchange_rate	and
foreign_exchange_rate,	and	I	change	them	so	that	they	are	accessed	off	the	exchange	object.	Here
are	before	and	after	shots	of	one	of	those	changes:

total	=	domestic_exchange_rate	*	instrument_shares;

becomes:
total	=	exchange.domestic_exchange_rate	*	instrument_shares;

The	key	thing	about	this	technique	is	that	you	are	letting	the	compiler	guide	you	toward
the	changes	you	need	to	make.	This	doesn’t	mean	that	you	stop	thinking	about	what	you
need	to	change;	it	just	means	that	you	can	let	the	compiler	do	the	legwork	for	you,	in	some
cases.	It’s	just	very	important	to	know	what	the	compiler	is	going	to	find	and	what	it	isn’t
so	that	we	aren’t	lulled	into	false	confidence.

Lean	on	the	Compiler	involves	two	steps:

1.	Altering	a	declaration	to	cause	compile	errors

2.	Navigating	to	those	errors	and	making	changes.

You	can	lean	on	the	compiler	to	make	structural	changes	to	your	program,	as	we	did	in	the
Encapsulate	Global	References	(339)	example.	You	can	also	use	it	to	initiate	type
changes.	One	common	case	is	changing	the	type	of	a	variable	declaration	from	a	class	to
an	interface,	and	using	the	errors	to	determine	which	methods	need	to	be	on	the	interface.

Leaning	on	the	compiler	isn’t	always	practical.	If	your	builds	take	a	long	time,	it	might	be
more	practical	to	search	for	the	places	where	you	need	to	make	changes.	See	Chapter	7,	It
Takes	Forever	to	Make	a	Change,	for	ways	of	getting	past	that	problem.	But	when	you	can
do	it,	Lean	on	the	Compiler	is	a	useful	practice.	But	be	careful;	you	can	introduce	subtle
bugs	if	you	do	it	blindly.

The	language	feature	that	gives	us	the	most	possibility	for	error	when	we	lean	is
inheritance.	Here’s	an	example:

We	have	a	class	method	named	getX()	in	a	Java	class:
public	int	getX()	{
				return	x;
}

We	want	to	find	all	occurrences	of	it	so	that	we	comment	it	out:
/*
public	int	getX()	{
				return	x;
}	*/

Now	we	recompile.

Guess	what?	We	didn’t	get	any	errors.	Does	this	mean	that	getX()	is	an	unused	method?	Not
necessarily.	If	getX()	is	declared	as	a	concrete	method	in	a	superclass,	commenting	out	getX	in
our	current	class	will	just	cause	the	one	in	the	superclass	to	be	used.	A	similar	situation
can	occur	with	variables	and	inheritance.

Lean	on	the	Compiler	is	a	powerful	technique,	but	you	have	to	know	what	its	limits	are;	if
you	don’t,	you	can	end	up	making	some	serious	mistakes.

Pair	Programming

Chances	are,	you’ve	already	heard	of	Pair	Programming.	If	you	are	using	Extreme
Programming	(XP)	as	your	process	you	are	probably	doing	it.	Good.	It	is	a	remarkably

good	way	to	increase	quality	and	spread	knowledge	around	a	team.

If	you	aren’t	pair	programming	right	now,	I	suggest	that	you	try	it.	In	particular,	I	insist
that	you	pair	when	you	use	the	dependency-breaking	techniques	I’ve	described	in	this
book.

It’s	easy	to	make	a	mistake	and	have	no	idea	that	you’ve	broken	the	software.	A	second	set
of	eyes	definitely	helps.	Let’s	face	it,	working	in	legacy	code	is	surgery,	and	doctors	never
operate	alone.

For	more	information	about	pair	programming,	see	Pair	Programming	Illuminated	by
Laurie	Williams	and	Robert	Kessler	(Addison-Wesley	2002)	and	visit
www.pairprogramming.com.

http://www.pairprogramming.com

Chapter	24:	We	Feel	Overwhelmed.	It	Isn’t	Going	to	Get
Any	Better

We	Feel	Overwhelmed	Working	in	legacy	code	is	difficult.	There	is	no	denying	it.
Although	every	situation	is	different,	one	thing	is	going	to	make	the	job	worth	it	to	you	as
a	programmer	or	not:	figuring	out	what	is	in	it	for	you.	For	some	people,	it	is	a	paycheck,
and	there	isn’t	anything	wrong	with	that—we	all	have	to	make	a	living.	But	there	really
ought	to	be	some	other	reason	why	you	are	programming.

If	you	were	lucky,	you	started	out	in	this	business	writing	code	because	you	thought	it	was
fun.	You	sat	down	with	your	first	computer	ecstatic	with	all	of	the	possibilities,	all	of	the
cool	things	you	could	do	by	programming	a	computer.	It	was	something	to	learn	and
something	to	master,	and	you	thought,	“Wow,	this	is	fun.	I	can	make	a	great	career	if	I	get
very	good	at	this.”

Not	everyone	comes	to	programming	this	way,	but	even	for	people	who	didn’t,	it	is	still
possible	to	connect	with	what	is	fun	about	programming.	If	you	can—and	some	of	your
coworkers	can,	too—it	really	doesn’t	matter	what	kind	of	system	you	are	working	on.	You
can	do	neat	things	with	it.	The	alternative	is	just	dejection.	It	isn’t	any	fun,	and	frankly,	we
all	deserve	better	than	that.

Often	people	who	spend	time	working	on	legacy	systems	wish	they	could	work	on	green-
field	systems.	It’s	fun	to	build	systems	from	scratch,	but	frankly,	green-field	systems	have
their	own	set	of	problems.	Over	and	over	again,	I’ve	seen	the	following	scenario	play	out:
An	existing	system	becomes	murky	and	hard	to	change	over	time.	People	in	the
organization	get	frustrated	with	how	long	it	takes	to	make	changes	in	it.	They	move	their
best	people	(and	sometimes	their	trouble-makers!)	onto	a	new	team	that	is	charged	with
the	task	of	“creating	the	replacement	system	with	a	better	architecture.”	In	the	beginning,
everything	is	fine.	They	know	what	the	problems	were	with	the	old	architecture,	and	they
spend	some	time	coming	up	with	a	new	design.	In	the	meantime,	the	rest	of	the	developers
are	working	on	the	old	system.	The	system	is	in	service,	so	they	receive	requests	for	bug
fixes	and	occasionally	new	features.	The	business	looks	soberly	at	each	new	feature	and
decides	whether	it	needs	to	be	in	the	old	system	or	whether	the	client	can	wait	for	the	new
system.	In	many	cases,	the	client	can’t	wait,	so	the	change	goes	in	both.	The	green-field
team	has	to	do	double-duty,	trying	to	replace	a	system	that	is	constantly	changing.	As	the
months	go	by	it	becomes	clearer	that	they	are	not	going	to	be	able	to	replace	the	old
system,	the	system	you’re	maintaining.	The	pressure	increases.	They	work	days,	nights,
and	weekends.	In	many	cases,	the	rest	of	the	organization	discovers	that	the	work	that	you
are	doing	is	critical	and	that	you	are	tending	the	investment	that	everyone	will	have	to	rely
on	in	the	future.

The	grass	isn’t	really	much	greener	in	green-field	development.

The	key	to	thriving	in	legacy	code	is	finding	what	motivates	you.	Although	many	of	us
programmers	are	solitary	creatures,	there	really	isn’t	much	that	can	replace	working	in	a
good	environment	with	people	you	respect	who	know	how	to	have	fun	at	work.	I’ve	made
some	of	my	best	friends	at	work	and,	to	this	day,	they	are	the	people	I	talk	to	when	I’ve
learned	something	new	or	fun	while	programming.

Another	thing	that	helps	is	to	connect	with	the	larger	community.	These	days,	getting	in
touch	with	other	programmers	to	learn	and	share	more	about	the	craft	is	easier	than	it	ever
was.	You	can	subscribe	to	mailing	lists	on	the	Internet,	attend	conferences,	and	take
advantage	of	all	the	resources	that	you	can	use	to	network,	share	strategies	and	techniques,
and	generally	stay	on	top	of	software	development.

Even	when	you	have	a	bunch	of	people	on	a	project	who	care	about	the	work	and	care
about	making	things	better,	another	form	of	dejection	can	set	in.	Sometimes	people	are
dejected	because	their	code	base	is	so	large	that	they	and	their	team	mates	could	work	on
it	for	10	years	but	still	not	have	made	it	more	than	10	percent	better.	Isn’t	that	a	good
reason	to	be	dejected?	Well,	I’ve	visited	teams	with	millions	of	lines	of	legacy	code	who
looked	at	each	day	as	a	challenge	and	as	a	chance	to	make	things	better	and	have	fun.	I’ve
also	seen	teams	with	far	better	code	bases	who	are	dejected.	The	attitude	we	bring	to	the
work	is	important.

TDD	some	code	outside	of	work.	Program	for	fun	a	little	bit.	Start	to	feel	the	difference
between	the	little	projects	you	make	and	the	big	project	at	work.	Chances	are,	your	project
at	work	can	have	the	same	feel	if	you	can	get	the	pieces	you	work	with	to	run	into	a	fast
test	harness.

If	morale	is	low	on	your	team,	and	it’s	low	because	of	code	quality,	here’s	something	that
you	can	try:	Pick	the	ugliest	most	obnoxious	set	of	classes	in	the	project,	and	get	them
under	test.	When	you’ve	tackled	the	worst	problem	as	a	team,	you’ll	feel	in	control	of
your	situation.	I’ve	seen	it	again	and	again.

As	you	start	to	take	control	of	your	code	base,	you’ll	start	to	develop	oases	of	good	code.
Work	can	really	be	enjoyable	in	them.

Part	III:	Dependency-Breaking
Techniques

Chapter	25:	Dependency-Breaking	Techniques

In	this	chapter,	I’ve	written	up	a	set	of	dependency-breaking	techniques.	This	list	is	not
exhaustive;	these	are	just	some	techniques	that	I’ve	used	with	teams	to	decouple	classes
well	enough	to	get	them	under	test.	Technically,	these	techniques	are	refactorings—each
of	them	preserves	behavior.	But	unlike	most	refactorings	written	up	in	the	industry	so	far,
these	refactorings	are	intended	to	be	done	without	tests,	to	get	tests	in	place.	In	most	cases,
if	you	follow	the	steps	carefully,	the	chance	of	mistakes	is	small.	This	doesn’t	mean	that
they	are	completely	safe.	It	is	still	possible	to	make	mistakes	when	you	perform	them,	so
you	should	exercise	care	when	you	use	them.	Before	you	use	these	refactorings,	see
Chapter	23,	How	Do	I	Know	That	I’m	Not	Breaking	Anything?	The	tips	in	that	chapter	can
help	you	use	these	techniques	safely	so	that	you	can	get	tests	in	place.	When	you	do,
you’ll	be	able	to	make	more	invasive	changes	with	more	confidence	that	you	aren’t
breaking	anything.

These	techniques	do	not	immediately	make	your	design	better.	In	fact,	if	you	have	good
design	sense,	some	of	these	techniques	will	make	you	flinch.	These	techniques	can	help
you	get	methods,	classes,	and	clusters	of	classes	under	test,	and	your	system	will	be	more
maintainable	because	of	it.	At	that	point,	you	can	use	test-supported	refactorings	to	make
the	design	cleaner.

A	few	of	the	refactorings	in	this	chapter	were	described	by	Martin	Fowler	in	his	book	Refactoring:	Improving	the
Design	of	Existing	Code	(Addison-Wesley,	1999).	I’ve	included	them	here	with	different	steps.	They’ve	been	tailored
so	that	they	can	be	used	safely	without	tests.

Adapt	Parameter
When	I	make	changes	to	methods,	I	often	run	into	dependency	headaches	caused	by
method	parameters.	Sometimes	I	find	it	hard	to	create	the	parameter	I	need;	at	other	times,
I	need	to	test	the	effect	of	the	method	on	the	parameter.	In	many	cases,	the	class	of	the
parameter	doesn’t	make	it	easy.	If	the	class	is	one	that	I	can	modify,	I	can	use	Extract
Interface	(362)	to	break	the	dependency.	Extract	Interface	is	often	the	best	choice	when	it
comes	to	breaking	parameter	dependencies.

In	general,	we	want	to	do	something	simple	to	break	dependencies	that	prevent	testing,
something	that	doesn’t	have	possibilities	for	errors.	However,	in	some	cases,	Extract
Interface	(362)	doesn’t	work	very	well.	If	the	parameter’s	type	is	pretty	low	level,	or
specific	to	some	implementation	technology,	extracting	an	interface	could	be
counterproductive	or	impossible.

Use	Adapt	Parameter	when	you	can’t	use	Extract	Interface	(362)	on	a	parameter’s	class	or	when	a	parameter	is
difficult	to	fake.

Here	is	an	example:
public	class	ARMDispatcher
{
				public	void	populate(HttpServletRequest	request)	{
								String	[]	values
												=	request.getParameterValues(pageStateName);

								if	(values	!=	null	&&	values.length		>	0)
								{
												marketBindings.put(pageStateName	+	getDateStamp(),
																															values[0]);
								}
								…
				}
				…
}

In	this	class,	the	populate	method	accepts	an	HttpServletRequest	as	a	parameter.	HttpServletRequest	is	an
interface	that	is	part	of	Sun’s	J2EE	standard	for	Java.	If	we	were	going	to	test	populate	the
way	it	looks	now,	we’d	have	to	create	a	class	that	implements	HttpServletRequest	and	provide
some	way	to	fill	it	with	the	parameter	values	it	needs	to	return	under	test.	The	current	Java
SDK	documentation	shows	that	there	are	about	23	method	declarations	on	HttpServletRequest,
and	that	doesn’t	count	the	declarations	from	its	superinterface	that	we’d	have	to
implement.	It	would	be	great	to	use	Extract	Interface	(362)	to	make	a	narrower	interface
that	supplies	only	the	methods	we	need,	but	we	can’t	extract	an	interface	from	another
interface.	In	Java,	we	would	need	to	have	HttpServletRequest	extend	the	one	we	are	extracting,
and	we	can’t	modify	a	standard	interface	that	way.	Fortunately,	we	do	have	other	options.

Several	mock	object	libraries	are	available	for	J2EE.	If	we	download	one	of	them,	we	can
use	a	mock	for	HttpServletRequest	and	do	the	testing	we	need	to	do.	This	can	be	a	real	time
saver;	if	we	go	this	route,	we	won’t	have	to	spend	time	making	a	fake	servlet	request	by
hand.	So,	it	looks	like	we	have	a	solution—or	do	we?

When	I’m	breaking	dependencies,	I	always	try	to	look	ahead	and	see	what	the	result	will
look	like.	Then	I	can	decide	whether	I	can	live	with	the	aftermath.	In	this	case,	our
production	code	will	look	pretty	much	the	same,	and	we	will	have	done	a	lot	of	work	to
keep	HttpServletRequest,	an	API	interface,	in	place.	Is	there	a	way	to	make	the	code	look	better
and	make	the	dependency	breaking	easier?	Actually,	there	is.	We	can	wrap	the	parameter
that	is	coming	in	and	break	our	dependency	on	the	API	interface	entirely.	When	we’ve
done	that,	the	code	will	look	like	this:
public	class	ARMDispatcher
				public	void	populate(ParameterSource	source)	{
								String	values	=	source.getParameterForName(pageStateName);
								if	(value	!=	null)	{
												marketBindings.put(pageStateName	+	getDateStamp(),
																															value);
								}
								…
				}
}

What	have	we	done	here?	We’ve	introduced	a	new	interface	named	ParameterSource.	At	this
point,	the	only	method	that	it	has	is	one	named	getParameterForName.	Unlike	the	HttpServletRequest
getParmeterValue	method,	the	getParameterForName	returns	only	one	String.	We	wrote	the	method	that
way	because	we	care	about	only	the	first	parameter	in	this	context.

Move	toward	interfaces	that	communicate	responsibilities	rather	than	implementation	details.	This	makes	code	easier
to	read	and	easier	to	maintain.

Here	is	a	fake	class	that	implements	ParameterSource.	We	can	use	it	in	our	test:

class	FakeParameterSource	implements	ParameterSource
{
				public	String	value;

				public	String	getParameterForName(String	name)	{
								return	value;
				}
}

And	the	production	parameter	source	looks	like	this:
class	ServletParameterSource	implements	ParameterSource
{
				private	HttpServletRequest	request;

				public	ServletParameterSource(HttpServletRequest	request)	{
								this.request	=	request;
				}

				String	getParameterValue(String	name)	{
								String	[]	values	=	request.getParameterValues(name);
								if	(values	==	null	||	values.length	<	1)
												return	null;
								return	values[0];
				}
}

Superficially,	this	might	look	like	we’re	making	things	pretty	for	pretty’s	sake,	but	one
pervasive	problem	in	legacy	code	bases	is	that	there	often	aren’t	any	layers	of	abstraction;
the	most	important	code	in	the	system	often	sits	intermingled	with	low-level	API	calls.
We’ve	already	seen	how	this	can	make	testing	difficult,	but	the	problems	go	beyond
testing.	Code	is	harder	to	understand	when	it	is	littered	with	wide	interfaces	containing
dozens	of	unused	methods.	When	you	create	narrow	abstractions	targeted	toward	what
you	need,	your	code	communicates	better	and	you	are	left	with	a	better	seam.

If	we	move	toward	using	ParameterSource	in	the	example,	we	end	up	decoupling	the	population
logic	from	particular	sources.	We	won’t	be	tied	to	specific	J2EE	interfaces	any	longer.

Adapt	Parameter	is	one	case	in	which	we	don’t	Preserve	Signatures	(312).	Use	extra	care.

Adapt	Parameter	can	be	risky	if	the	simplified	interface	that	you	are	creating	for	the
parameter	class	is	too	different	from	the	parameter’s	current	interface.	If	we	are	not	careful
when	we	make	those	changes,	we	could	end	up	introducing	subtle	bugs.	As	always,
remember	that	the	goal	is	to	break	dependencies	well	enough	to	get	tests	in	place.	Your
bias	should	be	toward	making	changes	that	you	feel	more	confident	in	rather	than	changes
that	give	you	the	best	structure.	Those	can	come	after	your	tests.	For	instance,	in	this	case
we	may	want	to	alter	ParameterSource	so	that	clients	of	it	don’t	have	to	check	for	null	when	they
call	its	methods	(see	Null	Object	Pattern	(112)	for	details).

Safety	first.	Once	you	have	tests	in	place,	you	can	make	invasive	changes	much	more	confidently.

Steps

To	use	Adapt	Parameter,	perform	the	following	steps:

1.	Create	the	new	interface	that	you	will	use	in	the	method.	Make	it	as	simple	and

communicative	as	possible,	but	try	not	to	create	an	interface	that	will	require	more
than	trivial	changes	in	the	method.

2.	Create	a	production	implementer	for	the	new	interface.

3.	Create	a	fake	implementer	for	the	interface.

4.	Write	a	simple	test	case,	passing	the	fake	to	the	method.

5.	Make	the	changes	you	need	to	in	the	method	to	use	the	new	parameter.

6.	Run	your	test	to	verify	that	you	are	able	to	test	the	method	using	the	fake.

Break	Out	Method	Object
Long	methods	are	very	tough	to	work	with	in	many	applications.	Often	if	you	can
instantiate	the	class	that	contains	them	and	get	them	into	a	test	harness,	you	can	start	to
write	tests.	In	some	cases,	the	work	that	it	takes	to	make	a	class	separately	instantiable	is
large.	It	may	even	be	overkill	for	the	changes	you	need	to	make.	If	the	method	that	you
need	to	work	with	is	small	and	doesn’t	use	instance	data,	use	Expose	Static	Method	(345)
to	get	your	changes	under	test.	On	the	other	hand,	if	your	method	is	large	or	does	use
instance	data	and	methods,	consider	using	Break	Out	Method	Object.	In	a	nutshell,	the
idea	behind	this	refactoring	is	to	move	a	long	method	to	a	new	class.	Objects	that	you
create	using	that	new	class	are	called	method	objects	because	they	embody	the	code	of	a
single	method.	After	you’ve	used	Break	Out	Method	Object,	you	can	often	write	tests	for
the	new	class	easier	than	you	could	for	the	old	method.	Local	variables	in	the	old	method
can	become	instance	variables	in	the	new	class.	Often	that	makes	it	easier	to	break
dependencies	and	move	the	code	to	a	better	state.

Here	is	an	example	in	C++	(large	chunks	of	the	class	and	method	have	been	removed	to
preserve	trees):
class	GDIBrush
{
public:
				void	draw(vector<point>&	renderingRoots,
														ColorMatrix&	colors,
														vector<point>&	selection);
				…

private:
				void	drawPoint(int	x,	int	y,	COLOR	color);
				…

};

void	GDIBrush::draw(vector<point>&	renderingRoots,
																				ColorMatrix&	colors,
																				vector<point>&	selection)
{
				for(vector<points>::iterator	it	=	renderingRoots.begin();
												it	!=	renderingRoots.end();
												++it)	{
								point	p	=	*it;
								…

								drawPoint(p.x,	p.y,	colors[n]);
				}

				…

}

The	GDIBrush	class	has	a	long	method	named	draw.	We	can’t	easily	write	tests	for	it,	and	it	is
going	to	be	very	difficult	to	create	an	instance	of	GDIBrush	in	a	test	harness.	Let’s	use	Break
Out	Method	Object	to	move	draw	to	a	new	class.

The	first	step	is	to	create	a	new	class	that	will	do	the	drawing	work.	We	can	call	it	Renderer.
After	we’ve	created	it,	we	give	it	a	public	constructor.	The	arguments	of	the	constructor
should	be	a	reference	to	the	original	class,	and	the	arguments	to	the	original	method.	We
need	to	Preserve	Signatures	(312)	on	the	latter.
class	Renderer
{
public:
				Renderer(GBIBrush	*brush,
													vector<point>&	renderingRoots,
													ColorMatrix	&colors,
													vector<point>&	selection);
				…

};

After	we’ve	created	the	constructor,	we	add	instance	variables	for	each	of	the	constructor
arguments	and	initialize	them.	We	do	this	as	a	set	of	cut/copy/paste	moves,	too,	to
Preserve	Signatures	(312).
class	Renderer
{
private:
				GDIBrush	*brush;
				vector<point>&	renderingRoots;
				ColorMatrix&	colors;
				vector<point>&	selection;

public:
				Renderer(GDIBrush	*brush,
													vector<point>&	renderingRoots,
													ColorMatrix&	colors,
													vector<point>&	selection)
								:	brush(brush),	renderingRoots(renderingRoots),
										colors(colors),	selection(selection)
								{}

};

You	might	be	looking	at	this	and	saying,	“Hmmm,	it	looks	like	we	are	going	to	be	in	the
same	position.	We	are	accepting	a	reference	to	a	GDIBrush,	and	we	can’t	instantiate	one	of
those	in	our	test	harness.	What	good	does	this	do	us?”	Wait,	we	are	going	to	end	up	in	a
different	place.

After	we’ve	made	the	constructor,	we	can	add	another	method	to	the	class,	a	method	that
will	do	the	work	that	was	done	in	the	draw()	method.	We	can	call	it	draw()	also.
class	Renderer
{
private:
				GDIBrush	*brush;
				vector<point>&	renderingRoots;

				ColorMatrix&	colors;
				vector<point>&	selection;

public:
				Renderer(GDIBrush	*brush,
													vector<point>&	renderingRoots,
													ColorMatrix&	colors,
													vector<point>&	selection)
								:	brush(brush),	renderingRoots(renderingRoots),
										colors(colors),	selection(selection)
								{}

				void	draw();
};

Now	we	add	the	body	of	the	draw()	method	to	Renderer.	We	copy	the	body	of	the	old	draw()
method	into	the	new	one	and	Lean	on	the	Compiler	(315).
void	Renderer::draw()
{
				for(vector<points>::iterator	it	=	renderingRoots.begin();
												it	!=	renderingRoots.end();
												++it)	{
								point	p	=	*it;
								…
								drawPoint(p.x,	p.y,	colors[n]);
				}
				…

}

If	the	draw()	on	Renderer	has	any	references	to	instance	variables	or	methods	from	GDIBrush,	our
compile	will	fail.	To	make	it	succeed,	we	can	make	getters	for	the	variables	and	make	the
methods	that	it	depends	on	public.	In	this	case,	there	is	only	one	dependency,	a	private
method	named	drawPoint.	After	we	make	it	public	on	GDIBrush,	we	can	access	it	from	a	reference
to	the	Renderer	class	and	the	code	compiles.

Now	we	can	make	GDIBrush’s	draw	method	delegate	to	the	new	Renderer.
void	GDIBrush::draw(vector<point>&	renderingRoots,
																				ColorMatrix	&colors,
																				vector<point>&	selection)
{
				Renderer	renderer(this,	renderingRoots,
																						colors,	selection);
				renderer.draw();
}

Now	back	to	the	GDIBrush	dependency.	If	we	can’t	instantiate	GDIBrush	in	a	test	harness,	we	can
use	Extract	Interface	to	break	the	dependency	on	GDIBrush	completely.	The	section	on	Extract
Interface	(362)	has	the	details,	but	briefly,	we	create	an	empty	interface	class	and	make	the
GDIBrush	implement	it.	In	this	case,	we	can	call	it	PointRenderer	because	drawPoint	is	the	method	on
GDIBrush	that	we	really	need	access	to	in	the	Renderer.	Then	we	change	the	reference	that	the
Renderer	holds	from	GDIBrush	to	PointRenderer,	compile,	and	let	the	compiler	tell	us	what	methods
have	to	be	on	the	interface.	Here	is	what	the	code	looks	like	at	the	end:
class	PointRenderer
{
				public:
								virtual	void	drawPoint(int	x,	int	y,	COLOR	color)	=	0;

};

class	GDIBrush	:	public	PointRenderer
{
public:
				void	drawPoint(int	x,	int	y,	COLOR	color);
				…
};

class	Renderer
{
private:
				PointRender	*pointRenderer;
				vector<point>&	renderingRoots;
				ColorMatrix&	colors;
				vector<point>&	selection;

public:
				Renderer(PointRenderer	*renderer,
													vector<point>&	renderingRoots,
													ColorMatrix&	colors,
													vector<point>&	selection)
								:	pointRenderer(pointRenderer),
										renderingRoots(renderingRoots),
										colors(colors),	selection(selection)
								{}

				void	draw();
};

void	Renderer::draw()
{
				for(vector<points>::iterator	it	=	renderingRoots.begin();
												it	!=	renderingRoots.end();
												++it)	{
								point	p	=	*it;
								…
								pointRenderer->drawPoint(p.x,p.y,colors[n]);
				}
				…

}

Figure	25.1	shows	what	it	looks	like	in	UML.

Figure	25.1	GDIBrush	after	Break	Out	Method	Object.

Our	ending	point	is	a	little	odd.	We	have	a	class	(GDIBrush)	that	implements	a	new	interface
(PointRenderer),	and	the	only	use	of	that	interface	is	by	an	object	(a	Renderer)	that	is	created	by	the
class.	You	might	have	a	sick	feeling	in	the	pit	of	your	stomach	because	we’ve	made	details
that	were	private	in	the	original	class	public	so	that	we	could	use	this	technique.	Now	the
drawPoint	method	that	was	private	in	GDIBrush	is	exposed	to	the	world.	The	important	thing	to
notice	is	that	this	isn’t	really	the	end.

Over	time,	you’ll	grow	disgusted	with	the	fact	that	you	can’t	instantiate	the	original	class
in	a	test	harness,	and	you	will	break	dependencies	so	that	you	can.	Then	you’ll	look	at
other	options.	For	instance,	does	PointRenderer	need	to	be	an	interface?	Can	it	be	a	class	that
holds	a	GDIBrush?	If	it	can,	maybe	you	can	start	to	move	to	a	design	based	on	this	new
concept	of	Renderers.

That	is	only	one	of	the	simple	refactorings	we	may	be	able	to	do	when	we	get	the	class
under	test.	The	resulting	structure	might	invite	many	more.

Break	Out	Method	Object	has	several	variations.	In	the	simplest	case,	the	original	method	doesn’t	use	any	instance
variables	or	methods	from	the	original	class.	We	don’t	need	to	pass	it	a	reference	to	the	original	class.

In	other	cases,	the	method	only	uses	data	from	the	original	class.	At	times,	it	makes	sense	to	put	this	data	into	a	new
data-holding	class	and	pass	it	as	an	argument	to	the	method	object.

The	case	that	I	show	in	this	section	is	the	worst	case;	we	need	to	use	methods	on	the	original	class,	so	we	use	Extract
Interface	(362)	and	start	to	build	up	some	abstraction	between	the	method	object	and	the	original	class.

Steps

You	can	use	these	steps	to	do	Break	out	Method	Object	safely	without	tests:

1.	Create	a	class	that	will	house	the	method	code.

2.	Create	a	constructor	for	the	class	and	Preserve	Signatures	(312)	to	give	it	an	exact
copy	of	the	arguments	used	by	the	method.	If	the	method	uses	an	instance	data	or
methods	from	the	original	class,	add	a	reference	to	the	original	class	as	the	first
argument	to	the	constructor.

3.	For	each	argument	in	the	constructor,	declare	an	instance	variable	and	give	it
exactly	the	same	type	as	the	variable.	Preserve	Signatures	(312)	by	copying	all	the
arguments	directly	into	the	class	and	formatting	them	as	instance	variable
declarations.	Assign	all	of	the	arguments	to	the	instance	variables	in	the	constructor.

4.	Create	an	empty	execution	method	on	the	new	class.	Often	this	method	is	called
run().	We	used	the	name	draw	in	the	example.

5.	Copy	the	body	of	the	old	method	into	the	execution	method	and	compile	to	Lean	on
the	Compiler	(315).

6.	The	error	messages	from	the	compiler	should	indicate	where	the	method	is	still
using	methods	or	variables	from	the	old	class.	In	each	of	these	cases,	do	what	it
takes	to	get	the	method	to	compile.	In	some	cases,	this	is	as	simple	as	changing	a
call	to	use	the	reference	to	the	original	class.	In	other	cases,	you	might	have	to	make
methods	public	on	the	original	class	or	introduce	getters	so	that	you	don’t	have	to
make	instance	variables	public.

7.	After	the	new	class	compiles,	go	back	to	the	original	method	and	change	it	so	that	it
creates	an	instance	of	the	new	class	and	delegates	its	work	to	it.

8.	If	needed,	use	Extract	Interface	(362)	to	break	the	dependency	on	the	original	class.

Definition	Completion
In	some	languages,	we	can	declare	a	type	in	one	place	and	define	it	in	another.	The
languages	in	which	this	capability	is	most	apparent	are	C	and	C++.	In	both	of	them,	we
can	declare	a	function	or	method	in	one	place	and	define	it	someplace	else,	usually	in	an
implementation	file.	When	we	have	this	capability,	we	can	use	it	to	break	dependencies.

Here	is	an	example:
class	CLateBindingDispatchDriver	:	public	CDispatchDriver
{
public:
																CLateBindingDispatchDriver	();
				virtual				~CLateBindingDispatchDriver	();

				ROOTID						GetROOTID	(int	id)	const;

				void								BindName	(int	id,
																										OLECHAR	FAR	*name);
				…

private:
				CArray<ROOTID,	ROOTID&	>	rootids;

};

This	is	the	declaration	of	a	little	class	in	a	C++	application.	Users	create	CLateBindingDispatchDrivers
and	then	use	the	BindName	method	to	associate	names	with	IDs.	We	want	to	provide	a	different
way	of	binding	names	when	we	use	this	class	in	a	test.	In	C++,	we	can	do	this	using
Definition	Completion.	The	BindName	method	was	declared	in	the	class	header	file.	How	can
we	give	it	a	different	definition	under	test?	We	include	the	header	containing	this	class
declaration	in	the	test	file	and	provide	alternate	definitions	for	the	methods	before	our
tests.
#include	“LateBindingDispatchDriver.h”

CLateBindingDispatchDriver::CLateBindingDispatchDriver()	{}

CLateBindingDispatchDriver::~CLateBindingDispatchDriver()	{}

ROOTID	GetROOTID	(int	id)	const	{	return	ROOTID(-1);	}

void	BindName(int	id,	OLECHAR	FAR	*name)	{}

TEST(AddOrder,BOMTreeCtrl)
{
					CLateBindingDispatchDriver	driver;
					CBOMTreeCtrl		ctrl(&driver);

					ctrl.AddOrder(COrderFactory::makeDefault());
					LONGS_EQUAL(1,	ctrl.OrderCount());
}

When	we	define	these	methods	directly	in	the	test	file,	we	are	providing	the	definitions
that	will	be	used	in	the	test.	We	can	provide	null	bodies	for	methods	that	we	don’t	care
about	or	put	in	sensing	methods	that	can	be	used	across	all	of	our	tests.

When	we	use	Definition	Completion	in	C	or	C++,	we	are	pretty	much	obligated	to	create	a
separate	executable	for	the	tests	that	use	the	completed	definitions.	If	we	don’t,	they	will
clash	with	the	real	definitions	at	link	time.	One	other	downside	is	that	we	now	have	two
different	sets	of	definitions	for	the	methods	of	a	class,	one	in	a	test	source	file	and	another
in	a	production	source	file.	This	can	be	a	big	maintenance	burden.	It	can	also	confuse
debuggers	if	we	don’t	set	up	the	environment	correctly.	For	these	reasons,	I	don’t
recommend	using	Definition	Completion	except	in	the	worst	dependency	situations.	Even
then,	I	recommend	doing	it	just	to	break	initial	dependencies.	Afterwards,	you	should
bring	the	class	under	test	quickly	so	that	the	duplicate	definitions	can	be	removed.

Steps

To	use	Definition	Completion	in	C++,	follow	these	steps:

1.	Identify	a	class	with	definitions	you’d	like	to	replace.

2.	Verify	that	the	method	definitions	are	in	a	source	file,	not	a	header.

3.	Include	the	header	in	the	test	source	file	of	the	class	you	are	testing.

4.	Verify	that	the	source	files	for	the	class	are	not	part	of	the	build.

5.	Build	to	find	missing	methods.

6.	Add	method	definitions	to	the	test	source	file	until	you	have	a	complete	build.

Encapsulate	Global	References
When	you	are	trying	to	test	code	that	has	problematic	dependencies	on	globals,	you
essentially	have	three	choices.	You	can	try	to	make	the	globals	act	differently	under	test,
you	can	link	to	different	globals,	or	you	can	encapsulate	the	globals	so	that	you	can
decouple	things	further.	The	last	option	is	called	Encapsulate	Global	References.	Here	is
an	example	in	C++:
bool	AGG230_activeframe[AGG230_SIZE];
bool	AGG230_suspendedframe[AGG230_SIZE];

void	AGGController::suspend_frame()
{

				frame_copy(AGG230_suspendedframe,
															AGG230_activeframe);
				clear(AGG230_activeframe);
				flush_frame_buffers();
}

void	AGGController::flush_frame_buffers()
{
				for	(int	n	=	0;	n	<	AGG230_SIZE;	++n)	{
								AGG230_activeframe[n]	=	false;
								AGG230_suspendedframe[n]	=	false;
				}
}

In	this	example,	we	have	some	code	that	does	work	with	a	few	global	arrays.	The	suspend_frame
method	needs	to	access	the	active	and	suspended	frames.	At	first	glance,	it	looks	like	we
can	make	the	frames	members	of	the	AGGController	class,	but	some	other	classes	(not	shown)
use	the	frames.	What	can	we	do?

One	immediate	thought	is	that	we	can	pass	them	as	parameters	to	the	suspend_frame	method
using	Parameterize	Method	(383),	but	after	we	do	that,	we’ll	have	to	pass	them	as
parameters	to	any	methods	that	suspend_frame	calls	that	use	them	as	globals.	In	this	case,
flush_frame_buffer	is	an	offender.

The	next	option	is	to	pass	both	frames	as	constructor	arguments	to	AGGController.	We	could	do
that,	but	it	is	worth	taking	a	look	at	other	places	where	they	are	used.	If	it	seems	that
whenever	we	use	one	we	are	also	using	the	other,	we	could	bundle	them	together.

If	several	globals	are	always	used	or	are	modified	near	each	other,	they	belong	in	the	same	class.

The	best	way	to	handle	this	situation	is	to	look	at	the	data,	the	active	and	suspended
frames,	and	think	about	whether	we	can	come	up	with	a	good	name	for	a	new	“smart”
class	that	would	hold	both	of	them.	Sometimes	this	is	a	little	tricky.	We	have	to	think
about	what	that	data	means	in	the	design	and	then	consider	why	it	is	there.	If	we	create	a
new	class,	eventually	we’ll	move	methods	onto	it,	and,	chances	are,	the	code	for	those
methods	already	exists	someplace	else	where	the	data	is	used.

When	naming	a	class,	think	about	the	methods	that	will	eventually	reside	on	it.	The	name	should	be	good,	but	it
doesn’t	have	to	be	perfect.	Remember	that	you	can	always	rename	the	class	later.

In	the	previous	example,	I’d	expect	that,	over	time,	the	frame_copy	and	clear	methods	might
move	to	the	new	class	that	we	are	going	to	create.	Is	there	work	that	is	common	to	the
suspended	frame	and	the	active	frame?	It	looks	like	there	is,	in	this	case.	The	suspend_frame
function	on	AGGController	could	probably	move	to	a	new	class	as	long	as	it	contains	both	the
suspended_frame	array	and	the	active_frame	array.	What	could	we	call	this	new	class?	We	could	just
call	it	Frame	and	say	that	each	frame	has	an	active	buffer	and	a	suspended	buffer.	This
requires	us	to	change	our	concepts	and	rename	variables	a	bit,	but	what	we	will	get	in
exchange	is	a	smarter	class	that	hides	more	detail.

The	class	name	that	you	find	might	already	be	in	use.	If	so,	consider	whether	you	can	rename	whatever	is	using	that
name.

Here’s	how	we	do	it,	step	by	step.

First,	we	create	a	class	that	looks	like	this:
class	Frame
{
public:
				//	declare	AGG230_SIZE	as	a	constant
				enum	{	AGG230_SIZE	=	256	};

				bool	AGG230_activeframe[AGG230_SIZE];
				bool	AGG230_suspendedframe[AGG230_SIZE];

};

We’ve	left	the	names	of	the	data	the	same	intentionally,	just	to	make	the	next	step	easier.
Next,	we	declare	a	global	instance	of	the	Frame	class:
Frame		frameForAGG230;

Next,	we	comment	out	the	original	declarations	of	the	data	and	attempt	to	build:
//	bool	AGG230_activeframe[AGG230_SIZE];
//	bool	AGG230_suspendedframe[AGG230_SIZE];

At	this	point,	we	get	all	sorts	of	compile	errors	telling	us	that	AGG_activeframe	and	AGG230_suspendedframe
don’t	exist,	threatening	us	with	terrible	consequences.	If	the	build	system	is	sufficiently
petulant,	it	rounds	things	off	with	an	attempt	at	linking,	leaving	us	with	about	10	pages	of
unresolved	link	errors.	We	could	get	upset,	but	we	expected	all	of	that	to	happen,	didn’t
we?

To	get	past	all	of	those	errors,	we	can	stop	at	each	one	and	place	frameForAGG230.	in	front	of	each
reference	that	is	causing	trouble.
void	AGGController::suspend_frame()
{
				frame_copy(frameForAGG230.AGG230_suspendedframe,
															frameForAGG230.AGG230_activeframe);
				clear(frameForAGG20.AGG230_activeframe);
				flush_frame_buffer();
}

When	we	are	done	doing	that,	we	have	uglier	code,	but	it	will	all	compile	and	work
correctly,	so	it	is	a	behavior-preserving	transformation.	Now	that	we’ve	finished	it,	we	can
pass	a	Frame	object	through	the	constructor	of	the	AGGController	class	and	get	the	separation	we
need	to	move	forward.

Referencing	a	member	of	a	class	rather	than	a	simple	global	is	only	the	first	step.	Afterward,	consider	whether	you
should	use	Introduce	Static	Setter	(372),	or	parameterize	the	code	using	Parameterize	Constructor	(379)	or
Parameterize	Method	(383).

So,	we’ve	introduced	a	new	class	by	adding	global	variables	to	a	new	class	and	making
them	public.	Why	did	we	do	it	this	way?	After	all,	we	spent	some	time	thinking	about
what	to	call	the	new	class	and	what	sorts	of	methods	to	place	on	it.	We	could	have	started
by	creating	a	fake	Frame	object	that	we	could	delegate	to	in	AGG_Controller,	and	we	could	have
moved	all	of	the	logic	that	uses	those	variables	onto	a	real	Frame	class.	We	could	have	done
that,	but	it	is	a	lot	to	attempt	all	at	once.	Worse,	when	we	don’t	have	tests	in	place	and	we
are	trying	to	do	the	minimal	work	we	need	to	get	tests	in	place,	it	is	best	to	leave	logic
alone	as	much	as	possible.	We	should	avoid	moving	it	and	try	to	get	separation	by	putting

in	seams	that	allow	us	to	call	one	method	instead	of	another	or	access	one	piece	of	data
rather	than	another.	Later,	when	we	have	more	tests	in	place,	we	can	move	behavior	from
one	class	to	another	with	impunity.

When	we’ve	passed	the	frame	into	the	AGGController,	we	can	do	a	little	renaming	to	make
things	a	little	clearer.	Here	is	our	ending	state	for	this	refactoring:
class	Frame
{
public:
				enum	{	BUFFER_SIZE	=	256	};
				bool	activebuffer[BUFFER_SIZE];
				bool	suspendedbuffer[BUFFER_SIZE];
};

Frame		frameForAGG230;

void	AGGController::suspend_frame()
{
				frame_copy(frame.suspendedbuffer,
															frame.activebuffer);
				clear(frame.activeframe);
				flush_frame_buffer();
}

It	might	not	seem	like	much	of	an	improvement,	but	it	is	an	extremely	valuable	first	step.
After	we’ve	moved	the	data	to	a	class,	we	have	separation	and	are	poised	to	make	the	code
much	better	over	time.	We	might	even	want	to	have	a	FrameBuffer	class	at	some	point.

When	you	use	Encapsulate	Global	References,	start	with	data	or	small	methods.	More	substantial	methods	can	be
moved	to	the	new	class	when	more	tests	are	in	place.

In	the	previous	example,	I	showed	how	to	do	Encapsulate	Global	References	with	global
data.	You	can	do	the	same	thing	with	non-member	functions	in	C++	programs.	Often
when	you	are	working	with	some	C	API,	you	have	calls	to	global	functions	scattered
throughout	an	area	of	code	that	you	want	to	work	with.	The	only	seam	that	you	have	is	the
linkage	of	calls	to	their	respective	functions.	You	can	use	Link	Substitution	(377)	to	get
separation,	but	you	can	end	up	with	better	structured	code	if	you	use	Encapsulate	Global
References	to	build	another	seam.	Here	is	an	example.

In	a	piece	of	code	that	we	want	to	put	under	test,	there	are	calls	to	two	functions:
GetOption(const	string	optionName)	and	setOption(string	name,	Option	option).	They	are	just	free	functions,
functions	not	attached	to	any	class,	but	they	are	used	prolifically	in	code	like	this:
void	ColumnModel::update()
{
				alignRows();
				Option	resizeWidth	=	::GetOption(“ResizeWidth”);
				if	(resizeWidth.isTrue())	{
								resize();
				}				else	{
								resizeToDefault();
				}
}

In	a	case	such	as	this,	we	could	look	at	some	old	standbys,	techniques	such	as
Parameterize	Method	(383)	and	Extract	and	Override	Getter(352),	but	if	the	calls	are

across	multiple	methods	and	multiple	classes,	it	would	be	cleaner	to	use	Encapsulate
Global	References.	To	do	this,	create	a	new	class	like	this:
class	OptionSource
{
public:
				virtual										~OptionSource()	=	0;
				virtual	Option			GetOption(const	string&	optionName)	=	0;
				virtual	void					SetOption(const	string&	optionName,
																															const	Option&	newOption)	=	0;
};

The	class	contains	abstract	methods	for	each	of	the	free	functions	that	we	need.	Next,
subclass	to	make	a	fake	for	the	class.	In	this	case,	we	could	have	a	map	or	a	vector	in	the
fake	that	allows	us	to	hold	on	to	a	set	of	options	that	will	be	used	during	tests.	We	could
provide	an	add	method	to	the	fake	or	just	a	constructor	that	accepts	a	map—whatever	is
convenient	for	the	tests.	When	we	have	the	fake,	we	can	create	the	real	option	source:
class		ProductionOptionSource	:	public	OptionSource
{
public:
				Option	GetOption(const	string&	optionName);
				void	SetOption(const	string&	optionName,
																			const	Option&	newOption)	;
};

Option	ProductionOptionSource::GetOption(
								const	string&	optionName)
{
				::GetOption(optionName);
}

void	ProductionOptionSource::SetOption(
								const	string&	optionName,
								const	Option&	newOption)
{
				::SetOption(optionName,	newOption);
}

To	encapsulate	references	to	free	functions,	make	an	interface	class	with	fake	and	production	subclasses.	Each	of	the
functions	in	the	production	code	should	do	nothing	more	than	delegate	to	a	global	function.

This	refactoring	turned	out	well.	When	we	introduced	the	seam	and	ended	up	doing	a
simple	delegation	to	the	API	function.	Now	that	we’ve	done	that,	we	can	parameterize	the
class	to	accept	an	OptionSource	object	so	that	we	can	use	a	fake	one	under	test	and	the	real	one
in	production.

In	the	previous	example,	we	put	the	functions	in	a	class	and	made	them	virtual.	Could	we
have	done	it	some	other	way?	Yes,	we	could	have	made	free	functions	that	delegate	to
other	free	functions	or	added	them	to	a	new	class	as	static	functions,	but	neither	of	those
approaches	would	have	given	us	good	seams.	We	would	have	had	to	use	the	link	seam
(36)	or	the	preprocessing	seam	(33)	to	substitute	one	implementation	for	another.	When
we	use	the	class	and	virtual	function	approach	and	parameterize	the	class,	the	seams	that
we	have	are	explicit	and	easy	to	manage.

Steps

To	Encapsulate	Global	References,	follow	these	steps:

1.	Identify	the	globals	that	you	want	to	encapsulate.

2.	Create	a	class	that	you	want	to	reference	them	from.

3.	Copy	the	globals	into	the	class.	If	some	of	them	are	variables,	handle	their
initialization	in	the	class.

4.	Comment	out	the	original	declarations	of	the	globals.

5.	Declare	a	global	instance	of	the	new	class.

6.	Lean	on	the	Compiler	(315)	to	find	all	the	unresolved	references	to	the	old	globals.

7.	Precede	each	unresolved	reference	with	the	name	of	the	global	instance	of	the	new
class.

8.	In	places	where	you	want	to	use	fakes,	use	Introduce	Static	Setter	(372),
Parameterize	Constructor	(379),	Parameterize	Method	(383)	or	Replace	Global
Reference	with	Getter	(399).

Expose	Static	Method
Working	with	classes	that	can’t	be	instantiated	in	a	test	harness	is	pretty	tricky.	Here	is	a
technique	that	I	use	in	some	cases.	If	you	have	a	method	that	doesn’t	use	instance	data	or
methods,	you	can	turn	it	into	a	static	method.	When	it	is	static,	you	can	get	it	under	test
without	having	to	instantiate	the	class.	Here’s	an	example	in	Java.

We	have	a	class	with	a	validate	method,	and	we	need	to	add	a	new	validation	condition.
Unfortunately,	the	class	it	is	on	would	be	very	hard	to	instantiate.	I’ll	spare	you	the	trauma
of	looking	at	the	whole	class,	but	here	is	the	method	we	need	to	change:
class	RSCWorkflow
{
				…
				public	void	validate(Packet	packet)
												throws	InvalidFlowException	{
								if	(packet.getOriginator().equals(“MIA”)
																||	packet.getLength()	>	MAX_LENGTH
																||	!packet.hasValidCheckSum())	{
												throw	new	InvalidFlowException();
								}
								…
				}
				…
}

What	can	we	do	to	get	this	method	under	test?	When	we	look	closely	at	it,	we	see	that	the
method	uses	a	lot	of	methods	on	the	Packet	class.	In	fact,	it	would	really	make	sense	to	move
validate	onto	the	Packet	class,	but	moving	the	method	isn’t	the	least	risky	thing	we	can	do	right
now;	we	definitely	won’t	be	able	to	Preserve	Signatures	(312).	If	you	don’t	have
automated	support	to	move	methods,	often	it	is	better	to	get	some	tests	in	place	first.
Expose	Static	Method	can	help	you	do	that.	With	tests	in	place,	you	can	make	the	change
you	need	to	make	and	have	much	more	confidence	moving	the	method	afterward.

When	you	are	breaking	dependencies	without	tests,	Preserve	Signatures	(312)	of	methods	whenever	possible.	If	you

cut/copy	and	paste	whole	method	signatures,	you	have	less	of	a	chance	of	introducing	errors.

The	code	here	doesn’t	depend	on	any	instance	variables	or	methods.	What	would	it	look
like	if	the	validate	method	was	public	static?	Anyone	anyplace	in	the	code	could	write	this
statement	and	validate	a	packet:
RSCWorkflow.validate(packet);

Chances	are,	whoever	created	the	class	never	would’ve	imagined	that	someone	would
make	that	method	static	someday,	much	less	public.	So,	is	it	a	bad	thing	to	do?	No,	not
really.	Encapsulation	is	a	great	thing	for	classes,	but	the	static	area	of	a	class	isn’t	really
part	of	the	class.	In	fact,	in	some	languages,	it	is	part	of	another	class,	sometimes	known
as	the	metaclass	of	the	class.

When	a	method	is	static,	you	know	that	it	doesn’t	access	any	of	the	private	data	of	the
class;	it	is	just	a	utility	method.	If	you	make	the	method	public,	you	can	write	tests	for	it.
Those	tests	will	support	you	if	you	choose	to	move	the	method	to	another	class	later.

Static	methods	and	data	really	do	act	as	if	they	are	part	of	a	different	class.	Static	data	lives	for	the	life	of	a	program,
not	the	life	of	an	instance,	and	statics	are	accessible	without	an	instance.

The	static	portions	of	a	class	can	be	seen	as	a	“staging	area”	for	things	that	don’t	quite	belong	to	the	class.	If	you	see
a	method	that	doesn’t	use	any	instance	data,	it	is	a	good	idea	to	make	it	static	to	make	it	noticeable	until	you	figure
out	what	class	it	really	belongs	on.

Here	is	the	RSCWorkflow	class	after	we’ve	extracted	a	static	method	for	validate.
public	class	RSCWorkflow	{
				public	void	validate(Packet	packet)
												throws	InvalidFlowException	{
								validatePacket(packet);
				}

				public	static	void	validatePacket(Packet	packet)
												throws	InvalidFlowException	{
								if	(packet.getOriginator()	==	“MIA”
																||	packet.getLength()	<=	MAX_LENGTH
																||	packet.hasValidCheckSum())	{
												throw	new	InvalidFlowException();
								}
								…
				}
				…
}

In	some	languages	there	is	a	simpler	way	of	doing	Expose	Static	Method.	Instead	of
extracting	a	static	method	from	your	original	method	you	can	just	make	the	original
method	static.	If	the	method	is	being	used	by	other	classes,	it	can	still	be	accessed	off	an
instance	of	its	class.	Here	is	an	example:
RSCWorkflow	workflow	=	new	RCSWorkflow();
…
//	static	call	that	looks	like	a	non-static	call
workflow.validatePacket(packet);

However,	in	some	languages,	you	get	a	compilation	warning	for	doing	this.	It’s	best	to	try
to	get	code	into	a	state	in	which	there	are	no	compile	warnings.

If	you	are	concerned	that	someone	might	start	to	use	the	static	in	a	way	that	would	cause
dependency	problems	later,	you	can	expose	the	static	method	using	some	non-public
access	mode.	In	languages	such	as	Java	and	C#,	which	have	package	or	internal	visibility,
you	can	restrict	access	to	the	static	or	make	it	protected	and	access	it	through	a	testing
subclass.	In	C++,	you	have	the	same	options:	You	can	make	the	static	method	protected	or
use	a	namespace.

Steps

To	Expose	Static	Method,	follow	these	steps:

1.	Write	a	test	that	accesses	the	method	that	you	want	to	expose	as	a	public	static
method	of	the	class.

2.	Extract	the	body	of	the	method	to	a	static	method.	Remember	to	Preserve
Signatures	(312).	You’ll	have	to	use	a	different	name	for	the	method.	Often	you	can
use	the	names	of	parameters	to	help	you	come	up	with	a	new	method	name.	For
example,	if	a	method	named	validate	accepts	a	Packet,	you	can	extract	its	body	as	a	static
method	named	validatePacket.

3.	Compile.

4.	If	there	are	errors	related	to	accessing	instance	data	or	methods,	take	a	look	at	those
features	and	see	if	they	can	be	made	static	also.	If	they	can,	make	them	static	so	that
the	system	will	compile.

Extract	and	Override	Call
At	times,	the	dependencies	that	get	in	the	way	during	testing	are	rather	localized.	We
might	have	a	single	method	call	that	we	need	to	replace.	If	we	can	break	the	dependency
on	a	method	call,	we	can	prevent	odd	side	effects	in	our	testing	or	sense	values	that	are
passed	to	the	call.

Let’s	look	at	an	example:
public	class	PageLayout
{
				private	int	id	=	0;
				private	List	styles;
				private	StyleTemplate	template;
				…
				protected	void	rebindStyles()	{
								styles	=	StyleMaster.formStyles(template,	id);
								…
				}
				…
}

PageLayout	makes	a	call	to	a	static	function	named	formStyles	on	a	class	named	StyleMaster.	It	assigns
the	return	value	to	an	instance	variable:	styles.	What	can	we	do	if	we	want	to	sense	through
formStyles	or	separate	our	dependency	on	StyleMaster?	One	option	is	to	extract	the	call	to	a	new
method	and	override	it	in	a	testing	subclass.	This	is	known	as	Extract	and	Override	Call.

Here	is	the	code	after	the	extraction:
public	class	PageLayout
{

				private	int	id	=	0;
				private	List	styles;
				private	StyleTemplate	template;
				…
				protected	void	rebindStyles()	{
								styles	=	formStyles(template,	id);
								…
				}

				protected	List	formStyles(StyleTemplate	template,
																													int	id)	{
								return	StyleMaster.formStyles(template,	id);
				}
				…
}

Now	that	we	have	our	own	local	formStyles	method,	we	can	override	it	to	break	the
dependency.	We	don’t	need	styles	for	the	things	that	we	are	testing	right	now,	so	we	can
just	return	an	empty	list.
public	class	TestingPageLayout	extends	PageLayout	{
					protected	List	formStyles(StyleTemplate	template,
																													int	id)	{
								return	new	ArrayList();
				}
				…
}

As	we	develop	tests	that	need	various	styles,	we	can	alter	this	method	so	that	we	can
configure	what	will	be	returned.

Extract	and	Override	Call	is	a	very	useful	refactoring;	I	use	it	very	often.	It	is	an	ideal
way	to	break	dependencies	on	global	variables	and	static	methods.	In	general,	I	tend	to	use
it	unless	there	are	many	different	calls	against	the	same	global.	If	there	are,	I	often	use
Replace	Global	Reference	with	Getter	(399)	instead.

If	you	have	an	automated	refactoring	tool,	Extract	and	Override	Call	is	trivial.	You	can	do
it	using	the	Extract	Method	(415)	refactoring.	However,	if	you	don’t,	use	the	following
steps.	They	allow	you	to	extract	any	call	safely,	even	if	you	don’t	have	tests	in	place.

Steps

To	Extract	and	Override	Call,	follow	these	steps:

1.	Identify	the	call	that	you	want	to	extract.	Find	the	declaration	of	its	method.	Copy
its	method	signature	so	that	you	can	Preserve	Signatures	(312).

2.	Create	a	new	method	on	the	current	class.	Give	it	the	signature	you’ve	copied.

3.	Copy	the	call	to	the	new	method	and	replace	the	call	with	a	call	to	the	new	method.

Extract	and	Override	Factory	Method
Object	creation	in	constructors	can	be	vexing	when	you	want	to	get	a	class	under	test.
Sometimes	the	work	that	is	happening	in	those	objects	shouldn’t	happen	in	a	test	harness.
At	other	times,	you	just	want	to	get	a	sensing	object	in	place,	but	you	can’t	because	that
object’s	creation	is	hard-coded	in	a	constructor.

Hard-coded	initialization	work	in	constructors	can	be	very	hard	to	work	around	in	testing.

Let’s	look	at	an	example:
public	class	WorkflowEngine
{
				public	WorkflowEngine	()	{
								Reader	reader
												=	new	ModelReader(
																AppConfig.getDryConfiguration());

								Persister	persister
												=	new	XMLStore(
																AppConfiguration.getDryConfiguration());

								this.tm	=	new	TransactionManager(reader,	persister);
								…
				}
				…
}

WorkflowEngine	creates	a	TransactionManager	in	its	constructor.	If	the	creation	was	someplace	else,	we
could	introduce	some	separation	more	easily.	One	of	the	options	we	have	is	to	use	Extract
and	Override	Factory	Method.

Extract	and	Override	Factory	Method	is	pretty	powerful,	but	it	does	have	some	language-specific	issues.	For
instance,	you	can’t	do	it	in	C++.	C++	does	not	allow	virtual	function	calls	to	resolve	to	functions	in	derived	classes.
Java	and	many	other	languages	do	allow	this.	In	C++,	Supersede	Instance	Variable	and	Extract	and	Override	Getter
(352)	are	good	alternatives.	See	the	example	in	Supersede	Instance	Variable	(404)	for	a	discussion	of	this	problem.

public	class	WorkflowEngine
{
				public	WorkflowEngine	()	{
								this.tm	=	makeTransactionManager();
								…
				}
				protected	TransactionManager	makeTransactionManager()	{
								Reader	reader
												=	new	ModelReader(
																AppConfiguration.getDryConfiguration());

								Persister	persister
												=	new	XMLStore(
																AppConfiguration.getDryConfiguration());

								return	new	TransactionManager(reader,	persister);
				}
				…
}

When	we	have	that	factory	method,	we	can	subclass	and	override	it	so	that	we	can	return	a
new	transaction	manager	whenever	we	need	one:
public	class	TestWorkflowEngine	extends	WorkflowEngine
{
				protected	TransactionManager	makeTransactionManager()	{
								return	new	FakeTransactionManager();
				}
}

Steps

To	Extract	and	Override	Factory	Method,	follow	these	steps:

1.	Identify	an	object	creation	in	a	constructor.

2.	Extract	all	of	the	work	involved	in	the	creation	into	a	factory	method.

3.	Create	a	testing	subclass	and	override	the	factory	method	in	it	to	avoid
dependencies	on	problematic	types	under	test.

Extract	and	Override	Getter
Extract	and	Override	Factory	Method	(350)	is	a	powerful	way	of	separating	dependencies
on	types,	but	it	doesn’t	work	in	all	cases.	The	big	“hole”	in	its	applicability	is	C++.	In
C++,	you	can’t	call	a	virtual	function	in	a	derived	class	from	a	base	class’s	constructor.
Fortunately,	there	is	a	workaround	for	the	case	in	which	you	are	only	creating	the	object	in
a	constructor,	not	doing	any	additional	work	with	it.

The	gist	of	this	refactoring	is	to	introduce	a	getter	for	the	instance	variable	that	you	want
to	replace	with	a	fake	object.	You	then	refactor	to	use	the	getter	every	place	in	the	class.
You	can	then	subclass	and	override	the	getter	to	provide	alternate	objects	under	test.

In	this	example,	we	create	a	transaction	manager	in	a	constructor.	We	want	to	set	things	up
so	that	the	class	can	use	this	transaction	manager	in	production	and	a	sensing	one	under
test.

Here	is	what	we	start	with:
//	WorkflowEngine.h
class	WorkflowEngine
{
private:
				TransactionManager				*tm;
public:
				WorkflowEngine	();
				…
}

//	WorkflowEngine.cpp
WorkflowEngine::WorkflowEngine()
{
				Reader	*reader
								=	new	ModelReader(
												AppConfig.getDryConfiguration());

				Persister	*persister
								=	new	XMLStore(
												AppConfiguration.getDryConfiguration());

				tm	=	new	TransactionManager(reader,	persister);
				…
}

And	here	is	what	we	end	up	with:
//	WorkflowEngine.h
class	WorkflowEngine
{
private:

				TransactionManager				*tm;

protected:
				TransactionManager				*getTransaction()	const;

public:
																											WorkflowEngine	();
				…
}

//	WorkflowEngine.cpp
WorkflowEngine::WorkflowEngine()
:tm	(0)
{
				…
}

TransactionManager	*getTransactionManager()	const
{
				if	(tm	==	0)	{
								Reader	*reader
												=	new	ModelReader(
																AppConfig.getDryConfiguration());

								Persister	*persister
												=	new	XMLStore(
																AppConfiguration.getDryConfiguration());

								tm	=	new	TransactionManager(reader,persister);
				}
				return	tm;
}
…

The	first	thing	we	do	is	introduce	a	lazy	getter,	a	function	which	creates	the	transaction
manager	on	first	call.	Then	we	replace	all	uses	of	the	variable	with	calls	to	the	getter.

A	lazy	getter	is	a	method	that	looks	like	a	normal	getter	to	all	of	its	callers.	The	key	difference	is	that	lazy	getters
create	the	object	they	are	supposed	to	return	the	first	time	they	are	called.	To	do	this,	they	usually	contain	logic	that
looks	like	this.	Notice	how	the	instance	variable	thing	is	being	initialized
Thing	getThing()	{
				if	(thing	==	null)	{
								thing	=	new	Thing();
				}
				return	thing;
}

Lazy	getters	are	also	used	in	the	Singleton	Design	Pattern	(xx).

When	we	have	that	getter,	we	can	subclass	and	override	to	plug	in	another	object:
class	TestWorkflowEngine	:	public	WorkflowEngine
{
public:
				TransactionManager		*getTransactionManager()
																									{	return	&transactionManager;	}

				FakeTransactionManager		transactionManager;
};

When	you	use	Extract	and	Override	Getter,	you	have	to	be	very	conscious	of	object	lifetime	issues,	particularly	in	a
non-garbage-collected	language	such	as	C++.	Make	sure	that	you	delete	the	testing	instance	in	a	way	that	is
consistent	with	how	the	code	deletes	the	production	instance.

In	a	test,	we	can	easily	access	the	fake	transaction	manager	if	we	need	to:
TEST(transactionCount,	WorkflowEngine)
{
				auto_ptr<TestWorkflowEngine>		engine(new	TestWorkflowEngine);
				engine.run();
				LONGS_EQUAL(0,
								engine.transactionManager.getTransactionCount());
}

One	downside	of	Extract	and	Override	Getter	is	that	there	is	a	chance	that	someone	will
use	the	variable	before	it	is	initialized.	For	this	reason,	it’s	good	to	make	sure	that	all	of
the	code	in	the	class	is	using	the	getter.

Extract	and	Override	Getter	is	not	a	technique	that	I	use	very	often.	When	there	is	just	a
single	method	on	an	object	that	is	problematic,	it	is	far	easier	to	use	Extract	and	Override
Call	(348).	But,	Extract	and	Override	Getter	is	a	better	choice	when	there	are	many
problematic	methods	on	the	same	object.	If	you	can	get	rid	of	all	of	those	problems	by
extracting	a	getter	and	overriding	it,	it	is	a	clear	win.

Steps

To	Extract	and	Override	Getter,	follow	these	steps:

1.	Identify	the	object	you	need	a	getter	for.

2.	Extract	all	of	the	logic	needed	to	create	the	object	into	a	getter.

3.	Replace	all	uses	of	the	object	with	calls	to	the	getter,	and	initialize	the	reference	that
holds	the	object	to	null	in	all	constructors.

4.	Add	the	first-time	logic	to	the	getter	so	that	the	object	is	constructed	and	assigned	to
the	reference	whenever	the	reference	is	null.

5.	Subclass	the	class	and	override	the	getter	to	provide	an	alternative	object	for
testing.

Extract	Implementer
Extract	Interface	(362)	is	a	handy	technique,	but	one	part	of	it	is	hard:	naming.	I	often	run
into	cases	where	I	want	to	extract	an	interface	but	the	name	I	want	to	use	is	already	the
name	of	the	class.	If	I	am	working	in	an	IDE	that	has	support	for	renaming	classes	and
Extract	Interface,	this	is	easy	to	take	care	of.	When	I	don’t,	I	have	a	few	choices:

•	I	can	make	up	a	foolish	name.

•	I	can	look	at	the	methods	I	need	and	see	if	they	are	a	subset	of	the	public	methods	on
the	class.	If	they	are,	they	might	suggest	another	name	for	the	new	interface.

One	thing	that	I	usually	stop	short	of	is	putting	an	“I”	prefix	on	the	name	of	the	class	to
make	a	name	for	the	new	interface,	unless	it	is	already	the	convention	in	the	code	base.
There	is	nothing	worse	than	working	in	an	unfamiliar	area	of	code	in	which	half	the	type
names	start	with	I	and	half	don’t.	Half	of	the	time	that	you	type	the	name	of	a	type,	you’ll

be	wrong.	You’ll	either	have	missed	the	needed	I	or	not.

Naming	is	a	key	part	of	design.	If	you	choose	good	names,	you	reinforce	understanding	in	a	system	and	make	it
easier	to	work	with.	If	you	choose	poor	names,	you	undermine	understanding	and	make	life	hellish	for	the
programmers	who	follow	you.

When	the	name	of	a	class	is	perfect	for	the	name	of	an	interface	and	I	don’t	have
automated	refactoring	tools,	I	use	Extract	Implementer	to	get	the	separation	I	need.	To
extract	an	implementer	of	a	class,	we	turn	the	class	into	an	interface	by	subclassing	it	and
pushing	all	of	its	concrete	methods	down	into	that	subclass.	Here	is	an	example	in	C++:
//	ModelNode.h
class	ModelNode
{
private:
				list<ModelNode	*>				m_interiorNodes;
				list<ModelNode	*>				m_exteriorNodes;
				double															m_weight;
				void																	createSpanningLinks();

public:
				void	addExteriorNode(ModelNode	*newNode);
				void	addInternalNode(ModelNode	*newNode);
				void	colorize();
				…

};

The	first	step	is	to	copy	the	declaration	of	the	ModelNode	class	completely	over	into	another
header	file	and	change	the	name	of	the	copy	to	ProductionModelNode.	Here	is	a	portion	of	the
declaration	for	the	copied	class:
//	ProductionModelNode.h
class	ProductionModeNode
{
private:
				list<ModelNode	*>				m_interiorNodes;
				list<ModelNode	*>				m_exteriorNodes;
				double															m_weight;
				void																	createSpanningLinks();
public:
				void	addExteriorNode(ModelNode	*newNode);
				void	addInternalNode(ModelNode	*newNode);
				void	colorize();
				…
};

The	next	step	is	to	go	back	to	the	ModelNode	header	and	strip	out	all	non-public	variable
declarations	and	method	declarations.	Next,	we	make	all	of	the	remaining	public	methods
pure	virtual	(abstract):
//	ModelNode.h
class	ModelNode
{
public:
virtual	void	addExteriorNode(ModelNode	*newNode)	=	0;
virtual	void	addInternalNode(ModelNode	*newNode)	=	0;
virtual	void	colorize()	=	0;
				…
};

At	this	point,	ModelNode	is	a	pure	interface.	It	contains	only	abstract	methods.	We	are	working
in	C++,	so	we	should	also	declare	a	pure	virtual	destructor	and	define	it	an	implementation
file:
//	ModelNode.h
class	ModelNode
{
public:
				virtual									~ModelNode	()	=	0;
				virtual	void					addExteriorNode(ModelNode	*newNode)	=	0;
				virtual	void					addInternalNode(ModelNode	*newNode)	=	0;
				virtual	void					colorize()	=	0;
				…
};

//	ModelNode.cpp
ModelNode::~ModelNode()
{}

Now	we	go	back	to	the	ProductionModelNode	class	and	make	it	inherit	the	new	interface	class:
#include	“ModelNode.h”
class	ProductionModelNode	:	public	ModelNode
{
private:
				list<ModelNode	*>				m_interiorNodes;
				list<ModelNode	*>				m_exteriorNodes;

				double															m_weight;
				void																	createSpanningLinks();

public:
				void	addExteriorNode(ModelNode	*newNode);
				void	addInternalNode(ModelNode	*newNode);
				void	colorize();
				…

};

At	this	point,	ProductionModelNode	should	compile	cleanly.	If	you	build	the	rest	of	the	system,
you’ll	find	the	places	where	the	people	attempt	to	instantiate	ModelNodes.	You	can	change	them
so	that	ProductionModelNodes	are	created	instead.	In	this	refactoring,	we’re	replacing	the	creation
of	objects	of	one	concrete	class	with	objects	of	another,	so	we	aren’t	really	making	our
overall	dependency	situation	better.	However,	it’s	good	to	take	a	look	at	those	areas	of
object	creation	and	try	to	figure	out	whether	a	factory	can	be	used	to	reduce	dependencies
further.

Steps

To	Extract	Implementer,	follow	these	steps:

1.	Make	a	copy	of	the	source	class’s	declaration.	Give	it	a	different	name.	It’s	useful	to
have	a	naming	convention	for	classes	you’ve	extracted.	I	often	use	the	prefix	Production
to	indicate	that	the	new	class	is	the	production	code	implementer	of	an	interface.

2.	Turn	the	source	class	into	an	interface	by	deleting	all	non-public	methods	and	all
variables.

3.	Make	all	of	the	remaining	public	methods	abstract.	If	you	are	working	in	C++,

make	sure	that	none	of	the	methods	that	you	make	abstract	are	overridden	by	non-
virtual	methods.

4.	Examine	all	imports	or	file	inclusions	in	the	interface	file,	and	see	if	they	are
necessary.	Often	you	can	remove	many	of	them.	You	can	Lean	on	the	Compiler
(315)	to	detect	these.	Just	delete	each	in	turn,	and	recompile	to	see	if	it	is	needed.

5.	Make	your	production	class	implement	the	new	interface.

6.	Compile	the	production	class	to	make	sure	that	all	method	signatures	in	the
interface	are	implemented.

7.	Compile	the	rest	of	the	system	to	find	all	of	the	places	where	instances	of	the	source
class	were	created.	Replace	these	with	creations	of	the	new	production	class.

8.	Recompile	and	test.

A	More	Complex	Example

Extract	Implementer	is	relatively	simple	when	the	source	class	doesn’t	have	any	parent	or
child	classes	in	its	inheritance	hierarchy.	When	it	does,	we	have	to	be	a	little	cleverer.
Figure	25.2	shows	ModelNode	again,	but	in	Java	with	a	superclass	and	a	subclass:

Figure	25.2	ModelNode	with	superclass	and	subclass.

In	this	design,	Node,	ModelNode,	and	LinkageNode	are	all	concrete	classes.	ModelNode	uses	protected
methods	from	Node.	It	also	supplies	methods	that	are	used	by	its	subclass,	LinkageNode.	Extract
Implementer	requires	a	concrete	class	that	can	be	converted	into	an	interface.	Afterward,
you	have	an	interface	and	a	concrete	class.

Here’s	what	we	can	do	in	this	situation.	We	can	perform	Extract	Implementer	on	the	Node
class,	placing	the	ProductionNode	class	below	Node	in	the	inheritance	hierarchy.	We	also	change
the	inheritance	relationship	so	that	ModelNode	inherits	ProductionNode	rather	than	Node.	Figure	25.3
shows	what	the	design	looks	like	afterward.

Figure	25.3	After	Extract	Implementer	on	Node.

Next,	we	do	Extract	Implementer	on	ModelNode.	Because	ModelNode	already	has	a	subclass,	we
introduce	a	ProductionModelNode	into	the	hierarchy	between	ModelNode	and	LinkageNode.	When	we’ve	done
that,	we	can	make	the	ModelNode	interface	extend	Node	as	shown	in	Figure	25.4.

Figure	25.4	Extract	Implementer	on	ModelNode.

When	you	have	a	class	embedded	in	a	hierarchy	like	this,	you	really	have	to	consider
whether	you	are	better	off	using	Extract	Interface	(362)	and	picking	different	names	for
your	interfaces.	It	is	a	far	more	direct	refactoring.

Extract	Interface
In	many	languages,	Extract	Interface	is	a	one	of	the	safest	dependency-breaking
techniques.	If	you	get	a	step	wrong,	the	compiler	tells	you	immediately,	so	there	is	very
little	chance	of	introducing	a	bug.	The	gist	of	it	is	that	you	create	an	interface	for	a	class
with	declarations	for	all	of	the	methods	that	you	want	to	use	in	some	context.	When
you’ve	done	that,	you	can	implement	the	interface	to	sense	or	separate,	passing	a	fake
object	into	the	class	you	want	to	test.

There	are	three	ways	of	doing	Extract	Interface	and	a	couple	of	little	“gotchas”	to	pay
attention	to.	The	first	way	is	to	use	automated	refactoring	support	if	you	are	lucky	enough

to	have	it	in	your	environment.	Tools	that	support	this	usually	provide	some	way	of
selecting	methods	on	a	class	and	typing	in	the	name	of	the	new	interface.	Really	good
ones	ask	you	if	you	want	to	have	them	search	through	the	code	and	find	places	where	it
can	change	references	to	use	the	new	interface.	A	tool	like	that	can	save	you	a	lot	of	work.

If	you	don’t	have	automated	support	for	interface	extraction,	you	can	use	the	second	way
of	extracting	a	method:	You	can	extract	it	incrementally	using	the	steps	I	outline	in	this
section.

The	third	way	of	extracting	an	interface	is	to	cut/copy	and	paste	several	methods	from	a
class	at	once	and	place	their	declarations	in	an	interface.	It	isn’t	as	safe	as	the	first	two
methods,	but	it	still	is	pretty	safe,	and	often	it	is	the	only	practical	way	of	extracting	an
interface	when	you	don’t	have	automated	support	and	your	builds	take	a	very	long	time.

Let’s	extract	an	interface	using	the	second	method.	Along	the	way,	we	discuss	some	of	the
things	to	watch	out	for.

We	need	to	extract	an	interface	to	bring	a	PaydayTransaction	class	under	test.	Figure	25.5	shows
PaydayTransaction	and	one	of	its	dependencies,	a	class	named	TransactionLog.

Figure	25.5	PaydayTransaction	depending	on	TransactionLog.

We	have	our	test	case:
void	testPayday()
{
				Transaction	t	=	new	PaydayTransaction(getTestingDatabase());
				t.run();

				assertEquals(getSampleCheck(12),
																	getTestingDatabase().findCheck(12));
}

But	we	have	to	pass	in	some	sort	of	a	TransactionLog	to	make	it	compile.	Let’s	create	a	call	to	a
class	that	doesn’t	exist	yet,	FakeTransactionLog.
void	testPayday()
{
				FakeTransactionLog	aLog	=	new	FakeTransactionLog();
				Transaction	t	=	new	PaydayTransaction(
																												getTestingDatabase(),
																												aLog);

				t.run();

				assertEquals(getSampleCheck(12),
																	getTestingDatabase().findCheck(12));
}

To	make	this	code	compile,	we	have	to	extract	an	interface	for	the	TransactionLog	class,	make	a
class	named	FakeTransactionLog	implement	the	interface,	and	then	make	it	possible	for
PaydayTransaction	to	accept	a	FakeTransactionLog.

First	things	first:	We	extract	the	interface.	We	create	a	new	empty	class	called
TransactionRecorder.	If	you	are	wondering	where	that	name	came	from,	take	a	look	at	the
following	note.

Interface	Naming
Interfaces	are	relatively	new	as	programming	constructs.	Java	and	many	.NET	languages	have	them.	In	C++,	you
have	to	mimic	them	by	creating	a	class	that	contains	nothing	but	pure	virtual	functions.

When	interfaces	were	first	introduced	in	languages,	some	people	started	naming	interfaces	by	placing	an	I	before	the
name	of	the	class	they	were	gleaned	from.	For	instance,	if	you	had	an	Account	class	and	you	wanted	an	interface,	you
could	give	it	the	name	IAccount.	The	advantage	to	this	sort	of	naming	is	that	you	don’t	really	have	to	think	about	the
name	when	you	do	the	extraction.	Naming	is	as	simple	as	adding	a	prefix.	The	disadvantage	is	that	you	end	up	with	a
lot	of	code	that	has	to	know	whether	it	is	dealing	with	an	interface.	Ideally,	it	shouldn’t	care	one	way	or	another.	You
also	end	up	with	a	code	base	in	which	some	names	have	I	prefixes	and	some	don’t.	Removing	the	I	if	you	want	to	go
back	to	a	regular	class	ends	up	being	a	pervasive	change.	If	you	don’t	make	the	change,	the	name	stays	in	the	code	as
a	subtle	lie.

When	you	are	developing	new	classes,	the	easiest	thing	to	do	is	create	simple	class	names,	even	for	big	abstractions.
For	instance,	if	we	are	writing	an	accounting	package,	we	can	start	with	a	class	that	is	just	called	Account.	Then	we	can
start	to	write	tests	to	add	new	functionality.	At	some	point,	you	might	want	Account	to	be	an	interface.	If	you	do,	you
can	create	a	subclass	underneath	it,	push	down	all	of	the	data	and	methods,	and	make	Account	an	interface.	When	you
do	that,	you	don’t	have	to	go	through	your	code	renaming	the	type	of	every	reference	to	Account.

In	cases	such	as	the	PaydayTransaction	example,	in	which	we	already	have	a	nice	name	for	an	interface	(TransactionLog),
we	can	do	the	same	thing.	The	downside	is	that	pushing	down	data	and	methods	to	a	new	subclass	takes	a	lot	of
steps.	But	when	the	risk	is	small	enough,	I	use	it	sometimes.	This	technique	is	called	Extract	Implementer	(356).

If	I	don’t	have	many	tests	and	I	want	to	extract	an	interface	to	get	more	in	place,	I	often	try	to	come	up	with	a	new
name	for	the	interface.	Sometimes	it	takes	a	little	while	to	think	of	one.	If	you	don’t	have	tools	that	will	rename
classes	for	you,	it	pays	to	try	to	solidify	the	name	that	you	want	to	use	before	the	number	of	places	that	use	it	grows
too	large.

interface	TransactionRecorder
{
}

Now	we	move	back	and	make	TransactionLog	implement	the	new	interface.
public	class	TransactionLog	implements	TransactionRecorder
{
			…
}

Next	we	create	FakeTransactionLog	as	an	empty	class,	too.
public	class	FakeTransactionLog	implements	TransactionRecorder
{
}

Everything	should	compile	fine	because	all	we’ve	done	is	introduce	a	few	new	classes	and
change	a	class	so	that	it	implements	an	empty	interface.

At	this	point,	we	launch	into	the	refactoring	full	force.	We	change	the	type	of	each
reference	in	the	places	where	we	want	to	use	the	interface.	PaydayTransaction	uses	a	TransactionLog;
we	need	to	change	it	so	that	it	uses	a	TransactionRecorder.	When	we’ve	done	that,	when	we
compile,	we	find	a	bunch	of	cases	in	which	methods	are	being	called	from	a	TransactionRecorder,
and	we	can	get	rid	of	the	errors	one	by	one	by	adding	method	declarations	to	the
TransactionRecorder	interface	and	empty	method	definitions	to	the	FakeTransactionLog.

Here’s	an	example:
public	class	PaydayTransaction	extends	Transaction
{
				public	PaydayTransaction(PayrollDatabase	db,
																													TransactionRecorder	log)	{
								super(db,	log);
				}

				public	void	run()	{
								for(Iterator	it	=	db.getEmployees();	it.hasNext();)	{
												Employee	e	=	(Employee)it.next();
												if	(e.isPayday(date))	{
																e.pay();
												}
								}
								log.saveTransaction(this);
				}
				…
}

In	this	case,	the	only	method	that	we	are	calling	on	TransactionRecorder	is	saveTransaction.	Because
TransactionRecorder	doesn’t	have	a	saveTransaction	method	yet,	we	get	a	compile	error.	We	can	make
our	test	compile	just	by	adding	that	method	to	TransactionRecorder	and	FakeTransactionLog.
interface	TransactionRecorder
{
				void	saveTransaction(Transaction	transaction);
}

public	class	FakeTransactionLog	implements	TransactionRecorder
{
				void	saveTransaction(Transaction	transaction)	{
				}
}

And	we	are	done.	We	no	longer	have	to	create	a	real	TransactionLog	in	our	tests.

You	might	look	at	this	and	say,	“Well,	it	isn’t	really	done;	we	haven’t	added	the	recordError
method	to	the	interface	and	the	fake.”	True,	the	recordError	method	is	there	on	TransactionLog.	If
we	needed	to	extract	the	whole	interface,	we	could	have	introduced	it	on	the	interface	also,
but	the	fact	is,	we	didn’t	need	it	for	the	test.	Although	it’s	nice	to	have	an	interface	that
covers	all	of	the	public	methods	of	a	class,	if	we	march	down	that	road,	we	could	end	up
doing	much	more	work	than	we	need	to	bring	a	piece	of	the	application	under	test.	If	you
have	your	sights	on	a	design	in	which	certain	key	abstractions	have	interfaces	that
completely	cover	a	set	of	public	methods	on	their	classes,	remember	that	you	can	get	there
incrementally.	At	times,	it	is	better	to	hold	off	until	you	can	get	more	test	coverage	before
making	a	pervasive	change.

When	you	extract	an	interface,	you	don’t	have	to	extract	all	of	the	public	methods	on	the	class	you	are	extracting

from.	Lean	on	the	Compiler	(315)	to	find	the	ones	that	are	being	used.

The	only	difficult	part	comes	when	you	are	dealing	with	non-virtual	methods.	In	Java,
these	could	be	static	methods.	Languages	such	as	C#	and	C++	also	allow	non-virtual
instance	methods.	For	more	details	about	dealing	with	these,	see	the	accompanying
sidebar.

Steps

To	Extract	Interface,	follow	these	steps:

1.	Create	a	new	interface	with	the	name	you’d	like	to	use.	Don’t	add	any	methods	to	it
yet.

2.	Make	the	class	that	you	are	extracting	from	implement	the	interface.	This	can’t
break	anything	because	the	interface	doesn’t	have	any	methods.	But	it	is	good	to
compile	and	run	your	test	just	to	verify	that.

3.	Change	the	place	where	you	want	to	use	the	object	so	that	it	uses	the	interface
rather	than	the	original	class.

4.	Compile	the	system	and	introduce	a	new	method	declaration	on	the	interface	for
each	method	use	that	the	compiler	reports	as	an	error.

Extract	Interface	and	Non-Virtual	Functions
If	you	have	a	call	like	this	in	your	code:	bondRegistry.newFixedYield(client)	in	many	languages,	it	is	hard	to	tell	by
looking	at	it	whether	the	method	is	a	static	method	or	a	virtual	or	non-virtual	instance	method.	In	languages	that
allow	non-virtual	instance	methods,	you	can	get	into	some	trouble	if	you	extract	an	interface	and	add	the	signature	of
one	of	the	classes	non-virtual	methods	to	it.	In	general,	if	your	class	has	no	subclasses,	you	can	make	the	method
virtual	and	then	extract	the	interface.	Everything	will	be	fine.	But	if	your	class	has	subclasses,	pulling	the	method
signature	up	into	an	interface	can	break	the	code.	Here	is	an	example	in	C++.	We	have	a	class	with	a	non-virtual
method:
class	BondRegistry
{
public:
				Bond	*newFixedYield(Client	*client)	{	…	}
};

And	we	have	a	subclass	that	has	a	method	with	the	same	name	and	signature:
class	PremiumRegistry	:	public	BondRegistry
{
public:
				Bond	*newFixedYield(Client	*client)	{	…	}
};

If	we	extract	an	interface	from	BondRegistry:
class	BondProvider
{
public:
				virtual	Bond	*newFixedYield(Client	*client)	=	0;
};

and	have	BondRegistry	implement	it:
class	BondRegistry	:	public	BondProvider	{	…	};

we	could	break	code	that	looks	like	this	by	passing	in	a	PremiumRegistry:
void	disperse(BondRegistry	*registry)	{

				…
				Bond	*bond	=	registry->newFixedYield(existingClient);
				…
			}

Before	we	extracted	the	interface,	BondRegistry's	newFixedYield	method	was	called	because	the	compile-time	type	of	the
registry	variable	is	BondRegistry.	If	we	make	newFixedYield	virtual	in	the	process	of	extracting	the	interface,	we	change
the	behavior.	The	method	on	PremiumBondRegistry	is	called.	In	C++,	when	we	make	a	method	virtual	in	a	base	class,
methods	that	override	it	in	subclasses	become	virtual.	Note	that	we	don’t	have	this	problem	in	Java	or	C#.	In	Java,	all
instance	methods	are	virtual.	In	C#,	things	are	a	little	safer	because	adding	an	interface	does	not	affect	existing	calls
to	non-virtual	methods.

In	general,	creating	a	method	in	a	derived	class	with	the	same	signature	as	a	non-virtual	method	in	the	base	isn’t	good
practice	in	C++	because	it	can	lead	to	misunderstandings.	If	you	want	to	have	access	to	a	non-virtual	function
through	an	interface	and	it	isn’t	on	a	class	with	no	subclasses,	the	best	thing	to	do	is	add	a	new	virtual	method	with	a
new	name.	That	method	can	delegate	to	a	non-virtual	or	even	a	static	method.	You	just	have	to	make	sure	that	the
method	does	the	right	thing	for	all	of	the	subclasses	below	the	one	that	you	are	extracting	from.

Introduce	Instance	Delegator
People	use	static	methods	on	classes	for	many	reasons.	One	of	the	most	common	reasons
is	to	implement	the	Singleton	Design	Pattern	(372).	Another	common	reason	to	use	static
methods	is	to	create	utility	classes.

Utility	classes	are	pretty	easy	to	find	in	many	designs.	They	are	classes	that	don’t	have	any
instance	variables	or	instance	methods.	Instead,	they	consist	of	a	set	of	static	methods	and
constants.

People	create	utility	classes	for	many	reasons.	Most	of	the	time,	they	are	created	when	it	is
hard	to	find	a	common	abstraction	for	a	set	of	methods.	The	Math	class	in	the	Java	JDK	is	an
example	of	this.	It	has	static	methods	for	trigonometric	functions	(cos,	sin,	tan)	and	many
others.	When	languages	designers	build	their	languages	from	objects	“all	the	way	down,”
they	make	sure	that	numeric	primitives	know	how	do	these	things.	For	instance,	you
should	be	able	to	call	the	method	sin()	on	the	object	1	or	any	other	numeric	object	and	get
the	right	result.	At	the	time	of	this	writing,	Java	does	not	support	math	methods	on
primitive	types,	so	the	utility	class	is	a	fair	solution,	but	it	is	also	a	special	case.	In	nearly
all	cases,	you	can	use	plain	old	classes	with	instance	data	and	methods	to	do	your	work.

If	you	have	static	methods	in	your	project,	chances	are	good	that	you	won’t	run	into	any
trouble	with	them	unless	they	contain	something	that	is	difficult	to	depend	on	in	a	test.
(The	technical	term	for	this	is	static	cling).	In	these	cases,	you	might	wish	that	you	could
use	an	object	seam	(40)	to	substitute	in	some	other	behavior	when	the	static	methods	are
called.	What	do	you	do	in	this	case?

One	thing	that	can	do	is	start	to	introduce	delegating	instance	methods	on	the	class.	When
you	do	this,	you	have	to	find	a	way	to	replace	the	static	calls	with	method	calls	on	an
object.	Here	is	an	example:
public	class	BankingServices
{
				public	static	void	updateAccountBalance(int	userID,
																																												Money	amount)	{
								…
				}
				…
}

Here	we’ve	got	a	class	that	contains	nothing	but	static	methods.	I’ve	shown	only	one	here,
but	you	get	the	idea.	We	can	add	an	instance	method	to	the	class	like	this	and	have	it
delegate	to	the	static	method:
public	class	BankingServices
{
				public	static	void	updateAccountBalance(int	userID,
																																												Money	amount)	{
								…
				}

				public	void	updateBalance(int	userID,	Money	amount)	{
								updateAccountBalance(userID,	amount);
				}
				…
}

In	this	case,	we’ve	added	an	instance	method	named	updateBalance	and	made	it	delegate	to	the
static	method	updateAccountBalance.

Now	in	the	calling	code,	we	can	replace	references	like	this:
public	class	SomeClass
{
				public	void	someMethod()	{
								…
								BankingServices.updateAccountBalance(id,	sum);
				}
}

with	this:
public	class	SomeClass
{
				public	void	someMethod(BankingServices	services)	{
								…
								services.updateBalance(id,sum);
				}
				…
}

Notice	that	we	can	pull	this	off	only	if	we	can	find	some	way	to	externally	create	the
BankingServices	object	that	we	are	using.	It	is	an	additional	refactoring	step,	but	in	statically
typed	languages,	we	can	Lean	on	the	Compiler	(315)	to	get	the	object	in	place.

This	technique	is	straightforward	enough	with	many	static	methods,	but	when	you	start	to
do	it	with	utility	classes,	you	might	start	to	feel	uncomfortable.	A	class	with	5	or	10	static
methods	and	only	one	or	two	instance	methods	does	look	weird.	It	looks	even	weirder
when	they	are	just	simple	methods	delegating	to	static	methods.	But	when	you	use	this
technique,	you	can	get	an	object	seam	in	place	easily	and	substitute	different	behaviors
under	test.	Over	time,	you	might	get	to	the	point	that	every	call	to	the	utility	class	comes
through	the	delegating	methods.	At	that	time,	you	can	move	the	bodies	of	the	static
methods	into	the	instance	methods	and	delete	the	static	methods.

Steps

To	Introduce	Instance	Delegator,	follow	these	steps:

1.	Identify	a	static	method	that	is	problematic	to	use	in	a	test.

2.	Create	an	instance	method	for	the	method	on	the	class.	Remember	to	Preserve
Signatures	(312).	Make	the	instance	method	delegate	to	the	static	method.

3.	Find	places	where	the	static	methods	are	used	in	the	class	you	have	under	test.	Use
Parameterize	Method	(383)	or	another	dependency-breaking	technique	to	supply	an
instance	to	the	location	where	the	static	method	call	was	made.

Introduce	Static	Setter
Maybe	I	am	a	purist,	but	I	don’t	like	global	mutable	data.	When	I	visit	teams,	it	is	usually
the	most	apparent	hurdle	to	getting	portions	of	their	system	into	test	harnesses.	You	want
to	pull	out	a	set	of	classes	into	a	test	harness,	but	you	discover	that	some	of	them	need	to
be	set	up	in	particular	states	to	be	used	at	all.	When	you	have	your	harness	set	up,	you
have	to	run	down	the	list	of	globals	to	make	sure	that	each	one	has	the	state	you	need	for
the	condition	you	want	to	test.	Quantum	physicists	didn’t	discover	“spooky	action	at	a
distance”;	in	software,	we’ve	had	it	for	years.

All	griping	about	globals	aside,	many	systems	have	them.	In	some	systems,	they	are	very
direct	and	un-self-conscious;	someone	just	declared	a	variable	someplace.	In	others,	they
are	dressed	up	as	singletons	with	strict	adherence	to	the	Singleton	Design	Pattern.	In	any
case,	getting	a	fake	in	place	for	sensing	is	very	straightforward.	If	the	variable	is	an
unabashed	global,	sitting	outside	a	class	or	plainly	out	in	the	open	as	a	public	static
variable,	you	can	just	replace	the	object.	If	the	reference	is	const	or	final,	you	might	have	to
remove	that	protection.	Leave	a	comment	in	the	code	saying	that	you	are	doing	it	for	test
and	that	people	shouldn’t	take	advantage	of	the	access	in	production	code.

The	Singleton	Design	Pattern
The	Singleton	Design	Pattern	is	a	pattern	that	many	people	use	to	make	sure	that	there	can	only	be	one	instance	of	a
particular	class	in	a	program.	There	are	three	properties	that	most	singletons	share:

1.	The	constructors	of	a	singleton	class	are	usually	made	private.

2.	A	static	member	of	the	class	holds	the	only	instance	of	the	class	that	will	ever	be	created	in	the	program.

3.	A	static	method	is	used	to	provide	access	to	the	instance.	Usually	this	method	is	named	instance.

Although	singletons	do	prevent	people	from	making	more	than	one	instance	of	a	class	in	production	code,	they	also
prevent	people	from	making	more	than	one	instance	of	a	class	in	a	test	harness.

Replacing	singletons	is	just	a	little	more	work.	Add	a	static	setter	to	the	singleton	to
replace	the	instance,	and	then	make	the	constructor	protected.	You	can	then	subclass	the
singleton,	create	a	fresh	object,	and	pass	it	to	the	setter.

You	might	be	left	a	little	queasy	by	the	idea	that	you	are	removing	access	protection	when
you	use	static	setter,	but	remember	that	the	purpose	of	access	protection	is	to	prevent
errors.	We	are	putting	in	tests	to	prevent	errors	also.	It	just	turns	out	that,	in	this	case,	we
need	the	stronger	tool.

Here	is	an	example	of	Introduce	Static	Setter	in	C++:
void	MessageRouter::route(Message	*message)	{
				…
				Dispatcher	*dispatcher
												=	ExternalRouter::instance()->getDispatcher();
				if	(dispatcher	!=	NULL)

								dispatcher->sendMessage(message);
}

In	the	MessageRouter	class,	we	use	singletons	in	a	couple	of	places	to	get	dispatchers.	The
ExternalRouter	class	is	one	of	those	singletons.	It	uses	a	static	method	named	instance	to	provide
access	to	the	one	and	only	instance	of	ExternalRouter.	The	ExternalRouter	class	has	a	getter	for	a
dispatcher.	We	can	replace	the	dispatcher	with	another	one	by	replacing	the	external	router
that	serves	it.

This	is	what	the	ExternalRouter	class	looks	like	before	we	introduce	the	static	setter:
class	ExternalRouter
{
private:
				static	ExternalRouter	*_instance;
public:
				static	ExternalRouter	*instance();
				…
};

ExternalRouter	*ExternalRouter::_instance	=	0;

ExternalRouter	*ExternalRouter::instance()
{
				if	(_instance	==	0)	{
								_instance	=	new	ExternalRouter;
				}
				return	_instance;
}

Notice	that	the	router	is	created	on	the	first	call	to	the	instance	method.	To	substitute	in
another	router,	we	have	to	change	what	instance	returns.	The	first	step	is	to	introduce	a	new
method	to	replace	the	instance.
void	ExternalRouter::setTestingInstance(ExternalRouter	*newInstance)
{
				delete	_instance;
				_instance	=	newInstance;
}

Of	course,	this	assumes	that	we	are	able	to	create	a	new	instance.	When	people	use	the
singleton	pattern,	they	often	make	the	constructor	of	the	class	private	to	prevent	people
from	creating	more	than	one	instance.	If	you	make	the	constructor	protected,	you	can
subclass	the	singleton	to	sense	or	separate	and	pass	the	new	instance	to	the	setTestingInstance
method.	In	the	previous	example,	we’d	make	a	subclass	of	ExternalRouter	named	TestingExternalRouter
and	override	the	getDispatcher	method	so	that	it	returns	the	dispatcher	we	want,	a	fake
dispatcher.
class	TestingExternalRouter	:	public	ExternalRouter
{
public:
				virtual	void	Dispatcher	*getDispatcher()	const	{
								return	new	FakeDispatcher;
				}
};

This	might	look	like	a	rather	roundabout	way	of	substituting	in	a	new	dispatcher.	We	end
up	creating	a	new	ExternalRouter	just	to	substitute	dispatchers.	We	can	take	some	shortcuts,	but
they	have	different	tradeoffs.	Another	thing	that	we	can	do	is	add	a	boolean	flag	to

ExternalRouter	and	let	it	return	a	different	dispatcher	when	the	flag	is	set.	In	C++	or	C#,	we	can
use	conditional	compilation	to	select	dispatchers	also.	These	techniques	can	work	well,
but	they	are	invasive	and	can	get	unwieldy	if	you	use	them	throughout	an	application.	In
general,	I	like	to	keep	separation	between	production	and	test	code.

Using	a	setter	method	and	a	protected	constructor	on	a	singleton	is	mildly	invasive,	but	it
does	help	you	get	tests	in	place.	Could	people	misuse	the	public	constructor	and	make
more	than	one	singleton	in	the	production	system?	Yes,	but	in	my	opinion,	if	it	is
important	to	have	only	one	instance	of	an	object	in	a	system,	the	best	way	to	handle	it	is	to
make	sure	everyone	on	the	team	understands	that	constraint.

One	alternative	to	decreasing	constructor	protection	and	subclassing	is	to	use	Extract	Interface	(362)	on	the	singleton
class	and	supply	a	setter	that	accepts	an	object	with	that	interface.	The	downside	of	this	is	that	you	have	to	change	the
type	of	the	reference	you	use	to	hold	the	singleton	in	the	class	and	the	type	of	the	return	value	of	the	instance	method.
These	changes	can	be	quite	involved,	and	they	don’t	really	move	us	to	a	better	state.	The	ultimate	“better	state”	is	to
reduce	global	references	to	the	singleton	to	the	point	that	it	can	just	become	a	normal	class.

In	the	previous	example,	we	replaced	a	singleton	using	a	static	setter.	The	singleton	was	an
object	that	served	up	another	object,	a	dispatcher.	Occasionally,	we	see	a	different	kind	of
global	in	systems,	a	global	factory.	Rather	than	holding	on	to	an	instance,	they	serve	up
fresh	objects	every	time	you	call	one	of	their	static	methods.	Substituting	in	another	object
to	return	is	kind	of	tricky,	but	often	you	can	do	it	by	having	the	factory	delegate	to	another
factory.	Let’s	take	a	look	at	an	example	in	Java:
public	class	RouterFactory
{
				static	Router	makeRouter()	{
								return	new	EWNRouter();
				}
}

RouterFactory	is	a	straightforward	global	factory.	As	it	stands,	it	doesn’t	allow	us	to	replace	the
routers	it	serves	under	test,	but	we	can	alter	it	so	that	it	can.
interface	RouterServer
{
				Router	makeRouter();
}

public	class	RouterFactory	implements	RouterServer
{
				static	Router	makeRouter()	{
								return	server.makeRouter();
				}

				static	setServer(RouterServer	server)	{
								this.server	=	server;
				}

				static	RouterServer	server	=	new	RouterServer()	{
								public	RouterServer	makeRouter()	{
												return	new	EWNRouter();
								}
				};
}

In	a	test,	we	can	do	this:

protected	void	setUp()	{
				RouterServer.setServer(new	RouterServer()	{
								public	RouterServer	makeRouter()	{
												return	new	FakeRouter();
								}
				});
}

But	it	is	important	to	remember	that	in	any	of	these	static	setter	patterns,	you	are
modifying	state	that	is	available	to	all	tests.	You	can	use	the	tearDown	method	in	xUnit	testing
frameworks	to	put	things	back	into	some	known	state	before	the	rest	of	your	tests	execute.
In	general,	I	do	that	only	when	using	the	wrong	state	in	the	next	test	could	be	misleading.
If	I	am	substituting	in	a	fake	MailSender	in	all	of	my	tests,	putting	in	another	doesn’t	make
much	sense.	On	the	other	hand,	if	I	have	global	that	keeps	state	that	affects	the	results	of
the	system,	often	I	do	the	same	thing	in	the	setUp	and	tearDown	methods	to	make	sure	that	I’ve
left	things	in	a	clean	state:
protected	void	setUp()	{
				Node.count	=	0;
				…
}

protected	void	tearDown()	{
				Node.count	=	0;
}

At	this	point,	I’m	imagining	you	with	my	mind’s	eye.	You	are	sitting	there	disgusted	at	the
carnage	that	I	am	wreaking	on	the	system	just	to	be	able	to	get	some	tests	in	place.	And
you	are	right:	These	patterns	can	uglify	parts	of	a	system	considerably.	Surgery	is	never
pretty,	particularly	at	the	beginning.	What	can	you	do	to	get	the	system	back	to	a	decent
state?

One	thing	to	consider	is	parameter	passing.	Take	a	look	at	the	classes	that	need	access	to
your	global	and	consider	whether	you	can	give	them	a	common	superclass.	If	you	can,	you
can	pass	the	global	to	them	upon	creation	and	slowly	move	away	from	having	globals	at
all.	Often	people	are	scared	that	every	class	in	the	system	will	require	some	global.	Often
you’ll	be	surprised.	I	once	worked	on	an	embedded	system	that	encapsulated	memory
management	and	error	reporting	as	classes,	passing	a	memory	object	or	error	reporter	to
whoever	needed	it.	Over	time,	there	was	a	clean	separation	between	classes	that	needed
those	services	and	classes	that	didn’t.	The	ones	that	needed	them	just	had	a	common
superclass.	The	objects	that	were	passed	throughout	the	system	were	created	at	the	start	of
the	program,	and	it	was	barely	noticeable.

Steps

To	Introduce	Static	Setter,	follow	these	steps:

1.	Decrease	the	protection	of	the	constructor	so	that	you	can	make	a	fake	by
subclassing	the	singleton.

2.	Add	a	static	setter	to	the	singleton	class.	The	setter	should	accept	a	reference	to	the
singleton	class.	Make	sure	that	the	setter	destroys	the	singleton	instance	properly
before	setting	the	new	object.

3.	If	you	need	access	to	private	or	protected	methods	in	the	singleton	to	set	it	up

properly	for	testing,	consider	subclassing	it	or	extracting	an	interface	and	making
the	singleton	hold	its	instance	as	reference	whose	type	is	the	type	of	the	interface.

Link	Substitution
Object	orientation	gives	us	wonderful	opportunities	to	substitute	one	object	for	another.	If
two	classes	implement	the	same	interface	or	have	the	same	superclass,	you	can	substitute
one	for	another	pretty	easily.	Unfortunately,	people	working	in	procedural	languages	such
as	C	don’t	have	that	option.	When	you	have	a	function	like	this,	there	is	no	way	to
substitute	one	function	for	another	at	compile	time,	short	of	using	the	preprocessor:
void	account_deposit(int	amount);

Are	there	other	alternatives?	Yes,	you	can	Link	Substitution	to	replace	one	function	with
another.	To	do	this,	create	a	dummy	library	that	has	functions	with	the	same	signatures	as
the	functions	that	you	want	to	fake.	If	you	are	sensing,	you	need	to	set	up	some
mechanism	for	saving	notifications	and	querying	them.	You	can	use	files,	global	variables,
or	anything	that	would	be	convenient	under	test.

Here	is	an	example:
void	account_deposit(int	amount)
{
				struct	Call	*call	=
								(struct	Call	*)calloc(1,	sizeof	(struct	Call));
				call->type	=	ACC_DEPOSIT;
				call->arg0	=	amount;
				append(g_calls,	call);
}

In	this	case,	we	are	interested	in	sensing,	so	we	create	a	global	list	of	calls	to	record	each
time	that	this	function	(or	any	other	one	we	are	faking)	is	called.	In	a	test,	we	could	check
the	list	after	we	exercise	a	set	of	objects	and	see	if	the	mocked	functions	were	called	in	the
appropriate	order.

I’ve	never	tried	to	use	Link	Substitution	with	C++	classes,	but	I	suppose	that	it	is	possible.
I’m	sure	that	the	mangled	names	that	C++	compilers	produce	would	make	it	rather
difficult;	however,	when	making	calls	to	C	functions,	it	is	very	practical.	The	most	useful
case	is	when	faking	external	libraries.	The	best	libraries	to	fake	are	those	that	are	mostly
pure	data	sinks:	You	call	functions	in	them,	but	you	don’t	often	care	about	the	return
values.	For	example,	graphics	libraries	are	particularly	useful	to	fake	with	Link
Substitution.

Link	Substitution	can	also	be	used	in	Java.	Create	classes	with	the	same	names	and
methods,	and	change	your	classpath	so	that	calls	resolve	to	them	rather	than	the	classes
with	bad	dependencies.

Steps

To	use	Link	Substitution,	follow	these	steps:

1.	Identify	the	functions	or	classes	that	you	want	to	fake.

2.	Produce	alternative	definitions	for	them.

3.	Adjust	your	build	so	that	the	alternative	definitions	are	included	rather	than	the

production	versions.

Parameterize	Constructor
If	you	are	creating	an	object	in	a	constructor,	often	the	easiest	way	to	replace	it	is	to
externalize	its	creation,	create	the	object	outside	the	class,	and	make	clients	pass	it	into	the
constructor	as	a	parameter.	Here	is	an	example.

We	start	with	this:
public	class	MailChecker
{
				public	MailChecker	(int	checkPeriodSeconds)	{
								this.receiver	=	new	MailReceiver();
								this.checkPeriodSeconds	=	checkPeriodSeconds;
				}
				…
}

Then	we	introduce	a	new	parameter	like	this:
public	class	MailChecker
{
				public	MailChecker	(MailReceiver	receiver,
																								int	checkPeriodSeconds)	{
								this.receiver	=	receiver;
								this.checkPeriodSeconds	=	checkPeriodSeconds;
				}
				…
}

One	reason	people	don’t	often	think	of	this	technique	is	that	they	assume	that	it	forces	all
clients	to	pass	an	additional	argument.	However,	you	can	write	a	constructor	that	keeps	the
original	signature	around:
public	class	MailChecker
{
				public	MailChecker	(int	checkPeriodSeconds)	{
								this(new	MailReceiver(),	checkPeriodSeconds);
				}

				public	MailChecker	(MailReceiver	receiver,
																								int	checkPeriodSeconds)	{
								this.receiver	=	receiver;
								this.checkPeriodSeconds	=	checkPeriodSeconds;
				}
				…

}

If	you	do,	you	can	supply	different	objects	for	testing,	and	the	clients	of	the	class	don’t
have	to	know	the	difference.

Let’s	do	it	step	by	step.	Here	is	our	original	code:
public	class	MailChecker
{
				public	MailChecker	(int	checkPeriodSeconds)	{
								this.receiver	=	new	MailReceiver();
								this.checkPeriodSeconds	=	checkPeriodSeconds;
				}
				…

}

We	make	a	copy	of	the	constructor:
public	class	MailChecker
{
				public	MailChecker	(int	checkPeriodSeconds)	{
								this.receiver	=	new	MailReceiver();
								this.checkPeriodSeconds	=	checkPeriodSeconds;
				}

				public	MailChecker	(int	checkPeriodSeconds)	{
								this.receiver	=	new	MailReceiver();
								this.checkPeriodSeconds	=	checkPeriodSeconds;
				}
				…
}

Then	we	add	a	parameter	to	it	for	the	MailReceiver:
public	class	MailChecker
{
				public	MailChecker	(int	checkPeriodSeconds)	{
								this.receiver	=	new	MailReceiver();
								this.checkPeriodSeconds	=	checkPeriodSeconds;
				}

				public	MailChecker	(MailReceiver	receiver,
																								int	checkPeriodSeconds)	{
								this.receiver	=	new	MailReceiver();
								this.checkPeriodSeconds	=	checkPeriodSeconds;
				}
				…
}

Next	we	assign	that	parameter	to	the	instance	variable,	getting	rid	of	the	new	expression.
public	class	MailChecker
{
				public	MailChecker	(int	checkPeriodSeconds)	{
								this.receiver	=	new	MailReceiver();
								this.checkPeriodSeconds	=	checkPeriodSeconds;
				}

				public	MailChecker	(MailReceiver	receiver,
																								int	checkPeriodSeconds)	{
								this.receiver	=	receiver;
								this.checkPeriodSeconds	=	checkPeriodSeconds;
				}

				…
}

Now,	we	go	back	to	the	original	constructor	and	remove	its	body,	replacing	it	with	a	call	to
the	new	constructor.	The	original	constructor	uses	new	to	create	the	parameter	it	needs	to
pass.
public	class	MailChecker
{
				public	MailChecker	(int	checkPeriodSeconds)	{
								this(new	MailReceiver(),	checkPeriodSeconds);
				}

				public	MailChecker	(MailReceiver	receiver,
																								int	checkPeriodSeconds)	{
								this.receiver	=	receiver;
								this.checkPeriodSeconds	=	checkPeriodSeconds;
				}
				…
}

Are	there	any	downsides	to	this	technique?	Actually,	yes,	there	is	one.	When	we	add	a
new	parameter	to	a	constructor,	we	are	opening	the	door	to	further	dependencies	on	the
parameter’s	class.	Users	of	the	class	can	use	the	new	constructor	in	production	code	and
increase	dependencies	across	the	system.	However,	in	general,	that	is	a	rather	small
concern.	Parameterize	Constructor	is	a	very	easy	refactoring	and	it	is	one	that	I	tend	to
use	a	lot.

In	languages	that	allow	default	arguments,	there	is	a	simpler	way	of	doing	Parameterize	Constructor.	We	can	simply
add	a	default	argument	to	the	existing	constructor:

Here	is	a	constructor	that	has	been	parameterized	this	way	in	C++:
class	AssemblyPoint
{
public:
				AssemblyPoint(EquipmentDispatcher	*dispatcher
																=	new	EquipmentDispatcher);
				…
};

There	is	only	one	downside	when	we	do	this	in	C++.	The	header	file	containing	this	class	declaration	has	to	include
the	header	for	EquipmentDispatcher.	If	it	wasn’t	for	the	constructor	call,	we	might	have	been	able	to	use	a	forward
declaration	for	EquipmentDispatcher.	For	this	reason,	I	don’t	use	default	arguments	often.

Steps

To	Parameterize	Constructor,	follow	these	steps:

1.	Identify	the	constructor	that	you	want	to	parameterize	and	make	a	copy	of	it.

2.	Add	a	parameter	to	the	constructor	for	the	object	whose	creation	you	are	going	to
replace.	Remove	the	object	creation	and	add	an	assignment	from	the	parameter	to
the	instance	variable	for	the	object.

3.	If	you	can	call	a	constructor	from	a	constructor	in	your	language,	remove	the	body
of	the	old	constructor	and	replace	it	with	a	call	to	the	old	constructor.	Add	a	new
expression	to	the	call	of	the	new	constructor	in	the	old	constructor.	If	you	can’t	call
a	constructor	from	another	constructor	in	your	language,	you	may	have	to	extract
any	duplication	among	the	constructors	to	a	new	method.

Parameterize	Method
You	have	a	method	that	creates	an	object	internally,	and	you	want	to	replace	the	object	to
sense	or	separate.	Often	the	easiest	way	to	do	this	is	to	pass	the	object	from	the	outside.
Here	is	an	example	in	C++:
void	TestCase::run()	{
				delete	m_result;
				m_result	=	new	TestResult;
				try	{
								setUp();

								runTest(m_result);
				}
				catch	(exception&	e)	{
								result->addFailure(e,	this);
				}
				tearDown();
}

Here	we	have	a	method	that	creates	a	TestResult	object	whenever	it	is	called.	If	we	want	to
sense	or	separate,	we	can	pass	it	as	a	parameter.
void	TestCase::run(TestResult	*result)	{
				delete	m_result;
				m_result	=	result;
				try	{
								setUp();
								runTest(m_result);
				}
				catch	(exception&	e)	{
								result->addFailure(e,	this);
				}
				tearDown();
}

We	can	use	a	little	forwarding	method	that	keeps	the	original	signature	intact:
void	TestCase::run()	{
				run(new	TestResult);
}

In	C++,	Java,	C#,	and	many	other	languages,	you	can	have	two	methods	with	the	same	name	on	a	class,	as	long	as
the	signatures	are	different.	In	the	example,	we	take	advantage	of	this	and	use	the	same	name	for	the	new
parameterized	method	and	the	original	method.	Although	this	saves	some	work,	at	times	it	can	be	confusing.	An
alternative	is	to	use	the	type	of	the	parameter	in	the	name	of	the	new	method.	For	instance,	in	this	case,	we	could
keep	run()	as	the	name	of	the	original	method	but	call	the	new	method	runWithTestResult(TestResult).

As	with	Parameterize	Constructor	(379),	Parameterize	Method	can	allow	clients	to
become	dependent	on	new	types	that	were	used	in	the	class	before	but	were	not	present	at
the	interface.	If	I	think	that	this	will	become	an	issue,	I	consider	Extract	and	Override
Factory	Method	(350)	instead.

Steps

To	Parameterize	Method,	follow	these	steps:

1.	Identify	the	method	that	you	want	to	replace	and	make	a	copy	of	it.

2.	Add	a	parameter	to	the	method	for	the	object	whose	creation	you	are	going	to
replace.	Remove	the	object	creation	and	add	an	assignment	from	the	parameter	to
the	variable	that	holds	the	object.

3.	Delete	the	body	of	the	copied	method	and	make	a	call	to	the	parameterized	method,
using	the	object	creation	expression	for	the	original	object.

Primitivize	Parameter
In	general,	the	best	way	to	make	a	change	to	a	class	is	to	create	an	instance	in	a	test
harness,	write	a	test	for	the	change	you	want	to	make,	and	then	make	the	change	to	satisfy
the	test.	But	sometimes	the	amount	of	work	that	you	have	to	do	to	get	a	class	under	test	is

ridiculously	large.	One	team	that	I	visited	inherited	a	legacy	system	with	domain	classes
that	transitively	depended	on	nearly	every	other	class	in	the	system.	As	if	that	wasn’t	bad
enough,	they	all	were	tied	into	a	persistence	framework	as	well.	Getting	one	of	those
classes	into	a	testing	framework	would	have	been	doable,	but	the	team	wouldn’t	have	been
able	to	make	progress	on	features	for	a	while	if	they	spent	all	of	that	time	fighting	with	the
domain	classes.	To	get	some	separation,	we	used	this	strategy.	The	example	has	been
changed	to	protect	the	innocent.

In	a	music-composition	tool,	a	track	contains	several	sequences	of	musical	events.	We
need	to	find	“dead	time”	in	each	sequence	so	that	we	can	fill	it	with	little	recurring
musical	patterns.	We	need	a	method	named	bool	Sequence::hasGapFor(Sequence&	pattern)	const.	The	method
returns	a	value	that	indicates	whether	a	pattern	can	be	fit	into	a	sequence.

Ideally,	this	method	would	be	on	a	class	named	Sequence,	but	Sequence	is	one	of	those	awful
classes	that	would	try	to	suck	the	world	into	our	test	harness	when	we	tried	to	create	it.	To
start	to	write	that	method,	we	have	to	figure	out	how	to	write	a	test	for	it.	The	thing	that
makes	it	possible	for	us	is	that	sequences	have	an	internal	representation	that	can	be
simplified.	Every	sequence	consists	of	a	vector	of	events.	Unfortunately,	events	have	the
same	problem	as	sequences:	terrible	dependencies	that	lead	to	build	problems.	Luckily,	to
do	this	calculation,	we	need	only	the	durations	of	each	event.	We	can	write	another
method	that	will	do	the	calculation	on	ints.	When	we	have	it,	we	can	write	hasGapFor	and	let	it
do	its	work	by	delegating	to	the	other	method.

Let’s	start	writing	the	first	method.	Here	is	a	test	for	it:
TEST(hasGapFor,	Sequence)
{
				vector<unsigned	int>	baseSequence;
				baseSequence.push_back(1);
				baseSequence.push_back(0);
				baseSequence.push_back(0);

				vector<unsigned	int>	pattern;
				pattern.push_back(1);
				pattern.push_back(2);

				CHECK(SequenceHasGapFor(baseSequence,	pattern));
}

The	function	SequenceHasGapFor	is	just	a	free	function;	it	is	not	part	of	any	class,	but	it	operates
on	a	representation	built	of	primitives—in	this	case,	unsigned	integers.	If	we	build	up	the
functionality	for	SequenceHasGapFor	in	a	testing	harness,	we	can	write	a	rather	simple	function	on
Sequence	that	delegates	to	the	new	functionality:
bool	Sequence::hasGapFor(Sequence&	pattern)	const
{
				vector<unsigned	int>	baseRepresentation
												=	getDurationsCopy();

				vector<unsigned	int>	patternRepresentation
												=	pattern.getDurationsCopy();

				return	SequenceHasGapFor(baseRepresentation,
																													patternRepresentation);
}

This	function	needs	another	function	to	get	an	array	of	the	durations,	so	we	write	it:
vector<unsigned	int>	Sequence::getDurationsCopy()	const
{
				vector<unsigned	int>	result;
				for	(vector<Event>::iterator	it	=	events.begin();
												it	!=	events.end();	++it)	{
								result.push_back(it->duration);
				}
				return	result;
}

At	this	point,	we’ve	been	able	to	get	the	feature	in,	but	in	a	very	poor	way.	Let’s	make	a
list	of	all	of	the	horrible	things	we’ve	done	here:

1.	Exposed	the	internal	representation	of	Sequence.

2.	Made	the	implementation	of	Sequence	a	little	tougher	to	understand	by	pushing	some	of
it	off	into	a	free	function.

3.	Written	some	untested	code	(we	couldn’t	really	write	a	test	for	getDurationsCopy()).

4.	Duplicated	data	in	the	system.

5.	Prolonged	the	problem.	We	haven’t	started	to	do	the	hard	work	of	breaking
dependencies	between	our	domain	classes	and	the	infrastructure.	(That	is	the	one
thing	that	will	make	a	large	difference	as	we	move	forward,	and	it	is	still	ahead	of
us.)

In	spite	of	all	of	those	downsides,	we	were	able	to	add	a	tested	feature.	I	don’t	like	to	do
this	refactoring,	but	I	will	use	it	if	my	back	is	against	the	wall.	Often	it	is	a	good
predecessor	to	Sprout	Class	(63).	To	see	this,	imagine	wrapping	SequenceHasGapFor	in	a	class
called	GapFinder.

Primitivize	Parameter	(385)	leaves	code	in	a	rather	poor	state.	Overall,	it	is	better	to	add	the	new	code	to	the	original
class	or	to	use	Sprout	Class	(63)	to	build	up	some	new	abstractions	that	can	serve	as	a	base	for	further	work.	The	only
time	I	use	Primitivize	Parameter	is	when	I	feel	confident	that	I	will	take	the	time	to	bring	the	class	under	test	later.	At
that	point,	the	function	can	be	folded	into	the	class	as	a	real	method.

Steps

To	Primitivize	Parameter,	follow	these	steps:

1.	Develop	a	free	function	that	does	the	work	you	would	need	to	do	on	the	class.	In
the	process,	develop	an	intermediate	representation	that	you	can	use	to	do	the	work.

2.	Add	a	function	to	the	class	that	builds	up	the	representation	and	delegates	it	to	the
new	function.

Pull	Up	Feature
Sometimes	you	have	to	work	with	a	cluster	of	methods	on	a	class,	and	the	dependencies
that	keep	you	from	instantiating	the	class	are	unrelated	to	the	cluster.	By	“unrelated,”	I
mean	that	the	methods	you	want	to	work	with	don’t	directly	or	indirectly	reference	any	of
the	bad	dependencies.	You	could	do	Expose	Static	Method	(345)	or	Break	Out	Method
Object	(330)	repeatedly,	but	that	wouldn’t	necessarily	be	the	most	direct	way	to	deal	with

the	dependency.

In	this	situation,	you	can	pull	up	the	cluster	of	methods,	the	feature,	into	an	abstract
superclass.	When	you	have	that	abstract	superclass,	you	can	subclass	it	and	create
instances	of	the	subclass	in	your	tests.	Here	is	an	example:
public	class	Scheduler
{
				private	List	items;

				public	void	updateScheduleItem(ScheduleItem	item)
												throws	SchedulingException	{
								try	{
												validate(item);
								}
								catch	(ConflictException	e)	{
												throw	new	SchedulingException(e);
								}
								…
				}

				private	void	validate(ScheduleItem	item)
												throws	ConflictException	{
								//	make	calls	to	a	database
								…
				}

				public	int	getDeadtime()	{
								int	result	=	0;
								for	(Iterator	it	=	items.iterator();	it.hasNext();)	{
												ScheduleItem	item	=	(ScheduleItem)it.next();
												if	(item.getType()	!=	ScheduleItem.TRANSIENT
																				&&	notShared(item))	{
																result	+=	item.getSetupTime()	+	clockTime();
												}
												if	(item.getType()	!=	ScheduleItem.TRANSIENT)	{
																result	+=	item.finishingTime();
												}
												else	{
																result	+=	getStandardFinish(item);
												}
								}
								return	result;
				}
}

Suppose	that	we	want	to	make	modifications	to	getDeadTime,	but	we	don’t	care	about
updateScheduleItem.	It	would	be	nice	not	to	have	to	deal	with	the	dependency	on	the	database	at
all.	We	could	try	to	use	Expose	Static	Method	(345),	but	we	are	using	many	non-static
features	of	the	Scheduler	class.	Break	Out	Method	Object	(330)	is	another	possibility,	but	this
is	a	rather	small	method,	and	those	dependencies	on	other	methods	and	fields	of	the	class
will	make	the	work	more	involved	than	we	want	it	to	be	just	to	get	the	method	under	test.

Another	option	is	to	pull	up	the	method	that	we	care	about	into	a	superclass.	When	we	do
that,	we	can	leave	the	bad	dependencies	in	this	class,	where	they	will	be	out	of	the	way	for
our	tests.	Here	is	what	the	class	looks	like	afterward:
public	class	Scheduler	extends	SchedulingServices
{
				public	void	updateScheduleItem(ScheduleItem	item)

												throws	SchedulingException	{
								…
				}

				private	void	validate(ScheduleItem	item)
												throws	ConflictException	{
								//	make	calls	to	the	database
								…
				}
				…
}

We’ve	pulled	getDeadtime	(the	feature	we	want	to	test)	and	all	of	the	features	it	uses	into	an
abstract	class.
public	abstract	class	SchedulingServices
{
				protected	List	items;

				protected	boolean	notShared(ScheduleItem	item)	{
								…
				}

				protected		int	getClockTime()	{
								…
				}

				protected	int	getStandardFinish(ScheduleItem	item)	{
								…
				}

				public	int	getDeadtime()	{
								int	result	=	0;
								for	(Iterator	it	=	items.iterator();	it.hasNext();)	{
												ScheduleItem	item	=	(ScheduleItem)it.next();
												if	(item.getType()	!=	ScheduleItem.TRANSIENT
																				&&	notShared(item))	{
																result	+=	item.getSetupTime()	+	clockTime();
												}
												if	(item.getType()	!=	ScheduleItem.TRANSIENT)	{
																result	+=	item.finishingTime();
												}
												else	{
																result	+=	getStandardFinish(item);
												}
								}
								return	result;
				}
				…
}

Now	we	can	make	a	testing	subclass	that	allows	us	to	access	those	methods	in	a	test
harness:
public	class	TestingSchedulingServices	extends	SchedulingServices
{
				public	TestingSchedulingServices()	{
				}

				public	void	addItem(ScheduleItem	item)	{
								items.add(item);

				}
}

import	junit.framework.*;

class	SchedulingServicesTest	extends	TestCase
{
				public	void	testGetDeadTime()	{
								TestingSchedulingServices	services
												=	new	TestingSchedulingServices();
								services.addItem(new	ScheduleItem(“a”,
																									10,	20,	ScheduleItem.BASIC));
								assertEquals(2,	services.getDeadtime());
				}
				…
}

So,	what	we’ve	done	here	is	pull	methods	that	we	want	to	test	up	into	an	abstract
superclass	and	create	a	concrete	subclass	that	we	can	use	to	test	them.	Is	this	a	good	thing?
From	a	design	point	of	view,	it	is	less	than	ideal.	We’ve	spread	a	set	of	features	across	two
classes	just	to	make	it	easier	to	test.	The	spread	can	be	confusing	if	the	relationship	among
the	features	in	each	of	the	classes	isn’t	very	strong,	and	that	is	the	case	here.	We	have
Scheduler,	which	is	responsible	for	updating	scheduling	items,	and	SchedulingServices,	which	is
responsible	for	a	variety	of	things,	including	getting	the	default	times	for	items	and
calculating	the	dead	time.	A	better	factoring	would	be	to	have	Scheduler	delegate	to	some
validator	object	that	knows	how	to	talk	to	the	database,	but	if	that	step	looks	too	risky	to
do	immediately	or	there	are	other	bad	dependencies,	pulling	up	features	is	a	good	first
step.	If	you	Preserve	Signatures	(312)	and	Lean	on	the	Compiler	(315),	it	is	far	less	risky.
We	can	move	toward	delegation	later	when	more	tests	are	in	place.

Steps

To	do	Pull	Up	Feature,	follow	these	steps:

1.	Identify	the	methods	that	you	want	to	pull	up.

2.	Create	an	abstract	superclass	for	the	class	that	contains	the	methods.

3.	Copy	the	methods	to	the	superclass	and	compile.

4.	Copy	each	missing	reference	that	the	compiler	alerts	you	about	to	the	new
superclass.	Remember	to	Preserve	Signatures	(312)	as	you	do	this,	to	reduce	the
chance	of	errors.

5.	When	both	classes	compile	successfully,	create	a	subclass	for	the	abstract	class	and
add	whatever	methods	you	need	to	be	able	to	set	it	up	in	your	tests.

You	might	be	wondering	why	we	make	the	superclass	abstract.	I	like	to	make	it	abstract	so	that	the	code	is	easier	to
understand.	It	is	great	to	be	able	to	look	at	the	code	in	an	application	and	know	that	every	concrete	class	is	being
used.	If	you	search	the	code	and	find	concrete	classes	that	are	not	being	instantiated	anyplace,	they	could	appear	to	be
“dead	code.”

Push	Down	Dependency
Some	classes	have	only	a	few	problematic	dependencies.	If	the	dependencies	are
contained	in	only	a	few	method	calls,	you	can	use	Subclass	and	Override	Method	(401)	to

get	them	out	of	the	way	when	you	are	writing	tests.	But	if	the	dependencies	are	pervasive,
Subclass	and	Override	Method	might	not	work.	You	might	have	to	use	Extract	Interface
(362)	several	times	to	remove	dependencies	on	particular	types.	Push	Down	Dependency
is	another	option.	This	technique	helps	you	to	separate	problematic	dependencies	from	the
rest	of	the	class,	making	it	easier	to	work	with	in	a	test	harness.

When	you	use	Push	Down	Dependency,	you	make	your	current	class	abstract.	Then	you
create	a	subclass	that	will	be	your	new	production	class,	and	you	push	down	all	the
problematic	dependencies	into	that	class.	At	that	point	you	can	subclass	your	original	class
to	make	its	methods	available	for	testing.	Here	is	an	example	in	C++:
class	OffMarketTradeValidator	:	public	TradeValidator
{
private:
				Trade&	trade;
				bool	flag;

				void	showMessage()	{
								int	status		=	AfxMessageBox(makeMessage(),
																																				MB_ABORTRETRYIGNORE);
								if	(status	==	IDRETRY)	{
												SubmitDialog	dlg(this,
																				“Press	okay	if	this	is	a	valid	trade”);
												dlg.DoModal();
												if	(dlg.wasSubmitted())	{
																g_dispatcher.undoLastSubmission();
																flag	=	true;
												}
								}
								else
								if	(status	==	IDABORT)	{
												flag	=	false;
								}
				}

public:
				OffMarketTradeValidator(Trade&	trade)
				:	trade(trade),	flag(false)
				{}

				bool	isValid()	const	{
								if	(inRange(trade.getDate())
																&&	validDestination(trade.destination)
																&&	inHours(trade)	{
												flag	=	true;
								}
								showMessage();
								return	flag;
				}
				…
};

If	we	need	to	make	changes	in	our	validation	logic,	we	could	be	in	trouble	if	we	don’t
want	to	link	UI-specific	functions	and	classes	into	our	test	harness.	Push	Down
Dependency	is	a	good	option	in	this	case.

Here	is	what	the	code	would	look	like	after	Push	Down	Dependency:
class	OffMarketTradeValidator	:	public	TradeValidator
{

protected:
				Trade&	trade;
				bool	flag;
				virtual	void	showMessage()	=	0;

public:
				OffMarketTradeValidator(Trade&	trade)
				:	trade(trade),	flag(false)	{}

				bool	isValid()	const	{
								if	(inRange(trade.getDate())
																&&	validDestination(trade.destination)
																&&	inHours(trade)	{
												flag	=	true;
								}
								showMessage();
								return	flag;
				}
				…
};

class	WindowsOffMarketTradeValidator
								:	public	OffMarketTradeValidator
{
protected:
				virtual	void	showMessage()	{
								int	status		=	AfxMessageBox(makeMessage(),
																										MB_ABORTRETRYIGNORE);
								if	(status	==	IDRETRY)	{
												SubmitDialog	dlg(this,
																“Press	okay	if	this	is	a	valid	trade”);
												dlg.DoModal();
												if	(dlg.wasSubmitted())	{
																g_dispatcher.undoLastSubmission();
																flag	=	true;
												}
								}
								else
								if	(status	==	IDABORT)	{
												flag	=	false;
								}
				}
				…
};

When	we	have	the	UI-specific	work	pushed	down	in	a	new	subclass	(WindowsOffMarketValidator),
we	can	create	another	subclass	for	testing.	All	it	has	to	do	is	null	out	the	showMessage	behavior:
class	TestingOffMarketTradeValidator
								:	public	OffMarketTradeValidator
{
protected:
				virtual	void	showMessage()	{}
};

Now	we	have	a	class	that	we	can	test	that	doesn’t	have	any	dependencies	on	the	UI.	Is
using	inheritance	in	this	way	ideal?	No,	but	it	helps	us	get	part	of	the	logic	of	a	class	under
test.	When	we	have	tests	for	OffMarketTradeValidator,	we	can	start	to	clean	up	the	retry	logic	and
pull	it	up	from	the	WindowsOffMarketTradeValidator.	When	only	the	UI	calls	are	left,	we	can	move
toward	delegating	them	to	a	new	class.	That	new	class	ends	up	holding	the	only	UI
dependencies.

Steps

To	Push	Down	Dependency,	follow	these	steps:

1.	Attempt	to	build	the	class	that	has	dependency	problems	in	your	test	harness.

2.	Identify	which	dependencies	create	problems	in	the	build.

3.	Create	a	new	subclass	with	a	name	that	communicates	the	specific	environment	of
those	dependencies.

4.	Copy	the	instance	variables	and	methods	that	contain	the	bad	dependencies	into	the
new	subclass,	taking	care	to	preserve	signatures.	Make	methods	protected	and
abstract	in	your	original	class,	and	make	your	original	class	abstract.

5.	Create	a	testing	subclass	and	change	your	test	so	that	you	attempt	to	instantiate	it.

6.	Build	your	tests	to	verify	that	you	can	instantiate	the	new	class.

Replace	Function	with	Function	Pointer
When	you	need	to	break	dependencies	in	procedural	languages,	you	don’t	have	as	many
options	as	you	would	in	object-oriented	languages.	You	can’t	use	Encapsulate	Global
References	(339)	or	Subclass	and	Override	Method	(401).	All	of	those	options	are	closed.
You	can	use	Link	Substitution	(377)	or	Definition	Completion	(337),	but	often	they	are
overkill	for	smaller	bouts	of	dependency	breaking.	Replace	Function	with	Function
Pointer	is	one	alternative	in	languages	that	support	function	pointers.	The	most	well-
known	language	with	this	support	is	C.

Different	teams	have	different	points	of	view	on	function	pointers.	On	some	teams,	they
are	seen	as	horribly	unsafe	because	it	is	possible	to	corrupt	their	contents	and	end	up
calling	through	some	random	area	of	memory.	On	other	teams,	they	are	seen	as	a	useful
tool,	to	be	used	with	care.	If	you	lean	more	toward	the	“used	with	care”	camp,	you	can
separate	dependencies	that	would	be	difficult	or	impossible	to	otherwise.

First	things	first.	Let’s	take	a	look	at	a	function	pointer	in	its	natural	environment.	The
following	example	shows	the	declaration	of	a	few	function	pointers	in	C	and	a	couple	of
calls	through	them:
struct	base_operations
{
				double	(*project)(double,double);
				double	(*maximize)(double,double);
};

double	default_projection(double	first,	double	second)	{
				return	second;
}

double	maximize(double	first,	double	second)	{
				return	first	+	second;
}

void	init_ops(struct	base_operations	*operations)	{
				operations->project	=	default_projection;
				operations->maximize	=	default_maximize;
}

void	run_tesselation(struct	node	*base,
																					struct	base_operations	*operations)	{
				double	value	=	operations->project(base.first,	base.second);
				…
}

With	function	pointers,	you	can	do	some	very	simple	object-based	programming,	but	how
useful	are	they	when	breaking	dependencies?	Consider	this	scenario:

You	have	a	networking	application	that	stores	packet	information	in	an	online	database.
You	interact	with	the	database	through	calls	that	look	like	this:
void	db_store(
				struct	receive_record	*record,
				struct	time_stamp	receive_time);
struct	receive_record	*	db_retrieve(time_stamp	search_time);

We	could	use	Link	Substitution	(377)	to	link	to	new	bodies	for	these	functions,	but
sometimes	Link	Substitution	causes	nontrivial	build	changes.	We	might	have	to	break
down	libraries	to	separate	out	the	functions	that	we	want	to	fake.	More	important,	the
seams	we	get	with	Link	Substitution	are	not	the	sort	you’d	want	exploit	to	vary	behavior	in
production	code.	If	you	want	to	get	your	code	under	test	and	provide	flexibility	to,	for
instance,	vary	the	type	of	database	that	your	code	can	talk	to,	Replace	Function	with
Function	Pointer	can	be	useful.	Let’s	go	through	the	steps:

First	we	find	the	declaration	of	the	function	that	we	want	to	replace.
//	db.h
void	db_store(struct	receive_record	*record,
														struct	time_stamp	receive_time);

Then	we	declare	a	function	pointer	with	the	same	name.
//	db.h
void	db_store(struct	receive_record	*record,
														struct	time_stamp	receive_time);

void	(*db_store)(struct	receive_record	*record,
																	struct	time_stamp	receive_time);

Now	we	rename	the	original	declaration
//	db.h
void	db_store_production(struct	receive_record	*record,
																									struct	time_stamp	receive_time);

void	(*db_store)(struct	receive_record	*record,
																	struct	time_stamp	receive_time);

Then	we	initialize	the	pointer	in	a	C	source	file:
//	main.c
extern	void	db_store_production(
																struct	receive_record	*record,
																struct	time_stamp	receive_time);

void	initializeEnvironment()	{
				db_store	=	db_store_production;
				…
}

int	main(int	ac,	char	**av)	{

				initializeEnvironment();
				…
}

Now	we	find	the	definition	of	the	db_store	function	and	rename	it	db_store_production.
//	db.c
void	db_store_production(
									struct	receive_record	*record,
									struct	time_stamp	receive_time)	{
				…
}

We	can	now	compile	and	test.

With	the	function	pointers	in	place,	tests	can	provide	alternative	definitions	for	sensing	or
separation.

Replace	Function	with	Function	Pointer	is	a	good	way	to	break	dependencies.	One	of	the	nice	things	about	it	is	that	it
happens	completely	at	compile	time,	so	it	has	minimal	impact	on	your	build	system.	However,	if	you	are	using	this
technique	in	C,	consider	upgrading	to	C++	so	that	you	can	take	advantage	of	all	of	the	other	seams	that	C++	provides
you.	At	the	time	of	this	writing,	many	C	compilers	offer	switches	to	allow	you	to	do	mixed	C	and	C++	compilation.
When	you	use	this	feature,	you	can	migrate	your	C	project	to	C++	slowly,	taking	only	the	files	that	you	care	to	break
dependencies	in	first.

Steps

To	use	Replace	Function	with	Function	Pointer,	do	the	following:

1.	Find	the	declarations	of	the	functions	you	want	to	replace.

2.	Create	function	pointers	with	the	same	names	before	each	function	declaration.

3.	Rename	the	original	function	declarations	so	that	their	names	are	not	the	same	as
the	function	pointers	you’ve	just	declared.

4.	Initialize	the	pointers	to	the	addresses	of	the	old	functions	in	a	C	file.

5.	Run	a	build	to	find	the	bodies	of	the	old	functions.	Rename	them	to	the	new
function	names.

Replace	Global	Reference	with	Getter
Global	variables	can	be	a	real	pain	when	you	want	to	work	with	pieces	of	code
independently.	That	is	all	I	will	say	about	that	here.	I	have	a	rather	complete	rant	against
globals	in	the	introduction	to	Introduce	Static	Setter	(372).	I’ll	spare	you	a	repeat	of	it
here.

One	way	to	get	past	dependencies	on	globals	in	a	class	is	to	introduce	getters	for	each	of
them	in	the	class.	When	you	have	the	getters,	you	can	Subclass	and	Override	Method
(401)	to	have	the	getters	return	something	appropriate.	In	some	cases,	you	might	go	as	far
as	using	Extract	Interface	(362)	to	break	dependencies	on	the	class	of	the	global.	Here	is
an	example	in	Java:
public	class	RegisterSale
{
				public	void	addItem(Barcode	code)	{
								Item	newItem	=
												Inventory.getInventory().itemForBarcode(code);

								items.add(newItem);
				}
				…
}

In	this	code,	the	Inventory	class	is	accessed	as	a	global.	“Wait?”	I	hear	you	say.	“A	global?	It
is	just	a	call	to	a	static	method	on	a	class.”	For	our	purposes,	that	counts	as	a	global.	In
Java,	the	class	itself	is	a	global	object,	and	it	seems	that	it	must	reference	some	state	to	be
capable	of	doing	its	work	(returning	item	objects	given	barcodes).	Can	we	get	past	this
with	Replace	Global	Reference	with	Getter?	Let’s	try	it.

First	we	write	the	getter.	Note	that	we	make	it	protected	so	that	we	can	override	it	under
test.
public	class	RegisterSale
{
				public	void	addItem(Barcode	code)	{
								Item	newItem	=	Inventory.getInventory().itemForBarcode(code);
								items.add(newItem);
				}

				protected	Inventory	getInventory()	{
								return	Inventory.getInventory();
				}
				…
}

Then	we	replace	every	access	of	the	global	with	the	getter.
public	class		RegisterSale
{
				public	void	addItem(Barcode	code)	{
								Item	newItem	=	getInventory().itemForBarcode(code);
								items.add(newItem);
				}

				protected	Inventory	getInventory()	{
								return	Inventory.getInventory();
				}
				…
}

Now	we	can	create	a	subclass	of	Inventory	that	we	can	use	in	the	test.	Because	Inventory	is	a
singleton,	we	have	to	make	its	constructor	protected	rather	than	private.	After	we’ve	done
that,	we	can	subclass	it	like	this	and	put	in	whatever	logic	we	want	to	use	to	convert
barcodes	to	items	in	a	test.
public	class	FakeInventory	extends	Inventory
{
				public	Item	itemForBarcode(Barcode	code)	{
								…
				}
				…
}

Now	we	can	write	the	class	we’ll	use	in	the	test.
class	TestingRegisterSale	extends	RegisterSale
{
				Inventory	inventory	=	new	FakeInventory();

				protected	Inventory	getInventory()	{

								return	inventory;
				}
}

Steps

To	Replace	Global	Reference	with	Getter,	do	the	following:

1.	Identify	the	global	reference	that	you	want	to	replace.

2.	Write	a	getter	for	the	global	reference.	Make	sure	that	the	access	protection	of	the
method	is	loose	enough	for	you	to	be	able	to	override	the	getter	in	a	subclass.

3.	Replace	references	to	the	global	with	calls	to	the	getter.

4.	Create	a	testing	subclass	and	override	the	getter.

Subclass	and	Override	Method
Subclass	and	Override	Method	is	a	core	technique	for	breaking	dependencies	in	object-
oriented	programs.	In	fact,	many	of	the	other	dependency-breaking	techniques	in	this
chapter	are	variations	on	it.

The	central	idea	of	Subclass	and	Override	Method	is	that	you	can	use	inheritance	in	the
context	of	a	test	to	nullify	behavior	that	you	don’t	care	about	or	get	access	to	behavior	that
you	do	care	about.

Let’s	take	a	look	at	a	method	in	a	little	application:
class	MessageForwarder
{
				private	Message	createForwardMessage(Session	session,
																																									Message	message)
																				throws	MessagingException,	IOException	{
								MimeMessage	forward	=	new	MimeMessage	(session);
								forward.setFrom	(getFromAddress	(message));
								forward.setReplyTo	(
																new	Address	[]	{
																				new	InternetAddress	(listAddress)	});
								forward.addRecipients	(Message.RecipientType.TO,
																															listAddress);
								forward.addRecipients	(Message.RecipientType.BCC,
																															getMailListAddresses	());
								forward.setSubject	(
																transformedSubject	(message.getSubject	()));
								forward.setSentDate	(message.getSentDate	());
								forward.addHeader	(LOOP_HEADER,	listAddress);
								buildForwardContent(message,	forward);

								return	forward;
				}
				…
}

MessageForwarder	has	a	quite	a	few	methods	that	aren’t	shown	here.	One	of	the	public	methods
calls	this	private	method,	createForwardMessage,	to	build	up	a	new	message.	Let’s	suppose	that	we
don’t	want	to	have	a	dependency	on	the	MimeMessage	class	when	we	are	testing.	It	uses	a
variable	named	session,	and	we	will	not	have	a	real	session	when	we	are	testing.	If	we	want
to	separate	out	the	dependency	on	MimeMessage,	we	can	make	createForwardMessage	protected	and

override	it	in	a	new	subclass	that	we	make	just	for	testing:
class	TestingMessageForwarder	extends	MessageForwarder
{
				protected	Message	createForwardMessage(Session	session,
																																											Message	message)	{
								Message	forward	=	new	FakeMessage(message);
								return	forward;
				}
				…
}

In	this	new	subclass,	we	can	do	whatever	we	need	to	do	to	get	the	separation	or	the
sensing	that	we	need.	In	this	case,	we	are	essentially	nulling	out	most	of	the	behavior	of
createForwardMessage,	but	if	we	don’t	need	it	for	the	particular	thing	that	we	are	testing	right	now,
that	can	be	fine.

In	production	code,	we	instantiate	MessageForwarders;	in	tests,	we	instantiate	TestingMessageForwarders.	We
were	able	to	get	separation	with	minimal	modification	of	the	production	code.	All	we	did
was	change	the	scope	of	a	method	from	private	to	protected.

In	general,	the	factoring	that	you	have	in	a	class	determines	how	well	you	can	use
inheritance	to	separate	out	dependencies.	Sometimes	you	have	a	dependency	that	you
want	to	get	rid	of	isolated	in	a	small	method.	At	other	times,	you	have	to	override	a	larger
method	to	separate	out	a	dependency.

Subclass	and	Override	Method	is	a	powerful	technique,	but	you	have	to	be	careful.	In	the
previous	example,	I	can	return	an	empty	message	without	a	subject,	from	address,	and	so
on,	but	that	would	make	sense	only	if	I	was,	say,	testing	the	fact	that	I	can	get	a	message
from	one	place	in	the	software	to	another	and	don’t	care	what	the	actual	content	and
addressing	are.

For	me,	programming	is	predominately	visual.	I	see	all	sorts	of	pictures	in	my	mind	when
I	work,	and	they	help	me	decide	among	alternatives.	It	is	a	shame	that	none	of	these
pictures	are	really	UML,	but	they	help	me	nonetheless.

One	image	that	comes	to	me	often	is	what	I	call	a	paper	view.	I	look	at	a	method	and	start
to	see	all	of	the	ways	that	I	can	group	statements	and	expressions.	For	just	about	any	little
snippet	in	a	method	that	I	can	identify,	I	realize	that	if	I	can	extract	it	to	a	method,	I	can
replace	it	with	something	else	during	testing.	It	is	as	if	I	placed	a	piece	of	translucent
paper	on	top	of	the	one	with	the	code.	The	new	sheet	can	have	a	different	piece	of	code	for
the	snippet	that	I	want	to	replace.	The	stack	of	paper	is	what	I	test,	and	the	methods	that	I
see	through	the	top	sheet	are	the	ones	that	can	be	executed	when	I	test.	Figure	25.6	is	an
attempt	to	show	this	paper	view	of	a	class.

Figure	25.6	TestingAccount	superimposed	on	Account.

The	paper	view	helps	me	see	what	is	possible,	but	when	I	start	to	use	Subclass	and
Override	Method,	I	try	to	override	methods	that	already	exist.	After	all,	the	goal	is	to	get
tests	in	place,	and	extracting	methods	without	tests	in	place	can	be	risky	at	times.

Steps

To	Subclass	and	Override	Method,	do	the	following:

1.	Identify	the	dependencies	that	you	want	to	separate	or	the	place	where	you	want	to
sense.	Try	to	find	the	smallest	set	of	methods	that	you	can	override	to	achieve	your
goals.

2.	Make	each	method	overridable.	The	way	to	do	this	varies	among	programming
languages.	In	C++,	the	methods	have	to	be	made	virtual	if	they	aren’t	already.	In
Java,	the	methods	need	to	be	made	non-final.	In	many	.NET	languages,	you
explicitly	have	to	make	the	method	overridable	also.

3.	If	your	language	requires	it,	adjust	the	visibility	of	the	methods	that	you	will
override	to	so	that	they	can	be	overridden	in	a	subclass.	In	Java	and	C#,	methods
must	at	least	have	protected	visibility	to	be	overridden	in	subclasses.	In	C++,
methods	can	remain	private	and	still	be	overridden	in	subclasses.

4.	Create	a	subclass	that	overrides	the	methods.	Verify	that	you	are	able	to	build	it	in
your	test	harness.

Supersede	Instance	Variable
Object	creation	in	constructors	can	be	problematic,	particularly	when	it	is	hard	to	depend
upon	those	objects	in	a	test.	In	most	cases,	we	can	use	Extract	and	Override	Factory
Method	(350)	to	get	past	this	issue.	However,	in	languages	that	disallow	overrides	of
virtual	function	calls	in	constructors,	we	have	to	look	at	other	options.	One	of	them	is
Supersede	Instance	Variable.

Here’s	an	example	that	shows	the	virtual	function	problem	in	C++:
class	Pager
{
public:
				Pager()	{
								reset();
								formConnection();

				}

				virtual	void	formConnection()	{
								assert(state	==	READY);
								//	nasty	code	that	talks	to	hardware	here
								…
				}

				void	sendMessage(const	std::string&	address,
																					const	std::string&	message)	{
								formConnection();
								…
				}
				…
};

In	this	example,	the	formConnection	method	is	called	in	the	constructor.	There	is	nothing	wrong
with	constructors	that	delegate	work	to	other	functions,	but	there	is	something	a	little
misleading	about	this	code.	The	formConnection	method	is	declared	to	be	a	virtual	method,	so	it
seems	that	we	could	just	Subclass	and	Override	Method	(401).	Not	so	fast.	Let’s	try	it:
class	TestingPager	:	public	Pager
{
public:
				virtual	void	formConnection()	{
				}
};

TEST(messaging,Pager)
{
				TestingPager	pager;
				pager.sendMessage(“5551212”,
																						“Hey,	wanna	go	to	a	party?	XXXOOO”);
				LONGS_EQUAL(OKAY,	pager.getStatus());
}

When	we	override	a	virtual	function	in	C++,	we	are	replacing	the	behavior	of	that	function
in	derived	classes	just	like	we’d	expect,	but	with	one	exception.	When	a	call	is	made	to	a
virtual	function	in	a	constructor,	the	language	doesn’t	allow	the	override.	In	the	example,
this	means	that	when	sendMessage	is	called,	TestingPager::formConnection	is	used,	and	that	is	great:	We
didn’t	really	want	to	send	a	flirty	page	to	the	information	operator,	but,	unfortunately,	we
already	have.	When	we	constructed	the	TestingPager,	Page::formConnection	was	called	during
initialization	because	C++	did	not	allow	the	override	in	the	constructor.

C++	has	this	rule	because	constructor	calls	to	overridden	virtual	functions	can	be	unsafe.
Imagine	this	scenario:
class	A
{
public:
				A()	{
								someMethod();
				}

				virtual	void	someMethod()	{
				}
};

class	B	:	public	A
{

				C	*c;
public:

				B()	{
								c	=	new	C;
				}

				virtual	void	someMethod()	{
								c.doSomething();
				}
};

Here	we	have	B's	someMethod	overriding	A’s.	But	remember	the	order	of	constructor	calls.	When
we	create	a	B,	A’s	constructor	is	called	before	B’s.	So	A’s	constructor	calls	someMethod,	and	someMethod
is	overridden,	so	the	one	in	B	is	used.	It	attempts	to	call	doSomething	on	a	reference	of	type	C,
but,	guess	what?	It	was	never	initialized	because	B’s	constructor	hasn’t	been	run	yet.

C++	prevents	this	from	happening.	Other	languages	are	more	permissive.	For	instance,
overridden	methods	can	be	called	from	constructors	in	Java,	but	I	don’t	recommend	doing
it	in	production	code.

In	C++,	this	little	protection	mechanism	prevents	us	from	replacing	behavior	in
constructors.	Fortunately,	we	have	a	few	other	ways	to	do	this.	If	the	object	that	you	are
replacing	is	not	used	in	the	constructor,	you	can	use	Extract	and	Override	Getter	(352)	to
break	the	dependency.	If	you	do	use	the	object	but	you	need	to	make	sure	that	you	can
replace	it	before	another	method	is	called,	you	can	use	Supersede	Instance	Variable.	Here
is	an	example:
BlendingPen::BlendingPen()
{
				setName(“BlendingPen”);
				m_param	=	ParameterFactory::createParameter(
																						“cm”,	“Fade”,	“Aspect	Alter”);
				m_param->addChoice(“blend”);
				m_param->addChoice(“add”);
				m_param->addChoice(“filter”);

				setParamByName(“cm”,	“blend”);
}

In	this	case,	a	constructor	is	creating	a	parameter	through	a	factory.	We	could	use
Introduce	Static	Setter	(372)	to	get	some	control	over	the	next	object	that	the	factory
returns,	but	that	is	pretty	invasive.	If	we	don’t	mind	adding	an	extra	method	to	the	class,
we	can	supersede	the	parameter	that	we	created	in	the	constructor:
void	BlendingPen::supersedeParameter(Parameter	*newParameter)
{

				delete	m_param;

				m_param	=	newParameter;

}

In	tests,	we	can	create	pens	as	we	need	them	and	call	supersedeParameter	when	we	need	to	put	in
a	sensing	object.

On	the	surface,	Supersede	Instance	Variable	looks	like	a	poor	way	of	getting	a	sensing

object	in	place,	but	in	C++,	when	Parameterize	Constructor	(379)	is	too	awkward	because
of	tangled	logic	in	the	constructor,	Supersede	Instance	Variable	(404)	can	be	the	best
choice.	In	languages	that	allow	virtual	calls	in	constructors,	Extract	and	Override	Factory
Method	(350)	is	usually	a	better	choice.

Generally,	it	is	poor	practice	to	provide	setters	that	change	the	base	objects	that	an	object	uses.	Those	setters	allow
clients	to	drastically	change	the	behavior	of	an	object	during	its	lifetime.	When	someone	can	make	those	changes,
you	have	to	know	the	history	of	that	object	to	understand	what	happens	when	you	call	one	of	its	methods.	When	you
don’t	have	setters,	code	is	easier	to	understand.

One	nice	thing	about	using	the	word	supersede	as	the	method	prefix	is	that	it	is	kind	of
fancy	and	uncommon.	If	you	ever	get	concerned	about	whether	people	are	using	the
superceding	methods	in	production	code,	you	can	do	a	quick	search	to	make	sure	they
aren’t.

Steps

To	Supersede	Instance	Variable,	follow	these	steps:

1.	Identify	the	instance	variable	that	you	want	to	supersede.

2.	Create	a	method	named	supersedeXXX,	where	XXX	is	the	name	of	the	variable	you	want	to
supersede.

3.	In	the	method,	write	whatever	code	you	need	to	so	that	you	destroy	the	previous
instance	of	the	variable	and	set	it	to	the	new	value.	If	the	variable	is	a	reference,
verify	that	there	aren’t	any	other	references	in	the	class	to	the	object	it	points	to.	If
there	are,	you	might	have	additional	work	to	do	in	the	superceding	method	to	make
sure	that	replacing	the	object	is	safe	and	has	the	right	effect.

Template	Redefinition
Many	of	the	dependency-breaking	techniques	in	this	chapter	rely	on	core	object-oriented
mechanisms	such	as	interface	and	implementation	inheritance.	Some	newer	language
features	provide	additional	options.	For	instance,	if	a	language	supplies	generics	and	a
way	of	aliasing	types,	you	can	break	dependencies	using	a	technique	called	Template
Redefinition.	Here	is	an	example	in	C++:
//	AsyncReceptionPort.h

class	AsyncReceptionPort
{
private:
				CSocket	m_socket;
				Packet	m_packet;
				int	m_segmentSize;
				…

public:
									AsyncReceptionPort();
				void	Run();
				…
};

//	AsynchReceptionPort.cpp

void	AsyncReceptionPort::Run()	{
				for(int	n	=	0;	n	<	m_segmentSize;	++n)	{
								int	bufferSize	=	m_bufferMax;
								if	(n	=	m_segmentSize	-	1)
												bufferSize	=	m_remainingSize;
								m_socket.receive(m_receiveBuffer,	bufferSize);
								m_packet.mark();
								m_packet.append(m_receiveBuffer,bufferSize);
								m_packet.pack();
				}
				m_packet.finalize();
}

If	we	have	code	like	this	and	we	want	to	make	changes	to	the	logic	in	the	method,	we	run
up	against	the	fact	that	we	can’t	run	the	method	in	a	test	harness	without	sending
something	across	a	socket.	In	C++,	we	can	avoid	this	entirely	by	making	AsyncReceptionPort	a
template	rather	than	a	regular	class.	This	is	what	the	code	looks	like	after	the	change.
We’ll	get	to	the	steps	in	a	second.
//	AsynchReceptionPort.h

template<typename	SOCKET>	class	AsyncReceptionPortImpl
{
private:
				SOCKET		m_socket;
				Packet	m_packet;
				int	m_segmentSize;
				…

public:
				AsyncReceptionPortImpl();
				void	Run();
				…
};

template<typename	SOCKET>
void	AsyncReceptionPortImpl<SOCKET>::Run()	{
				for(int	n	=	0;	n	<	m_segmentSize;	++n)	{
								int	bufferSize	=	m_bufferMax;
								if	(n	=	m_segmentSize	-	1)
												bufferSize	=	m_remainingSize;
								m_socket.receive(m_receiveBuffer,	bufferSize);
								m_packet.mark();
								m_packet.append(m_receiveBuffer,bufferSize);
								m_packet.pack();
				}
				m_packet.finalize();
}

typedef	AsyncReceptionPortImpl<CSocket>	AsyncReceptionPort;

When	we	have	this	change	in	place,	we	can	instantiate	the	template	with	a	different	type	in
the	test	file:
//	TestAsynchReceptionPort.cpp

#include	“AsyncReceptionPort.h”

class	FakeSocket
{
public:

				void	receive(char	*,	int	size)	{	…	}
};

TEST(Run,AsyncReceptionPort)
{
				AsyncReceptionPortImpl<FakeSocket>	port;
				…
}

The	sweetest	thing	about	this	technique	is	the	fact	that	we	can	use	a	typedef	to	avoid
having	to	change	references	all	through	our	code	base.	Without	it,	we	would	have	to
replace	every	reference	to	AsyncReceptionPort	with	AsyncReceptionPort<CSocket>.	It	would	be	a	lot	of	tedious
work,	but	it	is	easier	than	it	sounds.	We	can	Lean	on	the	Compiler	(315)	to	make	sure	that
we’ve	changed	all	the	proper	references.	In	languages	that	have	generics	but	no	type-
aliasing	mechanism	such	as	typedef,	you	will	have	to	Lean	on	the	Compiler.

In	C++,	you	can	use	this	technique	to	provide	alternate	definitions	of	methods	rather	than
data,	but	it	is	a	little	messy.	The	rules	of	C++	oblige	you	to	have	a	template	parameter,	so
you	can	pick	a	variable	and	make	its	type	a	template	parameter	at	random	or	introduce	a
new	variable	just	to	make	the	class	parameterized	on	some	type—but	I	would	do	that	only
as	a	last	resort.	I’d	look	very	carefully	to	see	if	I	could	use	the	inheritance-based
techniques	first.

Template	Redefinition	in	C++	has	one	primary	disadvantage.	Code	that	was	in	implementation	files	moves	to	headers
when	you	templatize	it.	This	can	increase	the	dependencies	in	systems.	Users	of	the	template	then	are	forced	to
recompile	whenever	the	template	code	is	changed.

In	general,	I	bias	toward	using	inheritance-based	techniques	for	breaking	dependencies	in	C++.	However,	Template
Redefinition	can	be	useful	when	the	dependencies	that	you	want	to	break	are	already	in	templatized	code.	Here	is	an
example:
template<typename	ArcContact>	class	CollaborationManager
{
				…
				ContactManager<ArcContact>	m_contactManager;
				…
};

If	we	want	to	break	the	dependency	on	m_contactManager,	we	can’t	easily	use	Extract	Interface	(362)	on	it	because	of	the
way	that	we	are	using	templates	here.	We	can,	however,	parameterize	the	template	differently:
template<typename	ArcContactManager>	class	CollaborationManager
{
				…
				ArcContactManager	m_contactManager;
				…
};

Steps

Here	is	a	description	of	how	to	do	Template	Redefinition	in	C++.	The	steps	might	be
different	in	other	languages	that	support	generics,	but	this	description	gives	a	flavor	of	the
technique:

1.	Identify	the	features	that	you	want	to	replace	in	the	class	you	need	to	test.

2.	Turn	the	class	into	a	template,	parameterizing	it	by	the	variables	that	you	need	to
replace	and	copying	the	method	bodies	up	into	the	header.

3.	Give	the	template	another	name.	One	mechanical	way	of	doing	this	is	to	suffix	the
original	name	with	Impl.

4.	Add	a	typedef	statement	after	the	template	definition,	defining	the	template	with	its
original	arguments	using	the	original	class	name.

5.	In	the	test	file,	include	the	template	definition	and	instantiate	the	template	on	new
types	that	will	replace	the	ones	you	need	to	replace	for	test.

Text	Redefinition
Some	of	the	newer	interpreted	languages	give	you	a	very	nice	way	to	break	dependencies.
When	they	are	interpreted,	methods	can	be	redefined	on	the	fly.	Here	is	an	example	in	the
language	Ruby:
#	Account.rb
class	Account
				def	report_deposit(value)
								…
				end

				def	deposit(value)
								@balance	+=	value
								report_deposit(value)
				end

				def	withdraw(value)
								@balance	-=	value
				end
end

If	we	don’t	want	report_deposit	to	run	under	test,	we	can	redefine	it	in	the	test	file	and	place
tests	after	the	redefinition:
#	AccountTest.rb
require	“runit/testcase”
require	“Account”

class	Account
				def	report_deposit(value)
				end
end

#	tests	start	here
class	AccountTest	<	RUNIT::TestCase
				…
end

It’s	important	to	note	that	we	aren’t	redefining	the	entire	Account	class	here—just	the
report_deposit	method.	The	Ruby	interpreter	interprets	all	lines	in	a	Ruby	file	as	executable
statements.	The	class	Account	statement	opens	the	definition	of	the	Account	class	so	that	additional
definitions	can	be	added	to	it.	The	def	report_deposit(value)	statement	starts	the	process	of	adding
a	definition	to	the	open	class.	The	Ruby	interpreter	doesn’t	care	whether	there	already	is	a
definition	of	that	method,	if	there	is	one;	it	just	replaces	it.

Text	Redefinition	in	Ruby	has	one	downside.	The	new	method	replaces	the	old	one	until	the	program	ends.	This	can
cause	some	trouble	if	you	forget	that	a	particular	method	has	been	redefined	by	a	previous	test.

We	can	do	Text	Redefinition	in	C	and	C++	also,	using	the	preprocessor.	To	see	an	example	of	how	to	do	this,	look	at

the	Preprocessing	Seam	(33)	example	in	Chapter	4,	The	Seam	Model.

Steps

To	use	Text	Redefinition	in	Ruby,	follow	these	steps:

1.	Identify	a	class	with	definitions	that	you	want	to	replace.

2.	Add	a	require	clause	with	the	name	of	the	module	that	contains	that	class	to	the	top	of
the	test	source	file.

3.	Provide	alternative	definitions	at	the	top	of	the	test	source	file	for	each	method	that
you	want	to	replace.

Appendix:	Refactoring

Refactoring	is	a	core	technique	for	improving	code.	The	canonical	reference	for
refactoring	is	Martin	Fowler’s	book	Refactoring:	Improving	the	Design	of	Existing	Code
(Addison-Wesley,	1999).	I	refer	you	to	that	book	for	more	information	about	the	kind	of
refactoring	you	can	do	when	you	have	tests	in	place	in	code.

In	this	chapter,	I	describe	one	key	refactoring:	Extract	Method.	It	should	give	you	a	flavor
of	the	mechanics	involved	in	refactoring	with	tests.

Extract	Method
Of	all	refactorings,	Extract	Method	is	perhaps	the	most	useful.	The	idea	behind	Extract
Method	is	that	we	can	systematically	break	up	large	existing	methods	into	smaller	ones.
When	we	do	this,	we	make	our	code	easier	to	understand.	In	addition,	we	can	often	reuse
the	pieces	and	avoid	duplicating	logic	in	other	areas	of	our	system.

In	poorly	maintained	code	bases,	methods	tend	to	grow	larger.	People	add	logic	to	existing	methods,	and	they	just
continue	to	grow.	As	this	happens,	methods	can	end	up	doing	two	or	three	different	distinct	things	for	their	callers.	In
pathological	cases,	they	can	end	up	doing	tens	or	hundreds.	Extract	Method	is	the	remedy	in	these	cases.

When	you	want	to	extract	a	method,	the	first	thing	that	you	need	is	a	set	of	tests.	If	you
have	tests	that	thoroughly	exercise	a	method,	you	can	extract	methods	from	it	using	these
steps:

1.	Identify	the	code	you	want	to	extract,	and	comment	it	out.

2.	Think	of	a	name	for	the	new	method	and	create	it	as	an	empty	method.

3.	Place	a	call	to	the	new	method	in	the	old	method.

4.	Copy	the	code	that	you	want	to	extract	into	the	new	method

5.	Lean	On	the	Compiler	(315)	to	find	out	what	parameters	you’ll	have	to	pass	and
what	values	you’ll	have	to	return.

6.	Adjust	the	method	declaration	to	accommodate	the	parameters	and	return	value	(if
any).

7.	Run	your	tests.

8.	Delete	the	commented-out	code.

Here	is	a	simple	example	in	Java:
public	class	Reservation
{
				public	int	calculateHandlingFee(int	amount)	{
								int	result	=	0;

								if	(amount	<	100)	{
												result	+=	getBaseFee(amount);
								}
								else	{
												result	+=	(amount	*	PREMIUM_RATE_ADJ)	+	SURCHARGE;
								}

								return	result;
				}
				…
}

The	logic	in	the	else-statement	calculates	the	handling	fee	for	premium	reservations.	We
need	to	use	that	logic	someplace	else	in	our	system.	Instead	of	duplicating	the	code,	we
can	extract	it	from	here	and	then	use	it	in	the	other	place.

Here	is	the	first	step:
public	class	Reservation
{
				public	int	calculateHandlingFee(int	amount)	{
								int	result	=	0;

								if	(amount	<	100)	{
												result	+=	getBaseFee(amount);
								}
								else	{
												//	result	+=	(amount	*	PREMIUM_RATE_ADJ)	+	SURCHARGE;
								}
								return	result;
				}
				…
}

We	want	to	call	the	new	method	getPremiumFee,	so	we	add	the	new	method	and	its	call:
public	class	Reservation
{
				public	int	calculateHandlingFee(int	amount)	{
								int	result	=	0;

								if	(amount	<	100)	{
												result	+=	getBaseFee(amount);
								}
								else	{
												//	result	+=	(amount	*	PREMIUM_RATE_ADJ)	+	SURCHARGE;
												result	+=	getPremiumFee();
								}
								return	result;
				}

				int	getPremiumFee()	{
				}
				…
}

Next	we	copy	the	old	code	into	the	new	method	and	see	if	it	compiles:
public	class	Reservation
{
				public	int	calculateHandlingFee(int	amount)	{
								int	result	=	0;

								if	(amount	<	100)	{
												result	+=	getBaseFee(amount);
								}
								else	{
												//	result	+=	(amount	*	PREMIUM_RATE_ADJ)	+	SURCHARGE;
												result	+=	getPremiumFee();
								}

								return	result;
				}

				int	getPremiumFee()	{
								result	+=	(amount	*	PREMIUM_RATE_ADJ)	+	SURCHARGE;
				}
				…
}

It	doesn’t.	The	code	uses	variables	named	result	and	amount	that	aren’t	declared.	Because	we
are	computing	only	a	portion	of	the	result,	we	can	just	return	what	we	compute.	We	can
also	get	hold	of	the	amount	if	we	make	it	a	parameter	to	the	method	and	add	it	to	the	call:
public	class	Reservation
{
				public	int	calculateHandlingFee(int	amount)	{
								int	result	=	0;

								if	(amount	<	100)	{
												result	+=	getBaseFee(amount);
								}
								else	{
												//	result	+=	(amount	*	PREMIUM_RATE_ADJ)	+	SURCHARGE;
												result	+=	getPremiumFee(amount);
								}
								return	result;
				}

				int	getPremiumFee(int	amount)	{
								return	(amount	*	PREMIUM_RATE_ADJ)	+	SURCHARGE;
				}
				…
}

Now	we	can	run	our	tests	and	see	if	they	still	work.	If	they	do,	we	can	go	back	and	get	rid
of	the	commented	code:
public	class	Reservation
{
				public	int	calculateHandlingFee(int	amount)	{
								int	result	=	0;

								if	(amount	<	100)	{
												result	+=	getBaseFee(amount);
								}
								else	{
												result	+=	getPremiumFee(amount);
								}
								return	result;
				}

				int	getPremiumFee(int	amount)	{
								return	(amount	*	PREMIUM_RATE_ADJ)	+	SURCHARGE;
				}
				…
}

Although	it	isn’t	strictly	necessary,	I	like	to	comment	out	code	that	I	am	going	to	extract;	that	way,	if	I	make	a
mistake	and	a	test	fails,	I	can	easily	go	back	to	what	I	had,	get	the	test	to	pass,	and	then	try	again.

The	example	I’ve	just	shown	is	just	one	way	of	doing	Extract	Method.	When	you	have

tests,	it	is	a	relatively	simple	and	safe	operation.	If	you	have	a	refactoring	tool,	it	is	even
easier.	All	you	have	to	do	is	select	a	portion	of	a	method	and	make	a	menu	selection.	The
tool	checks	to	see	if	that	code	can	be	extracted	as	a	method	and	prompts	you	for	the	new
method’s	name.
Extract	Method	is	a	core	technique	for	working	with	legacy	code.	You	can	use	it	to	extract
duplication,	separate	responsibilities,	and	break	down	long	methods.

Glossary

change	point				A	place	in	code	where	you	need	to	make	a	change.

characterization	test				A	test	written	to	document	the	current	behavior	of	a	piece	of
software	and	preserve	it	as	you	change	its	code.

coupling	count				The	number	of	values	that	pass	in	and	out	of	a	method	when	it	is
called.	If	there	is	no	return	value,	it	is	the	number	of	parameters.	If	there	is,	it	is	the
number	of	parameters	plus	one.	Coupling	count	can	be	a	very	useful	thing	to	compute
for	small	methods	you’d	like	to	extract	if	you	have	to	extract	without	tests.

effect	sketch				A	small	hand-drawn	sketch	that	shows	what	variables	and	method	return
values	can	be	affected	by	a	software	change.	Effect	sketches	can	be	useful	when	you	are
trying	to	decide	where	to	write	tests.

fake	object				An	object	that	impersonates	a	collaborator	of	a	class	during	testing.

feature	sketch				A	small	hand-drawn	sketch	that	shows	how	methods	in	a	class	use
other	methods	and	instance	variables.	Feature	sketches	can	be	useful	when	you	are
trying	to	decide	how	to	break	apart	a	large	class.

free	function				A	function	that	is	not	part	of	any	class.	In	C	and	other	procedural
languages,	these	are	just	called	functions.	In	C++	they	are	called	non-member	functions.
Free	functions	don’t	exist	in	Java	and	C#.

interception	point				A	place	where	a	test	can	be	written	to	sense	some	condition	in	a
piece	of	software.

link	seam				A	place	where	you	can	vary	behavior	by	linking	to	a	library.	In	compiled
languages,	you	can	replace	production	libraries,	DLLs,	assemblies,	or	JAR	files	with
others	during	testing	to	get	rid	of	dependencies	or	sense	some	condition	that	can	happen
in	a	test.

mock	object				A	fake	object	that	asserts	conditions	internally.

object	seam				A	place	where	you	can	vary	behavior	by	replacing	one	object	with
another.	In	object-oriented	languages,	you	usually	do	this	by	subclassing	a	class	in	your
production	code	and	overriding	various	methods	of	the	class.

pinch	point				A	narrowing	in	an	effect	sketch	that	indicates	an	ideal	place	to	test	a
cluster	of	features.

programming	by	difference				A	way	of	using	inheritance	to	add	features	in	object-
oriented	systems.	It	can	often	be	used	as	a	way	to	get	a	new	feature	into	the	system
quickly.	The	tests	that	you	write	to	provoke	the	new	feature	can	be	used	to	refactor	the
code	into	a	better	state	afterward.

seam				A	place	where	you	can	vary	behavior	in	a	software	system	without	editing	in
that	place.	For	instance,	a	call	to	a	polymorphic	function	on	an	object	is	a	seam	because
you	can	subclass	the	class	of	the	object	and	have	it	behave	differently.

test-driven	development	(TDD)				A	development	process	that	consists	of	writing

failing	test	cases	and	satisfying	them	one	at	a	time.	As	you	do	this,	you	refactor	to	keep
the	code	as	simple	as	possible.	Code	developed	using	TDD	has	test	coverage,	by	default.

test	harness				A	piece	of	software	that	enables	unit	testing.

testing	subclass				A	subclass	made	to	allow	access	to	a	class	for	testing.

unit	test				A	test	that	runs	in	less	than	1/10th	of	a	second	and	is	small	enough	to	help
you	localize	problems	when	it	fails.

Index

#include	directives,	129

A
abbreviations,	284

access	protection,	subverting,	141

Account,	120,	364

ActionEvent	class,	145

ACTIOReportFor,	108

Adapt	Parameter,	142,	326-329

adapting	parameters,	326-329

addElement,	160

AddEmployeeCmd,	279

getBody,	280

write	method,	274

adding	features.	See	features,	adding

AGGController,	339-341

algorithms	for	changing	legacy	code,	18

breaking	dependencies,	19

finding	test	points,	19

identifying	change	points,	18

refactoring,	20

writing	tests,	19

aliased	parameters,	getting	classes	into	test	harnesses,	133-136

analyzing	effects,	167-168

API	calls.	See	also	libraries

restructuring,	199-201,	203-207

skinning	and	wrapping,	205-207

application	architecture,	preserving,	215-216

conversation	concepts,	224

Naked	CRC,	220-223

telling	story	of	system,	216-220

architecture	of	system,	preserving,	215-216

conversation	concepts,	224

Naked	CRC,	220-223

telling	story	of	system,	216-220

automated	refactoring

monster	methods,	294-296

tests,	46-47

automated	tests,	185-186

characterization	tests,	186-189

for	classes,	189-190

heuristic	for	writing,	195

targeted	testing,	190-194

B
Beck,	Kent,	48,	220

behavior,	5

preserving,	7

behavior	of	code.	See	characterization	tests	188

BindName	method,	337

BondRegistry,	367

Brant,	John,	45

Break	Out	Method	Object,	137,	330-336

monster	methods,	304

breaking

dependencies,	19-25,	79-85,	135

Interception	Points,	174-182

breaking	up	classes,	183

bug	finding

versus	characterization	tests,	188

when	to	fix	bugs,	190

bugs,	fixing	in	software,	4-6

build	dependencies,	breaking,	80-85

buildMartSheet,	42

bulleted	methods,	290

C
C	macro	preprocessor,	testing	procedural	code,	234-236

C++,	127

compilers,	127

effect	reasoning	tools,	166

Template	Redefinition,	410

calls,	348-349

CCAImage,	139-140

cell.Recalculate,	40

change	points,	identifying,	18

changing	software.	See	software,	changing	characterization	tests,	151,	157,	186-189

for	classes,	189-190

heuristic	for	writing,	195

targeted	testing,	190-194

characters,	writing	null	characters,	272

classes

Account,	364

ActionEvent,	145

AddEmployeeCmd,	279

AGGController,	339

big	classes,	247

extracting	classes	from,	268

problems	with,	245

refactoring,	246

responsibilities.	See	responsibilities

breaking	up,	183

CCAImage,	139-140

characterization	tests,	189-190

ClassReader,	155

Command,	281-282

Coordinate,	165-166

CppClass,	156

ExternalRouter,	373

extracting,	268

to	current	class	first	monster	methods,	306

fakeConnection,	110

getting	into	test	harnesses

aliased	parameters,	133-136

global	dependency,	118-126

hidden	dependency,	113-116

huge	parameter	lists,	116-118

include	dependencies,	127-130

parameters,	106-113,	130-132

IndustrialFacility,	135

instances,	122

interfaces,	extracting,	80

LoginCommand.	See	LoginCommand

ModelNode,	357

naming	conventions,	227-228

once	dilemma,	198

OriginationPermit,	134-135

Packet,	345

PaydayTransaction,	362

ProductionModelNode,	358

RuleParser,	250

Scheduler,	128

SymbolSource,	150

test	harnesses,	parameters,	113

testing	subclasses,	227,	390

ClassReader,	155

code

editing.	See	editing	code

effect	propagation,	164-165

modularity,	29

preparing	for	changes,	157-163

test	code	versus	production	code,	110

code	reuse

avoiding	library	dependencies,	197-198

restructuring	API	calls,	199-207

collaborating	fakes,	mock	objects,	27-28

Command	class,	281-282

write	method,	277

writeBody	method,	285

Command/Query	Separation,	147-149

commandChar	variable,	276-277

CommoditySelectionPanel,	296

compilers

C++,	127

editing	code,	315-316

compiling	Scheduler,	129

completing	definitions,	337-338

Composed	Method	(testing	changes),	69

concrete	class	dependencies	versus	interface	dependencies,	84

const	keyword,	164

constructors,	Parameterize	Constructor,	379-382

conventions,	class	naming	conventions,	227-228

Coordinate	class,	165-166

coordinates,	165

coupling	count,	301-302

Cover	and	Modify,	9

Coverage,	13

CppClass,	156

CppUnitLite,	50-52

CRC	(Class,	Responsibility,	and	Collaborations),	Naked	CRC,	220-223

CreditMaster,	107-108

CreditValidator,	107

Cunningham,	Ward,	220

cursors,	116

D
data	type	conversion	errors,	193-194

db_update,	36

debugging.	See	bug	finding

decisions,	looking	for,	251

declarations,	154

decorator	pattern,	72-73

Definition	Completion,	337-338

definitions,	completing,	337-338

dejection,	overcoming,	319-321

delegating	instance	methods,	369-376

deleting	unused	code,	213

dependencies,	16,	18,	21

avoiding,	197-198

breaking.	See	breaking;	dependency-breaking	techniques

getting	classes	into	test	harnesses,	113-116

gleaning	from	monster	methods,	303

global	dependencies,	getting	classes	into	test	harnesses,	118-126

include	dependencies,	getting	classes	into	test	harnesses,	127-130

in	procedural	code,	avoiding,	236-239

Push	Down	Dependency,	392-395

restructuring	API	calls,	199-207

dependency-breaking	techniques

Adapt	Parameter,	326-329

Break	Out	Method	Object,	330-336

Definition	Completion,	337-338

Encapsulate	Global	References,	339-344

Expose	Static	Method,	345-347

Extract	and	Override	Call,	348-349

Extract	and	Override	Factory	Method,	350-351

Extract	and	Override	Getter,	352-355

Extract	Implementer,	356-361

Extract	Interface,	362-368

Introduce	Instance	Delegator,	369-371

Introduce	Static	Setter,	372-376

Link	Substitution,	377-378

Parameterize	Constructor,	379-382

Parameterize	Methods,	383-384

Primitivize	Parameter,	385-387

Pull	Up	Feature,	388-391

Push	Down	Dependency,	392-395

Replace	Function	with	Function	Pointer,	396-398

Replace	Global	Reference	with	Getter,	399-400

Subclass	and	Override	Method,	401-403

Supersede	Instance	Variable,	404-407

Template	Redefinition,	408-411

Text	Redefinition,	412-413

design,	improving	software	design.	See	refactoring

directories,	locations	for	test	code,	228-229

draw(),	Renderer,	332

duplication,	269-271

removing,	93-94,	272-287

renaming	classes,	284

E
Edit	and	Pray,	9

Edit	and	Pray	programming,	246

editing	code

compilers,	315-316

hyperaware	editing,	310

Pair	Programming,	316

preserving	signatures,	312-314

single-goal	editing,	311-312

effect	analysis

IDE	support	for,	152

learning	from,	167-168

effect	propagation,	163-165

preventing,	165

effect	reasoning,	152-157

tools	for,	165-167

effect	sketches,	155,	254

pinch	points,	108-184

effect	sketches,	simplifying,	168-171

effects,	encapsulation,	171

effects	of	change,	understanding,	212

Elements,	158

elements

addElement,	160

generateIndex,	159

enabling	points,	36

Encapsulate	Global	References,	239,	315-316,	339-344

encapsulating	global	references,	339-344

encapsulation,	effects,	171

encapsulation	boundaries,	pinch	points	as,	182-183

error	localization,	12

errors

changing	software,	14-18

type	conversion,	193-194

evaluate	method,	248

exceptions,	throwing,	89

execution	time,	12

Expose	Static	Method,	137,	330,	345-347

exposing	static	methods,	345-347

ExternalRouter,	373

Extract	and	Override	Call,	348-349

Extract	and	Override	Factory	Method,	116,	350-351

Extract	and	Override	Getter,	352,	354-355

Extract	Implementer,	71,	74,	80-82,	85,	117,	131,	356-361

Extract	Interface,	17,	71,	74,	80,	85,	112-114,	117,	131,	135,	326,	333,	362-368

Extract	Method	(refactoring),	415-419

extracting

calls,	348-349

classes,	268

to	current	class	first,	monster	methods	306

factory	method,	350-351

getters,	352-355

implementers,	356-361

interfaces,	362-368

monster	methods,	301-302

small	pieces,	monster	methods,	306

extracting	interfaces,	80

extracting	methods,	212

refactoring	tools,	195

Responsibility-Based	Extraction,	206-207

targeted	testing,	190-194

extractions,	redoing	in	monster	methods,	307

F
factory	method,	350-351

failing	test	cases,	writing,	88-91

fake	objects,	23-27

distilling	fakes,	27

tests,	26

FakeConnection	class,	110

fakes

collaborating	mock	objects,	27-28

distilling,	27

fake	objects.	See	fake	objects

feature	sketches,	252-254

features,	adding,	87

with	programming	by	difference,	94-104

with	test-driven	development	(TDD),	88-94

FeeCalculator,	259

feedback,	11

testing.	See	testing

feedback	lag	time,	effect	on	length	of	time	for	changes,	78-79

file	inclusion,	testing	procedural	code,	234-236

finding

sequences,	monster	methods,	305-306

test	points,	19

FIT	(Framework	for	Integration),	53

fit.Fixture,	37

fit.Parse,	37

Fitnesse,	53

fixing	bugs	in	software,	3-4

formConnection	method,	404

formStyles	method,	349

Fowler,	Martin,	325

Framework	for	Integration	Tests

(FIT),	53

Frameworks,	118

global	dependency,	118-126

function	pointers

replacing,	396-398

testing	procedural	code,	238-239

functional	changes,	310

functions

PostReceiveError,	31

replacing	with	function	pointers,	396-398

run(),	132

send	message,	114

SequenceHasGapFor,	386

substituting,	377-378

G
Gamma,	Erich,	48

GDIBrush,	333-334

GenerateIndex,	158-162

elements,	159

generating	indexes,	158

getBalance,	120

getBalancePoint(),	152

getBody,	AddEmployeeCmd,	280

getDeadTime,	389

getDeclarationCount(),	153

getElement,	160,	163

getElementCount,	160,	163

getInstance	method,	120

getInterface,	154

getKSRStreams,	142

getLastLine(),	27

getName,	153

getters

extracting,	352-355

lazy	getters,	354

overriding,	352-355

replacing	global	references,	399-400

getValidationPercent,	106,	110

Gleaning	Dependencies,	monster	methods,	303

global	dependency,	getting	classes	into	test	harnesses,	118-126

global	references

encapsulating,	339-344

replacing	with	getters,	399-400

graphics	libraries,	link	seams,	39

grouping	methods,	249

H
hidden	methods,	250

getting	methods	into	test	harnesses,	138-141

hierarchies,	permits,	134

higher-level	testing,	14,	173-174

Interception	Points,	174-182

HttpFileCollection,	141

HttpPostedFile	objects,	141

HttpServletRequest,	327

hyperaware	editing,	310

I
IDE,	support	for	effect	analysis,	152

identifying	change	points,	18

implementers,	extracting,	356-361

include	dependencies,	getting	classes	into	test	harnesses,	127-130

independence,	removing	duplication,	285

indexes,	generating,	158

IndustrialFacility,	135

inheritance,	programming	by	difference,	94-104

InMemoryDirectory,	158,	161

instances

classes,	122

Introduce	Instance	Delegator,	369-376

Supersede	Instance	Variable,	404-407

testing,	123

PermitRepository,	121

Interception	Points,	174-182

Interface	Segregation	Principle	(ISP),	263

interfaces,	132

dependencies	versus	concrete	class	dependencies,	84

extracting,	80,	362-368

naming,	364

ParameterSource,	327

segregating,	264

internal	relationships,	looking	for,	251

Introduce	Instance	Delegator,	369-371

Introduce	Sensing	Variable,	298-301

Introduce	Static	Setter,	122,	126,	341,	372-376

ISP	(Interface	Segregation	Principle),	263

J
Jeffries,	Ron,	221

JUnit,	49-50,	217

K
keywords

const,	164

mutable,	167

knobs,	287

L
lag	time,	effect	on	length	of	time	for	changes,	78-79

language	features,	getting	methods	into	test	harnesses,	141-144

lazy	getters,	354

Lean	on	the	Compiler,	125,	143,	315

legacy	code,	changing	algorithms,	18

breaking	dependencies,	19

finding	test	points,	19

identifying	change	points,	18

refactoring,	20

writing	tests,	19

legacy	systems	versus	well-maintained	systems,	understanding	of	code,	77

length	of	time	for	changes,	77

breaking	dependencies,	79-85

reasons	for,	77-79

test	harness	usage,	57-59

Sprout	Class,	63-67

Sprout	Method,	59-63

Wrap	Class,	71-76

Wrap	Method,	67-70

libraries.	See	also	API	calls

dependencies,	avoiding,	197-198

graphics	libraries,	link

seams,	39

mock	object	libraries,	47

Link	Seam,	testing	procedural	code,	233-234

link	seams,	36-40

Link	Substitution,	342,	377-378

Liskov	substitution	principle	(LSP)	violation,	101

listing	markup	for	understanding	code,	211-212

LoginCommand,	278

write	method,	272-273

LSP	(Liskov	substitution	principle)	violation,	101

M
macro	preprocessor,	testing	procedural	code,	234-236

mail	service,	113-114

manual	refactoring,	monster	methods,	297

Break	Out	Method

Object,	304

extracting,	301-302

Gleaning	Dependencies,	303

Introduce	Sensing	Variable,	298-301

marking	up	listings	for	understanding	code,	211-212

MessageForwarder,	401

method	objects,	breaking	out,	330-336

from	monster	methods,	304

method	use	rule,	189

methods

ACTIOReportFor,	108

BindName,	337

draw(),	Renderer,	332

effects	of	change,	understanding,	212

evaluate,	248

Extract	Method	(refactoring),	415-419

extracting,	212

formConnection	method,	404

formStyles,	349

getBalancePoint(),	152

getBody,	AddEmployeeCmd,	280

getDeclarationCount(),	153

getElement,	160,	163

getElementCount,	160,	163

getInstance,	120

getInterface,	154

getKSRStreams,	142

getting	into	test	harnesses

hidden	methods,	138-141

language	features,	141-144

side	effects,	144-150

getValidationPercent,	110

grouping	methods,	249

hidden	methods,	138-141,	250

lazy	getters,	354

monster	methods.	See	monster	methods

non-virtual	methods,	367

Parameterize	Method,	383-384

performCommand,	147-149

populate,	326

private	methods,	testing	for,	138

public	methods,	138

readToken,	157

recalculate,	306

recordError,	366

resetForTesting(),	122

Responsibility-Based	Extraction,	206-207

restricted	override	dilemma,	198

RFDIReportFor,	108

scan(),	23-25

setUp,	50

showLine,	25

snap(),	139

Sprout	Method,	246

static	methods,	exposing,	345-347

Subclass	and	Override	Method,	401-403

suspend	frame,	339

targeted	testing,	190-194

tearDown,	375

testEmpty,	49

understanding	structure

of,	211

update,	296

updateBalance,	370

validate,	136,	345

write,	273-275

AddEmployeeCmd,	274

Command	class,	277

LoginCommand,	272-273

writeBody,	281

Command	class,	285

writing	tests	for,	137

migrating	to	object	orientation,	239-244

Mike	Hill,	51

mock	objects,	27-28,	47

ModelNode	class,	357

modularity,	29

monster	methods,	289

automated	refactoring,	294-296

bulleted	methods,	290

extracting	small	pieces,	306

extracting	to	current	class	first,	306

finding	sequences,	305-306

manual	refactoring.	See	manual	refactoring

redoing	extractions,	307

skeletonize	methods,	304-305

snarled	methods,	292-294

morale,	increasing,	319-321

mutable,	167

N
Naked	CRC,	220-223

naming,	356

interfaces,	364

naming	conventions

abbreviations,	284

classes,	227-228

new	constructors,	381

non-virtual	methods,	367

normalized	hierarchy,	103

null	characters,	272

Null	Object	Pattern,	112

NullEmployee,	112

nulls,	111-112

NUnit,	52

O
object	orientation,	migrating	to,	239-244

object	seams,	33,	40-44,	239,	369

objects

creating,	130

fake	objects,	23-27

distilling,	27

tests,	26

HttpFileCollection,	141

HttpPostedFile,	141

mail	service,	113-114

mock	objects,	27-28,	47

once	dilemma,	198

OO	languages,	C++,	127

Opdyke,	Bill,	45

open/closed	principle,	287

optimization,	changing	software,	6

OriginationPermit,	134-135

Orthogonality,	285

overriding

calls,	348-349

factory	method,	350-351

getters,	352-355

overwhelming	feelings,	overcoming,	319-321

P
Packet	class,	345

PageLayout,	348

Pair	Programming,	316

paper	view,	402

parameter	lists,	getting	classes	into	test	harnesses,	116-118

Parameterize	Constructor,	114-116,	126,	171,	242,	341,	379-382

Parameterize	Method,	341,	383-384

parameters

adapting,	326-329

aliased	parameters,	133-136

getting	classes	into	test	harnesses,	106-113,	130-132

Parameterize	Constructor,	379-382

Parameterize	Method,	383-384

Primitivize	Parameter,	385-387

ParameterSource,	327

Pass	Null,	62,	111-112,	131

passing	nulls	112

patterns

Null	Object	Pattern,	112

Singleton	Design	Pattern,	372

PaydayTransaction	class,	362

performCommand,	147-149

Permit,	hierarchies,	134

PermitRepository,	120-125

pinch	points,	80

as	encapsulation	boundaries,	182-183

testing	with,	180-184

pointers.	See	function	pointers

populate	method,	326

PostReceiveError,	31,	44

preparing	for	changes	to	code,	157-163

preprocessing	seams,	33-36,	130

Preserve	Signatures,	70,	240,	312-314,	331

preserving

behavior,	7

signatures,	312-314

preventing	effect	propagation,	165

primary	responsibilities,	looking	for,	260

Primitivize	Parameter,	17,	385-387

principles,	open/closed	principle,	287

private	methods,	testing	for,	138

problems	with	big	classes,	245

procedural	code,	testing,	231-232

with	C	macro	preprocessor,	234-36

with	file	inclusion,	234-236

function	pointers,	238-239

with	Link	Seam,	233-234

migrating	to	object	orientation,	239-244

Test-Driven	Development	(TDD),	236-238

production	code	versus	test	code,	110

ProductionModelNode,	358

programming,	rediscovering	fun	in,	319-321

programming	by	difference,	94-104

propagating	effects.	See	effect	propagation

public	methods,	138

Pull	Up	Feature,	388-391

Push	Down	Dependency,	392-395

R
readToken	method,	157

reasoning

effect	reasoning,	152-157

tools	for,	165-167

reasoning	forward,	157-163

reasoning	forward,	157-163

Recalculate,	40-42

recalculate	method,	306

recordError,	366

redefining

templates,	408-411

text,	412-413

redoing	extractions,	monster	methods,	307

refactoring,	5,	20,	45,	415

automated	refactoring

monster	methods,	294-296

and	tests,	46-47

big	classes,	246

Extract	Method,	415-419

manual	refactoring,	monster	methods,	297-301

scratch	refactoring,	264

refactoring	tools,	45-46,	195

scratch	refactoring	for	understanding	code,	212-213

Refactoring:	Improving	the	Design	of	Existing	Code	(Fowler),	415

references,	Encapsulate	Global	References,	339-344

regression	testing,	10-11

relationships,	looking	for	internal	relationships,	251

removing	duplication,	93-94,	272-287

renaming	classes,	284

renderer,	draw(),	332

Replace	Function	with	Function	Pointer,	396-398

Replace	Global	Reference	with	Getter,	399-400

replacing

functions	with	function	pointers,	396-398

global	references	with	getters,	399-400

Reservation,	256-257

resetForTesting(),	122

responsibilities,	249

decisions,	looking	for	decisions	that	can	change,	251

grouping	methods,	249

hidden	methods,	250

internal	relationships,	251-253

ISP	(Interface	Segregation	Principle),	263

looking	for	primary

responsibility,	260

primary	responsibilities,	260

scratch	factoring,	264

segregating	interfaces,	264

separating,	211

strategy	for	dealing	with,	265

tactics	for	dealing	with,	266-268

Responsibility-Based	Extraction,	206-207

restricted	override	dilemma,	198

return	values,	effect	propagation	163

RFDIReportFor,	108

RGHConnections,	107-109

risks	of	changing	software,	7-8

Roberts,	Don,	45

RuleParser	class,	250

run(),	132

S
safety	nets,	9

scan(),	23-25

Scheduler,	128-129,	391

compiling,	129

SchedulerDisplay,	130

SchedulingTask,	131-132

scratch	refactoring,	264

for	understanding	code,	212-213

seams,	30-33

enabling	points,	36

link	seams,	36-40

object	seams,	33,	40-44

preprocessing	seams,	33-36

segregating	interfaces,	264

send	message	function,	114

sensing,	21-22

sensing	variables,	301,	304

separating	responsibilities,	211

separation,	21-22

SequenceHasGapFor,	386

sequences,	finding	in	monster	methods,	305-306

setSnapRegion,	140

setTestingInstance,	121-123

setUp	method,	50

showLine,	25

side	effects,	getting	methods	into	test	harnesses,	144-150

signatures,	preserving,	312-314

simplifying

effect	sketches,	168-171

system	architecture,	216-220

single	responsibility	principle	(SRP),	99,	246-248,	260-262

single-goal	editing,	311-312

Singleton	Design	Pattern,	120,	372

skeletonize	methods,	304-305

sketches

effect	sketches,	simplifying,	168-171

for	understanding	code,	210-211

Reservation,	255

skinning	and	wrapping	API	calls,	205-207

Smalltalk,	45

snap(),	139

snarled	methods,	292-294

software

behavior,	5

changing,	3-8

risks	of,	7-8

test	coverings,	14-18

software	vise,	10

Sprout	Class	(testing	changes),	63-67

Sprout	Method	(testing	changes)	59-63,	246

SRP	(single	responsibility	principle),	246-248,	260-262

static	cling,	369

static	methods,	346

exposing,	345-347

strategies

for	dealing	with	responsibilities,	265

for	monster	methods

extracting	small	pieces,	306

extracting	to	current	class

first,	306

finding	sequences,	305-306

redoing	extractions,	307

skeletonize	methods,	304-305

Subclass	and	Override	Method,	112,	125,	136,	401-403

Subclass	to	Override,	148

subclasses

Subclass	and	Override	Method,	401-403

testing	subclasses,	390

subclassing,	programming	by	difference,	95-96

substituting	functions,	377-378

subverting	access	protection,	141

Supercede	Instance	Variable,	117-118,	404-407

suspend	frame	method,	339

SymbolSource,	150

system	architecture,	preserving,	215-216

conversation	concepts,	224

Naked	CRC,	220-223

telling	story	of	system,	216-220

T
tactics	for	dealing	with	responsibilities,	266-268

targeted	testing,	190-194

TDD	(Test-Driven	Development),	20,	88-94,	236-238

tearDown	method	375

techniques,	dependency-breaking	techniques.	See	dependency-breaking	techniques

Template	Redefinition,	408-411

templates,	redefining,	408-411

temporal	coupling,	67

test	code	versus	production	code,	110

test	harnesses,	12

adding	features,	87

and	length	of	time	for	changes,	57-59

Sprout	Class,	63-67

Sprout	Method,	59-63

Wrap	Class,	71-76

Wrap	Method,	67-70

breaking	dependencies,	79-85

FIT,	53

Fitnesse,	53

getting	classes	into

aliased	parameters,	133-136

global	dependency,	118-126

hidden	dependency,	113-116

huge	parameter	lists,	116-118

include	dependencies,	127-130

parameters,	106-112,	130-132

getting	methods	into

hidden	methods,	138-141

language	features,	141-144

side	effects,	144-150

test	points,	finding	19

Test-Driven	Development	(TDD),	20,	60,	64,	70,	88-94,	236-238,	310

testEmpty	method,	49

TESTING,	36

testing,	9

around	changes,	14-18

higher-level	testing,	14

instances,	121-123

for	private	methods,	138

procedural	code,	231-232

function	pointers,	238-239

migrating	to	object	orientation,	239-244

Test-Driven	Development	(TDD),	236-238

with	C	macro	preprocessor,	234-236

with	file	inclusion,	234-236

with	Link	Seam,	233-234

regression	testing,	10-11

test	harnesses,	12

unit	testing,	12-14

unit-testing	harnesses,	48

CppUnitLite,	50-52

JUnit,	49-50

NUnit,	52

testing	subclasses,	227,	390

TestingPager,	405

tests

automated	refactoring,	46-47

automated	tests,	185-186

characterization	tests,	186-190,	195

targeted	testing,	190-194

Characterization	Tests,	151,	157

class	naming	conventions,	227-228

directory	locations	for,	228-229

fake	objects,	26

higher-level	tests,	173-174

Interception	Points,	174-182

method	use	rule,	189

unit	tests,	pinch	point	traps,	184

writing,	19

for	methods,	137

text,	redefining,	412-413

Text	Redefinition,	412-413

throwing	exceptions,	89

time	for	changes,	length	of.	See	length	of	time	for	changes

tools

for	effect	reasoning,	165-167

refactoring	tools,	45-46

unit-testing	harnesses,	48

CppUnitLite,	50-52

JUnit,	49-50

NUnit,	52

TransactionLog,	366

TransactionManager,	350

TransactionRecorder,	365

type	conversion	errors,	193-194

U
UML	notation,	221

understanding	code,	209

deleting	unused	code,	213

effect	on	length	of	time	for	changes,	77-78

listing	markup,	211-212

scratch	refactoring,	212-213

sketches,	210-211

unit	testing,	12-14

unit	tests,	pinch	point	traps,	184

unit-testing	harnesses,	48

CppUnitLite,	50-52

JUnit,	49-50

NUnit,	52

unused	code,	deleting,	213

update	method,	296

updateBalance,	370

V
validate	method,	136,	345

variables

commandChar,	276-277

effects	of	change,	212

Reservation	class,	253

sensing	variables,	301

Supersede	Instance	Variable,	404-407

vise,	10

W
well-maintained	systems	versus	legacy	systems,	understanding	of	code,	77

WorkflowEngine,	350

Wrap	Class	(testing	changes),	71-76

Wrap	Method	(testing	changes),	67-70

wrapping,	skinning	and	wrapping	API	calls,	205-207

write	method,	273-275

AddEmployeeCmd,	274

Command	class,	277

LoginCommand,	272-273

writeBody	method,	281

Command	class,	285

writing

null	characters,	272

tests,	19

for	methods,	137

X
xUnit,	48,	52

	Title Page
	Copyright Page
	Contents
	Foreword
	Preface
	Introduction
	Part I: The Mechanics of Change
	Chapter 1: Changing Software
	Chapter 2: Working with Feedback
	Chapter 3: Sensing and Separation
	Chapter 4: The Seam Model
	Chapter 5: Tools

	Part II: Changing Software
	Chapter 6: I Don’t Have Much Time and I Have to Change It
	Chapter 7: It Takes Forever to Make a Change
	Chapter 8: How Do I Add a Feature?
	Chapter 9: I Can’t Get This Class into a Test Harness
	Chapter 10: I Can’t Run This Method in a Test Harness
	Chapter 11: I Need to Make a Change. What Methods Should I Test?
	Chapter 12: I Need to Make Many Changes in One Area. Do I Have to Break Dependencies for All the Classes Involved?
	Chapter 13: I Need to Make a Change, but I Don’t Know What Tests to Write
	Chapter 14: Dependencies on Libraries Are Killing Me
	Chapter 15: My Application Is All API Calls
	Chapter 16: I Don’t Understand the Code Well Enough to Change It
	Chapter 17: My Application Has No Structure
	Chapter 18: My Test Code Is in the Way
	Chapter 19: My Project Is Not Object Oriented. How Do I Make Safe Changes?
	Chapter 20: This Class Is Too Big and I Don’t Want It to Get Any Bigger
	Chapter 21: I’m Changing the Same Code All Over the Place
	Chapter 22: I Need to Change a Monster Method and I Can’t Write Tests for It
	Chapter 23: How Do I Know That I’m Not Breaking Anything?
	Chapter 24: We Feel Overwhelmed. It Isn’t Going to Get Any Better

	Part III: Dependency-Breaking Techniques
	Chapter 25: Dependency-Breaking Techniques

	Appendix: Refactoring
	Glossary
	Index

