
INT12

MUX

INT11

INT2

INT1

CPU

(Enable)(Flag)

INTx

INTx.8

PIEIERx(8:1) PIEIFRx(8:1)

MUX

INTx.7

INTx.6

INTx.5

INTx.4

INTx.3

INTx.2

INTx.1

From

Peripherals or

External

Interrupts

(Enable) (Flag)

IER(12:1)IFR(12:1)

Global

Enable

INTM

1

0

PIEACKx

(Enable/Flag)

Peripheral Interrupt Expansion (PIE) www.ti.com

6 Peripheral Interrupt Expansion (PIE)

The peripheral interrupt expansion (PIE) block multiplexes numerous interrupt sources into a smaller set of
interrupt inputs. The PIE block can support 96 individual interrupts that are grouped into blocks of eight.
Each group is fed into one of 12 core interrupt lines (INT1 to INT12). Each of the 96 interrupts is
supported by its own vector stored in a dedicated RAM block that you can modify. The CPU, upon
servicing the interrupt, automatically fetches the appropriate interrupt vector. It takes nine CPU clock
cycles to fetch the vector and save critical CPU registers. Therefore, the CPU can respond quickly to
interrupt events. Prioritization of interrupts is controlled in hardware and software. Each individual interrupt
can be enabled/disabled within the PIE block.

6.1 Overview of the PIE Controller

The 28x CPU supports one nonmaskable interrupt (NMI) and 16 maskable prioritized interrupt requests
(INT1-INT14, RTOSINT, and DLOGINT) at the CPU level. The 28x devices have many peripherals and
each peripheral is capable of generating one or more interrupts in response to many events at the
peripheral level. Because the CPU does not have sufficient capacity to handle all peripheral interrupt
requests at the CPU level, a centralized peripheral interrupt expansion (PIE) controller is required to
arbitrate the interrupt requests from various sources such as peripherals and other external pins.

The PIE vector table is used to store the address (vector) of each interrupt service routine (ISR) within the
system. There is one vector per interrupt source including all MUXed and nonMUXed interrupts. You
populate the vector table during device initialization and you can update it during operation.

6.1.1 Interrupt Operation Sequence

Figure 76 shows an overview of the interrupt operation sequence for all multiplexed PIE interrupts.
Interrupt sources that are not multiplexed are fed directly to the CPU.

Figure 76. Overview: Multiplexing of Interrupts Using the PIE Block

• Peripheral Level
An interrupt-generating event occurs in a peripheral. The interrupt flag (IF) bit corresponding to that
event is set in a register for that particular peripheral.
If the corresponding interrupt enable (IE) bit is set, the peripheral generates an interrupt request to the
PIE controller. If the interrupt is not enabled at the peripheral level, then the IF remains set until
cleared by software. If the interrupt is enabled at a later time, and the interrupt flag is still set, the
interrupt request is asserted to the PIE.

110 Flash and OTP Memory Blocks SPRUFN3C–January 2009–Revised October 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFN3C

www.ti.com Peripheral Interrupt Expansion (PIE)

Interrupt flags within the peripheral registers must be manually cleared. See the peripheral reference
guide for a specific peripheral for more information.

• PIE Level
The PIE block multiplexes eight peripheral and external pin interrupts into one CPU interrupt. These
interrupts are divided into 12 groups: PIE group 1 - PIE group 12. The interrupts within a group are
multiplexed into one CPU interrupt. For example, PIE group 1 is multiplexed into CPU interrupt 1
(INT1) while PIE group 12 is multiplexed into CPU interrupt 12 (INT12). Interrupt sources connected to
the remaining CPU interrupts are not multiplexed. For the nonmultiplexed interrupts, the PIE passes
the request directly to the CPU.
For multiplexed interrupt sources, each interrupt group in the PIE block has an associated flag register
(PIEIFRx) and enable (PIEIERx) register (x = PIE group 1 - PIE group 12). Each bit, referred to as y,
corresponds to one of the 8 MUXed interrupts within the group. Thus PIEIFRx.y and PIEIERx.y
correspond to interrupt y (y = 1-8) in PIE group x (x = 1-12). In addition, there is one acknowledge bit
(PIEACK) for every PIE interrupt group referred to as PIEACKx (x = 1-12). Figure 77 illustrates the
behavior of the PIE hardware under various PIEIFR and PIEIER register conditions.
Once the request is made to the PIE controller, the corresponding PIE interrupt flag (PIEIFRx.y) bit is
set. If the PIE interrupt enable (PIEIERx.y) bit is also set for the given interrupt then the PIE checks the
corresponding PIEACKx bit to determine if the CPU is ready for an interrupt from that group. If the
PIEACKx bit is clear for that group, then the PIE sends the interrupt request to the CPU. If PIEACKx is
set, then the PIE waits until it is cleared to send the request for INTx. See Section 6.3 for details.

• CPU Level
Once the request is sent to the CPU, the CPU level interrupt flag (IFR) bit corresponding to INTx is set.
After a flag has been latched in the IFR, the corresponding interrupt is not serviced until it is
appropriately enabled in the CPU interrupt enable (IER) register or the debug interrupt enable register
(DBGIER) and the global interrupt mask (INTM) bit.

111SPRUFN3C–January 2009–Revised October 2009 Flash and OTP Memory Blocks
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFN3C

Start

Stage A
PIEIFRx.y=1

?

Wait for any
PIEIFRx.y=1

No

Wait for
PIEIERx.y=1

Stage B
PIEIERx.y=1

?

No

PIEACKx=0
Stage C

?

NoWait for
S/W to clear

PIEACKx bit=0

Yes

Yes

Yes

Hardware sets
PIEACKx=1

Stage D
Interrupt request
sent to 28x CPU

on INTx

Interrupts
to CPU

Stage E
IFRx bit set 1

Yes

Stage G
INTM bit=0

?

No

Yes

IERx bit=1
Stage F

?

No

Stage H
CPU responds

IFRx=0, IERx=0
INTM=1, EALLOW=0

Context Save performed

Stage I
Vector fetched from the PIE(A)

PIEIFRx.y is cleared
CPU branches to ISR

Stage J
Interrupt service routine responds

Write 1 to PIEACKx bit to clear
to enable other interrupts in

PIEIFRx group
Re-enable interrupts, INTM=0

Return

End

CPU interrupt controlPIE interrupt control

Peripheral Interrupt Expansion (PIE) www.ti.com

Figure 77. Typical PIE/CPU Interrupt Response - INTx.y

A For multiplexed interrupts, the PIE responds with the highest priority interrupt that is both flagged and enabled. If
there is no interrupt both flagged and enabled, then the highest priority interrupt within the group (INTx.1 where x is
the PIE group) is used. See Section Section 6.3.3 for details.

As shown in Table 105, the requirements for enabling the maskable interrupt at the CPU level depends on
the interrupt handling process being used. In the standard process, which happens most of the time, the
DBGIER register is not used. When the 28x is in real-time emulation mode and the CPU is halted, a
different process is used. In this special case, the DBGIER is used and the INTM bit is ignored. If the DSP
is in real-time mode and the CPU is running, the standard interrupt-handling process applies.

Table 105. Enabling Interrupt

Interrupt Handling Process Interrupt Enabled If…

Standard INTM = 0 and bit in IER is 1

DSP in real-time mode and halted Bit in IER is 1 and DBGIER is 1

112 Flash and OTP Memory Blocks SPRUFN3C–January 2009–Revised October 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFN3C

www.ti.com Peripheral Interrupt Expansion (PIE)

The CPU then prepares to service the interrupt. This preparation process is described in detail in
TMS320x28x DSP CPU and Instruction Set Reference Guide (literature number SPRU430). In
preparation, the corresponding CPU IFR and IER bits are cleared, EALLOW and LOOP are cleared, INTM
and DBGM are set, the pipeline is flushed and the return address is stored, and the automatic context
save is performed. The vector of the ISR is then fetched from the PIE module. If the interrupt request
comes from a multiplexed interrupt, the PIE module uses the group PIEIERx and PIEIFRx registers to
decode which interrupt needs to be serviced. This decode process is described in detail in Section
Section 6.3.3.

The address for the interrupt service routine that is executed is fetched directly from the PIE interrupt
vector table. There is one 32-bit vector for each of the possible 96 interrupts within the PIE. Interrupt flags
within the PIE module (PIEIFRx.y) are automatically cleared when the interrupt vector is fetched. The PIE
acknowledge bit for a given interrupt group, however, must be cleared manually when ready to receive
more interrupts from the PIE group.

6.2 Vector Table Mapping

On 28xx devices, the interrupt vector table can be mapped to four distinct locations in memory. In practice
only the PIE vector table mapping is used.

This vector mapping is controlled by the following mode bits/signals:

VMAP: VMAP is found in Status Register 1 ST1 (bit 3). A device reset sets this bit to 1. The state of this bit can
be modified by writing to ST1 or by SETC/CLRC VMAP instructions. For normal operation leave this bit
set.

M0M1MAP: M0M1MAP is found in Status Register 1 ST1 (bit 11). A device reset sets this bit to 1. The state of this bit
can be modified by writing to ST1 or by SETC/CLRC M0M1MAP instructions. For normal 28xx device
operation, this bit should remain set. M0M1MAP = 0 is reserved for TI testing only.

ENPIE: ENPIE is found in PIECTRL Register (bit 0). The default value of this bit, on reset, is set to 0 (PIE
disabled). The state of this bit can be modified after reset by writing to the PIECTRL register (address
0x0000 0CE0).

Using these bits and signals the possible vector table mappings are shown in Table 106.

Table 106. Interrupt Vector Table Mapping

Vector MAPS Vectors Fetched From Address Range VMAP M0M1MAP ENPIE

M1 Vector (1) M1 SARAM Block 0x000000 - 0x00003F 0 0 X

M0 Vector (1) M0 SARAM Block 0x000000 - 0x00003F 0 1 X

BROM Vector Boot ROM Block 0x3FFFC0 - 0x3FFFFF 1 X 0

PIE Vector PIE Block 0x000D00 - 0x000DFF 1 X 1
(1) Vector map M0 and M1 Vector is a reserved mode only. On the 28x devices these are used as SARAM.

The M1 and M0 vector table mapping are reserved for TI testing only. When using other vector mappings,
the M0 and M1 memory blocks are treated as SARAM blocks and can be used freely without any
restrictions.

After a device reset operation, the vector table is mapped as shown in Table 107.

Table 107. Vector Table Mapping After Reset Operation

ENPIE
Vector MAPS Reset Fetched From Address Range VMAP (1) M0M1MAP (1) (1)

BROM Vector (2) Boot ROM Block 0x3FFFC0 - 0x3FFFFF 1 1 0
(1) On the 28x devices, the VMAP and M0M1MAP modes are set to 1 on reset. The ENPIE mode is forced to 0 on reset.
(2) The reset vector is always fetched from the boot ROM.

After the reset and boot is complete, the PIE vector table should be initialized by the user's code. Then the
application enables the PIE vector table. From that point on the interrupt vectors are fetched from the PIE
vector table. Note: when a reset occurs, the reset vector is always fetched from the vector table as shown
in Table 107. After a reset the PIE vector table is always disabled.

Figure 78 illustrates the process by which the vector table mapping is selected.

113SPRUFN3C–January 2009–Revised October 2009 Flash and OTP Memory Blocks
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFN3C

Reset
(power-on reset or warm reset)

Reset vector fetched from
boot ROM

Branch into bootloader
routines, depending on the
state of GPIO pins

Yes

Using
peripheral
interrupts

?

PIE disabled (ENPIE=0)

OBJMODE = 0
AMODE = 0

Yes

User code initializes:
OBJMODE and AMODE state†

PIE enable (ENPIE = 1)

CPU IER register and INTM

Vectors (except for reset)
are fetched from PIE vector map‡

Recommended flow for 280x applications

No

User code initializes:

OBJMODE and AMODE state1
CPU IER register and INTM
VMAP state

VMAP = 1
?

Vectors
(except for reset)

are fetched
from M0 vector

map‡

Vectors

Used for test purposes only

No

PIE vector table
PIEIERx registers

VMAP = 1

MOM1MAP = 1

(except for reset) are
fetched from BROM

vector map‡

Peripheral Interrupt Expansion (PIE) www.ti.com

Figure 78. Reset Flow Diagram

A The compatibility operating mode of the 28x CPU is determined by a combination of the OBJMODE and AMODE bits
in Status Register 1 (ST1):

Operating Mode OBJMODE AMODE
C28x Mode 1 0
24x/240xA Source-Compatible 1 1
C27x Object-Compatible 0 0 (Default at reset)

B The reset vector is always fetched from the boot ROM.

114 Flash and OTP Memory Blocks SPRUFN3C–January 2009–Revised October 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFN3C

CPU TIMER 2

CPU TIMER 0

Watchdog

Peripherals
(SPI, SCI, EPWM,

HRPWM, ECAP, ADC)

TINT0

XINT1
Interrupt Control

XINT1

XINT1CR(15:0)

Interrupt Control
XINT2

XINT2CR(15:0)

GPIO
MUX

WDINT

INT1
to

INT12

NMI

XINT2CTR(15:0)

XINT3CTR(15:0)

CPU TIMER 1

TINT2

Low Power Modes
LPMINT

WAKEINT
Sync

SYSCLKOUT

M
U

X

XINT2

XINT3

ADC
XINT2SOC

GPIOXINT1SEL(4:0)

GPIOXINT2SEL(4:0)

GPIOXINT3SEL(4:0)

Interrupt Control
XINT3

XINT3CR(15:0)

XINT3CTR(15:0)

NMI interrupt with watchdog function
(See the NMI watchdog section) NMIRS

System Control
(See the system
control section)

INT14

INT13

GPIO0.int

GPIO31.int

CLOCKFAIL

CPUTMR2CLK

C28
Core

M
U

X
M

U
X

TINT1

P
IE

U
p

 t
o

 9
6
 I
n

te
rr

u
p

ts

www.ti.com Peripheral Interrupt Expansion (PIE)

6.3 Interrupt Sources

Figure 79 shows how the various interrupt sources are multiplexed within the devices. This multiplexing
(MUX) scheme may not be exactly the same on all 28x devices. See the data manual of your particular
device for details.

Figure 79. PIE Interrupt Sources and External Interrupts XINT1/XINT2/XINT3

115SPRUFN3C–January 2009–Revised October 2009 Flash and OTP Memory Blocks
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFN3C

Peripheral Interrupt Expansion (PIE) www.ti.com

6.3.1 Procedure for Handling Multiplexed Interrupts

The PIE module multiplexes eight peripheral and external pin interrupts into one CPU interrupt. These
interrupts are divided into 12 groups: PIE group 1 - PIE group 12. Each group has an associated enable
PIEIER and flag PIEIFR register. These registers are used to control the flow of interrupts to the CPU. The
PIE module also uses the PIEIER and PIEIFR registers to decode to which interrupt service routine the
CPU should branch.

There are three main rules that should be followed when clearing bits within the PIEIFR and the PIEIER
registers:

Rule 1: Never clear a PIEIFR bit by software

An incoming interrupt may be lost while a write or a read-modify-write operation to the PIEIFR register
takes place. To clear a PIEIFR bit, the pending interrupt must be serviced. If you want to clear the PIEIFR
bit without executing the normal service routine, then use the following procedure:

1. Set the EALLOW bit to allow modification to the PIE vector table.
2. Modify the PIE vector table so that the vector for the peripheral's service routine points to a temporary

ISR. This temporary ISR will only perform a return from interrupt (IRET) operation.
3. Enable the interrupt so that the interrupt will be serviced by the temporary ISR.
4. After the temporary interrupt routine is serviced, the PIEIFR bit will be clear
5. Modify the PIE vector table to re-map the peripheral's service routine to the proper service routine.
6. Clear the EALLOW bit.

Rule 2: Procedure for software-prioritizing interrupts

Use the method found in the C2833x C/C++ Header Files and Peripheral Examples in C (literature
number SPRC530).

(a) Use the CPU IER register as a global priority and the individual PIEIER registers for group priorities. In
this case the PIEIER register is only modified within an interrupt. In addition, only the PIEIER for the
same group as the interrupt being serviced is modified. This modification is done while the PIEACK bit
holds additional interrupts back from the CPU.

(b) Never disable a PIEIER bit for a group when servicing an interrupt from an unrelated group.

Rule 3: Disabling interrupts using PIEIER

If the PIEIER registers are used to enable and then later disable an interrupt then the procedure described
in Section 6.3.2 must be followed.

116 Flash and OTP Memory Blocks SPRUFN3C–January 2009–Revised October 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFN3C

www.ti.com Peripheral Interrupt Expansion (PIE)

6.3.2 Procedures for Enabling And Disabling Multiplexed Peripheral Interrupts

The proper procedure for enabling or disabling an interrupt is by using the peripheral interrupt
enable/disable flags. The primary purpose of the PIEIER and CPU IER registers is for software
prioritization of interrupts within the same PIE interrupt group. The software package C280x C/C++
Header Files and Peripheral Examples in C (literature number SPRC191) includes an example that
illustrates this method of software prioritizing interrupts.

Should bits within the PIEIER registers need to be cleared outside of this context, one of the following two
procedures should be followed. The first method preserves the associated PIE flag register so that
interrupts are not lost. The second method clears the associated PIE flag register.

Method 1: Use the PIEIERx register to disable the interrupt and preserve the associated PIEIFRx
flags.

To clear bits within a PIEIERx register while preserving the associated flags in the PIEIFRx register, the
following procedure should be followed:

Step a. Disable global interrupts (INTM = 1).
Step b. Clear the PIEIERx.y bit to disable the interrupt for a given peripheral. This can be done for

one or more peripherals within the same group.
Step c. Wait 5 cycles. This delay is required to be sure that any interrupt that was incoming to the

CPU has been flagged within the CPU IFR register.
Step d. Clear the CPU IFRx bit for the peripheral group. This is a safe operation on the CPU IFR

register.
Step e. Clear the PIEACKx bit for the peripheral group.
Step f. Enable global interrupts (INTM = 0).

Method 2: Use the PIEIERx register to disable the interrupt and clear the associated PIEIFRx flags.

To perform a software reset of a peripheral interrupt and clear the associated flag in the PIEIFRx register
and CPU IFR register, the following procedure should be followed:

Step 1. Disable global interrupts (INTM = 1).
Step 2. Set the EALLOW bit.
Step 3. Modify the PIE vector table to temporarily map the vector of the specific peripheral interrupt to

a empty interrupt service routine (ISR). This empty ISR will only perform a return from
interrupt (IRET) instruction. This is the safe way to clear a single PIEIFRx.y bit without losing
any interrupts from other peripherals within the group.

Step 4. Disable the peripheral interrupt at the peripheral register.
Step 5. Enable global interrupts (INTM = 0).
Step 6. Wait for any pending interrupt from the peripheral to be serviced by the empty ISR routine.
Step 7. Disable global interrupts (INTM = 1).
Step 8. Modify the PIE vector table to map the peripheral vector back to its original ISR.
Step 9. Clear the EALLOW bit.
Step 10. Disable the PIEIER bit for given peripheral.
Step 11. Clear the IFR bit for given peripheral group (this is safe operation on CPU IFR register).
Step 12. Clear the PIEACK bit for the PIE group.
Step 13. Enable global interrupts.

117SPRUFN3C–January 2009–Revised October 2009 Flash and OTP Memory Blocks
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFN3C

Peripheral
IE/IF

PIEIFRx.1
latch

PIE
interrupt

flag

PIEIERx.1

Highest

Vector

0
1

0
1

PIEIFRx.8

Vector

latch

Peripheral
IE/IF

1
0

1
0

Lowest

PIEIERx.8

8 interrupts
per group

Search order
highest to

lowest

Pulse
gen

PIEACKx

0
1

1

2

 3a

interrupt
enable

PIE

3b

4

Vector is fetched
only after CPU
interrupt logic

has recognized
the interrupt

9

IFRx
latch

1=valid Int

IERx

1
0

5

6

1
0

INTM

7

CPU
interrupt

logic

8

CPU

PIE group
acknowledge

Peripheral Interrupt Expansion (PIE) www.ti.com

6.3.3 Flow of a Multiplexed Interrupt Request From a Peripheral to the CPU

Figure 80 shows the flow with the steps shown in circled numbers. Following the diagram, the steps are
described.

Figure 80. Multiplexed Interrupt Request Flow Diagram

Step 1. Any peripheral or external interrupt within the PIE group generates an interrupt. If interrupts
are enabled within the peripheral module then the interrupt request is sent to the PIE module.

Step 2. The PIE module recognizes that interrupt y within PIE group x (INTx.y) has asserted an
interrupt and the appropriate PIE interrupt flag bit is latched: PIEIFRx.y = 1.

Step 3. For the interrupt request to be sent from the PIE to the CPU, both of the following conditions
must be true:

(a) The proper enable bit must be set (PIEIERx.y = 1) and
(b) The PIEACKx bit for the group must be clear.

Step 4. If both conditions in 3a and 3b are true, then an interrupt request is sent to the CPU and the
acknowledge bit is again set (PIEACKx = 1). The PIEACKx bit will remain set until you clear it
to indicate that additional interrupts from the group can be sent from the PIE to the CPU.

Step 5. The CPU interrupt flag bit is set (CPU IFRx = 1) to indicate a pending interrupt x at the CPU
level.

Step 6. If the CPU interrupt is enabled (CPU IER bit x = 1, or DBGIER bit x = 1) AND the global
interrupt mask is clear (INTM = 0) then the CPU will service the INTx.

Step 7. The CPU recognizes the interrupt and performs the automatic context save, clears the IER
bit, sets INTM, and clears EALLOW. All of the steps that the CPU takes in order to prepare to
service the interrupt are documented in the TM S320C28x DSP CPU and Instruction Set
Reference Guide (literature number SPRU430).

Step 8. The CPU will then request the appropriate vector from the PIE.
Step 9. For multiplexed interrupts, the PIE module uses the current value in the PIEIERx and

PIEIFRx registers to decode which vector address should be used. There are two possible
cases:

(a) The vector for the highest priority interrupt within the group that is both enabled in the

118 Flash and OTP Memory Blocks SPRUFN3C–January 2009–Revised October 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFN3C

www.ti.com Peripheral Interrupt Expansion (PIE)

PIEIERx register, and flagged as pending in the PIEIFRx is fetched and used as the
branch address. In this manner if an even higher priority enabled interrupt was flagged
after Step 7, it will be serviced first.

(b) If no flagged interrupts within the group are enabled, then the PIE will respond with the
vector for the highest priority interrupt within that group. That is the branch address used
for INTx.1. This behavior corresponds to the 28x TRAP or INT instructions.

NOTE: Because the PIEIERx register is used to determine which vector will be used for the branch,
you must take care when clearing bits within the PIEIERx register. The proper procedure for
clearing bits within a PIEIERx register is described in Section 6.3.2. Failure to follow these
steps can result in changes occurring to the PIEIERx register after an interrupt has been
passed to the CPU at Step 5 in Figure 6-5. In this case, the PIE will respond as if a TRAP or
INT instruction was executed unless there are other interrupts both pending and enabled.

At this point, the PIEIFRx.y bit is cleared and the CPU branches to the vector of the interrupt fetched
from the PIE.

6.3.4 The PIE Vector Table

The PIE vector table (see Table 109) consists of a 256 x 16 SARAM block that can also be used as RAM
(in data space only) if the PIE block is not in use. The PIE vector table contents are undefined on reset.
The CPU fixes interrupt priority for INT1 to INT12. The PIE controls priority for each group of eight
interrupts. For example, if INT1.1 should occur simultaneously with INT8.1, both interrupts are presented
to the CPU simultaneously by the PIE block, and the CPU services INT1.1 first. If INT1.1 should occur
simultaneously with INT1.8, then INT1.1 is sent to the CPU first and then INT1.8 follows. Interrupt
prioritization is performed during the vector fetch portion of the interrupt processing.

When the PIE is enabled, a TRAP #1 through TRAP #12 or an INTR INT1 to INTR INT12 instruction
transfers program control to the interrupt service routine corresponding to the first vector within the PIE
group. For example: TRAP #1 fetches the vector from INT1.1, TRAP #2 fetches the vector from INT2.1
and so forth. Similarly an OR IFR, #16-bit operation causes the vector to be fetched from INTR1.1 to
INTR12.1 locations, if the respective interrupt flag is set. All other TRAP, INTR, OR IFR,#16-bit operations
fetch the vector from the respective table location. The vector table is EALLOW protected.

Out of the 96 possible MUXed interrupts in Table 108, 43 interrupts are currently used. The remaining
interrupts are reserved for future devices. These reserved interrupts can be used as software interrupts if
they are enabled at the PIEIFRx level, provided none of the interrupts within the group is being used by a
peripheral. Otherwise, interrupts coming from peripherals may be lost by accidentally clearing their flags
when modifying the PIEIFR.

To summarize, there are two safe cases when the reserved interrupts can be used as software interrupts:

1. No peripheral within the group is asserting interrupts.
2. No peripheral interrupts are assigned to the group. For example, PIE group 11 and 12 do not have any

peripherals attached to them.

The interrupt grouping for peripherals and external interrupts connected to the PIE module is shown in
Table 108. Each row in the table shows the 8 interrupts multiplexed into a particular CPU interrupt. The
entire PIE vector table, including both MUXed and non-MUXed interrupts, is shown in Table 109.

Table 108. PIE MUXed Peripheral Interrupt Vector Table
INTx.8 INTx.7 INTx.6 INTx.5 INTx.4 INTx.3 INTx.2 INTx.1

INT1.y WAKEINT TINT0 ADCINT9 XINT2 XINT1 Reserved ADCINT2 ADCINT1

(LPM/WD) (TIMER 0) (ADC) Ext. int. 2 Ext. int. 1 - (ADC) (ADC)

0xD4E 0xD4C 0xD4A 0xD48 0xD46 0xD44 0xD42 0xD40

INT2.y Reserved Reserved Reserved Reserved EPWM4_TZINT EPWM3_TZINT EPWM2_TZINT EPWM1_TZINT

- - - - (ePWM4) (ePWM3) (ePWM2) (ePWM1)

0xD5E 0xD5C 0xD5A 0xD58 0xD56 0xD54 0xD52 0xD50

INT3.y Reserved Reserved Reserved Reserved EPWM4_INT EPWM3_INT EPWM2_INT EPWM1_INT

- - - - (ePWM4) (ePWM3) (ePWM2) (ePWM1)

0xD6E 0xD6C 0xD6A 0xD68 0xD66 0xD64 0xD62 0xD60

119SPRUFN3C–January 2009–Revised October 2009 Flash and OTP Memory Blocks
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFN3C

Peripheral Interrupt Expansion (PIE) www.ti.com

Table 108. PIE MUXed Peripheral Interrupt Vector Table (continued)
INTx.8 INTx.7 INTx.6 INTx.5 INTx.4 INTx.3 INTx.2 INTx.1

INT4.y Reserved Reserved Reserved Reserved Reserved Reserved Reserved ECAP1_INT

- - - - - - - (eCAP1)

0xD7E 0xD7C 0xD7A 0xD78 0xD76 0xD74 0xD72 0xD70

INT5.y Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

- - - - - - - -

0xD8E 0xD8C 0xD8A 0xD88 0xD86 0xD84 0xD82 0xD80

INT6.y Reserved Reserved Reserved Reserved Reserved Reserved SPITXINTA SPIRXINTA

- - - - - - (SPI-A) (SPI-A)

0xD9E 0xD9C 0xD9A 0xD98 0xD96 0xD94 0xD92 0xD90

INT7.y Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

- - - - - - - -

0xDAE 0xDAC 0xDAA 0xDA8 0xDA6 0xDA4 0xDA2 0xDA0

INT8.y Reserved Reserved Reserved Reserved Reserved Reserved I2CINT2A I2CINT1A

- - - - - - (I2C-A) (I2C-A)

0xDBE 0xDBC 0xDBA 0xDB8 0xDB6 0xDB4 0xDB2 0xDB0

INT9.y Reserved Reserved Reserved Reserved Reserved Reserved SCITXINTA SCIRXINTA

- - - - - - (SCI-A) (SCI-A)

0xDCE 0xDCC 0xDCA 0xDC8 0xDC6 0xDC4 0xDC2 0xDC0

INT10.y ADCINT8 ADCINT7 ADCINT6 ADCINT5 ADCINT4 ADCINT3 ADCINT2 ADCINT1

(ADC) (ADC) (ADC) (ADC) (ADC) (ADC) (ADC) (ADC)

0xDDE 0xDDC 0xDDA 0xDD8 0xDD6 0xDD4 0xDD2 0xDD0

INT11.y Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

- - - - - - - -

0xDEE 0xDEC 0xDEA 0xDE8 0xDE6 0xDE4 0xDE2 0xDE0

INT12.y Reserved Reserved Reserved Reserved Reserved Reserved Reserved XINT3

- - - - - - - Ext. Int. 3

0xDFE 0xDFC 0xDFA 0xDF8 0xDF6 0xDF4 0xDF2 0xDF0

Table 109. PIE Vector Table

VECTOR CPU PIE Group
Name ID Address (1) Size (x16) Description (2) Priority Priority

Reset 0 0x0000 0D00 2 Reset is always fetched from location 1 -
0x003F FFC0 in Boot ROM. (highest)

INT1 1 0x0000 0D02 2 Not used. See PIE Group 1 5 -

INT2 2 0x0000 0D04 2 Not used. See PIE Group 2 6 -

INT3 3 0x0000 0D06 2 Not used. See PIE Group 3 7 -

INT4 4 0x0000 0D08 2 Not used. See PIE Group 4 8 -

INT5 5 0x0000 0D0A 2 Not used. See PIE Group 5 9 -

INT6 6 0x0000 0D0C 2 Not used. See PIE Group 6 10 -

INT7 7 0x0000 0D0E 2 Not used. See PIE Group 7 11 -

INT8 8 0x0000 0D10 2 Not used. See PIE Group 8 12 -

INT9 9 0x0000 0D12 2 Not used. See PIE Group 9 13 -

INT10 10 0x0000 0D14 2 Not used. See PIE Group 10 14 -

INT11 11 0x0000 0D16 2 Not used. See PIE Group 11 15 -

INT12 12 0x0000 0D18 2 Not used. See PIE Group 12 16 -

INT13 13 0x0000 0D1A 2 External Interrupt 13 (XINT13) or 17 -
CPU-Timer1

INT14 14 0x0000 0D1C 2 CPU-Timer2 18 -
(for TI/RTOS use)

DATALOG 15 0x0000 0D1E 2 CPU Data Logging Interrupt 19 (lowest) -

RTOSINT 16 0x0000 0D20 2 CPU Real-Time OS Interrupt 4 -

(1) Reset is always fetched from location 0x003F FFC0 in Boot ROM.
(2) All the locations within the PIE vector table are EALLOW protected.

120 Flash and OTP Memory Blocks SPRUFN3C–January 2009–Revised October 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFN3C

www.ti.com Peripheral Interrupt Expansion (PIE)

Table 109. PIE Vector Table (continued)

VECTOR CPU PIE Group
Name ID Address (1) Size (x16) Description (2) Priority Priority

EMUINT 17 0x0000 0D22 2 CPU Emulation Interrupt 2 -

NMI 18 0x0000 0D24 2 External Non-Maskable Interrupt 3 -

ILLEGAL 19 0x0000 0D26 2 Illegal Operation - -

USER1 20 0x0000 0D28 2 User-Defined Trap - -

USER2 21 0x0000 0D2A 2 User Defined Trap - -

USER3 22 0x0000 0D2C 2 User Defined Trap - -

USER4 23 0x0000 0D2E 2 User Defined Trap - -

USER5 24 0x0000 0D30 2 User Defined Trap - -

USER6 25 0x0000 0D32 2 User Defined Trap - -

USER7 26 0x0000 0D34 2 User Defined Trap - -

USER8 27 0x0000 0D36 2 User Defined Trap - -

USER9 28 0x0000 0D38 2 User Defined Trap - -

USER10 29 0x0000 0D3A 2 User Defined Trap - -

USER11 30 0x0000 0D3C 2 User Defined Trap - -

USER12 31 0x0000 0D3E 2 User Defined Trap - -

PIE Group 1 Vectors - MUXed into CPU INT1

INT1.1 32 0x0000 0D40 2 ADCINT1 (ADC) 5 1 (highest)

INT1.2 33 0x0000 0D42 2 ADCINT2 (ADC) 5 2

INT1.3 34 0x0000 0D44 2 Reserved 5 3

INT1.4 35 0x0000 0D46 2 XINT1 5 4

INT1.5 36 0x0000 0D48 2 XINT2 5 5

INT1.6 37 0x0000 0D4A 2 ADCINT9 (ADC) 5 6

INT1.7 38 0x0000 0D4C 2 TINT0 (CPU- 5 7
Timer0)

INT1.8 39 0x0000 0D4E 2 WAKEINT (LPM/WD) 5 8 (lowest)

PIE Group 2 Vectors - MUXed into CPU INT2

INT2.1 40 0x0000 0D50 2 EPWM1_TZINT (EPWM1) 6 1 (highest)

INT2.2 41 0x0000 0D52 2 EPWM2_TZINT (EPWM2) 6 2

INT2.3 42 0x0000 0D54 2 EPWM3_TZINT (EPWM3) 6 3

INT2.4 43 0x0000 0D56 2 EPWM4_TZINT (EPWM4) 6 4

INT2.5 44 0x0000 0D58 2 Reserved 6 5

INT2.6 45 0x0000 0D5A 2 Reserved 6 6

INT2.7 46 0x0000 0D5C 2 Reserved 6 7

INT2.8 47 0x0000 0D5E 2 Reserved 6 8 (lowest)

PIE Group 3 Vectors - MUXed into CPU INT3

INT3.1 48 0x0000 0D60 2 EPWM1_INT (EPWM1) 7 1 (highest)

INT3.2 49 0x0000 0D62 2 EPWM2_INT (EPWM2) 7 2

INT3.3 50 0x0000 0D64 2 EPWM3_INT (EPWM3) 7 3

INT3.4 51 0x0000 0D66 2 EPWM4_INT (EPWM4) 7 4

INT3.5 52 0x0000 0D68 2 Reserved 7 5

INT3.6 53 0x0000 0D6A 2 Reserved 7 6

INT3.7 54 0x0000 0D6C 2 Reserved 7 7

INT3.8 55 0x0000 0D6E 2 Reserved - 7 8 (lowest)

PIE Group 4 Vectors - MUXed into CPU INT4

INT4.1 56 0x0000 0D70 2 ECAP1_INT (ECAP1) 8 1 (highest)

INT4.2 57 0x0000 0D72 2 Reserved - 8 2

INT4.3 58 0x0000 0D74 2 Reserved - 8 3

121SPRUFN3C–January 2009–Revised October 2009 Flash and OTP Memory Blocks
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFN3C

Peripheral Interrupt Expansion (PIE) www.ti.com

Table 109. PIE Vector Table (continued)

VECTOR CPU PIE Group
Name ID Address (1) Size (x16) Description (2) Priority Priority

INT4.4 59 0x0000 0D76 2 Reserved - 8 4

INT4.5 60 0x0000 0D78 2 Reserved - 8 5

INT4.6 61 0x0000 0D7A 2 Reserved - 8 6

INT4.7 62 0x0000 0D7C 2 Reserved - 8 7

INT4.8 63 0x0000 0D7E 2 Reserved - 8 8 (lowest)

PIE Group 5 Vectors - MUXed into CPU INT5

INT5.1 64 0x0000 0D80 2 EQEP1_INT (EQEP1) 9 1 (highest)

INT5.2 65 0x0000 0D82 2 Reserved (EQEP2) 9 2

INT5.3 66 0x0000 0D84 2 Reserved 9 3

INT5.4 67 0x0000 0D86 2 Reserved - 9 4

INT5.5 68 0x0000 0D88 2 Reserved - 9 5

INT5.6 69 0x0000 0D8A 2 Reserved - 9 6

INT5.7 70 0x0000 0D8C 2 Reserved - 9 7

INT5.8 71 0x0000 0D8E 2 Reserved - 9 8 (lowest)

PIE Group 6 Vectors - MUXed into CPU INT6

INT6.1 72 0x0000 0D90 2 SPIRXINTA (SPI-A) 10 1 (highest)

INT6.2 73 0x0000 0D92 2 SPITXINTA (SPI-A) 10 2

INT6.3 74 0x0000 0D94 2 Reserved 10 3

INT6.4 75 0x0000 0D96 2 Reserved 10 4

INT6.5 76 0x0000 0D98 2 Reserved 10 5

INT6.6 77 0x0000 0D9A 2 Reserved 10 6

INT6.7 78 0x0000 0D9C 2 Reserved 10 7

INT6.8 79 0x0000 0D9E 2 Reserved 10 8 (lowest)

PIE Group 7 Vectors - MUXed into CPU INT7

INT7.1 80 0x0000 0DA0 2 Reserved - 11 1 (highest)

INT7.2 81 0x0000 0DA2 2 Reserved - 11 2

INT7.3 82 0x0000 0DA4 2 Reserved - 11 3

INT7.4 83 0x0000 0DA6 2 Reserved - 11 4

INT7.5 84 0x0000 0DA8 2 Reserved - 11 5

INT7.6 85 0x0000 0DAA 2 Reserved - 11 6

INT7.7 86 0x0000 0DAC 2 Reserved - 11 7

INT7.8 87 0x0000 0DAE 2 Reserved - 11 8 (lowest)

PIE Group 8 Vectors - MUXed into CPU INT8

INT8.1 88 0x0000 0DB0 2 I2CINT1A (I2C-A) 12 1 (highest)

INT8.2 89 0x0000 0DB2 2 I2CINT2A (I2C-A) 12 2

INT8.3 90 0x0000 0DB4 2 Reserved - 12 3

INT8.4 91 0x0000 0DB6 2 Reserved - 12 4

INT8.5 92 0x0000 0DB8 2 Reserved - 12 5

INT8.6 93 0x0000 0DBA 2 Reserved - 12 6

INT8.7 94 0x0000 0DBC 2 Reserved - 12 7

INT8.8 95 0x0000 0DBE 2 Reserved - 12 8 (lowest)

PIE Group 9 Vectors - MUXed into CPU INT9

INT9.1 96 0x0000 0DC0 2 SCIRXINTA (SCI-A) 13 1 (highest)

INT9.2 97 0x0000 0DC2 2 SCITXINTA (SCI-A) 13 2

INT9.3 98 0x0000 0DC4 2 Reserved 13 3

INT9.4 99 0x0000 0DC6 2 Reserved 13 4

INT9.5 100 0x0000 0DC8 2 Reserved 13 5

122 Flash and OTP Memory Blocks SPRUFN3C–January 2009–Revised October 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFN3C

www.ti.com Peripheral Interrupt Expansion (PIE)

Table 109. PIE Vector Table (continued)

VECTOR CPU PIE Group
Name ID Address (1) Size (x16) Description (2) Priority Priority

INT9.6 101 0x0000 0DCA 2 Reserved 13 6

INT9.7 102 0x0000 0DCC 2 Reserved - 13 7

INT9.8 103 0x0000 0DCE 2 Reserved - 13 8 (lowest)

PIE Group 10 Vectors - MUXed into CPU INT10

INT10.1 104 0x0000 0DD0 2 ADCINT1 (ADC) 14 1 (highest)

INT10.2 105 0x0000 0DD2 2 ADCINT2 (ADC) 14 2

INT10.3 106 0x0000 0DD4 2 ADCINT3 (ADC) 14 3

INT10.4 107 0x0000 0DD6 2 ADCINT4 (ADC) 14 4

INT10.5 108 0x0000 0DD8 2 ADCINT5 (ADC) 14 5

INT10.6 109 0x0000 0DDA 2 ADCINT6 (ADC) 14 6

INT10.7 110 0x0000 0DDC 2 ADCINT7 (ADC) 14 7

INT10.8 111 0x0000 0DDE 2 ADCINT8 (ADC) 14 8 (lowest)

PIE Group 11 Vectors - MUXed into CPU INT11

INT11.1 112 0x0000 0DE0 2 Reserved - 15 1 (highest)

INT11.2 113 0x0000 0DE2 2 Reserved - 15 2

INT11.3 114 0x0000 0DE4 2 Reserved - 15 3

INT11.4 115 0x0000 0DE6 2 Reserved - 15 4

INT11.5 116 0x0000 0DE8 2 Reserved - 15 5

INT11.6 117 0x0000 0DEA 2 Reserved - 15 6

INT11.7 118 0x0000 0DEC 2 Reserved - 15 7

INT11.8 119 0x0000 0DEE 2 Reserved - 15 8 (lowest)

PIE Group 12 Vectors - Muxed into CPU INT12

INT12.1 120 0x0000 0DF0 2 XINT3 - 16 1 (highest)

INT12.2 121 0x0000 0DF2 2 Reserved - 16 2

INT12.3 122 0x0000 0DF4 2 Reserved - 16 3

INT12.4 123 0x0000 0DF6 2 Reserved - 16 4

INT12.5 124 0x0000 0DF8 2 Reserved - 16 5

INT12.6 125 0x0000 0DFA 2 Reserved - 16 6

INT12.7 126 0x0000 0DFC 2 Reserved - 16 7

INT12.8 127 0x0000 0DFE 2 Reserved - 16 8 (lowest)

123SPRUFN3C–January 2009–Revised October 2009 Flash and OTP Memory Blocks
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFN3C

Peripheral Interrupt Expansion (PIE) www.ti.com

6.4 PIE Configuration Registers

The registers controlling the functionality of the PIE block are shown in Table 110.

Table 110. PIE Configuration and Control Registers

Name Address Size (x16) Description

PIECTRL 0x0000 - 0CE0 1 PIE, Control Register

PIEACK 0x0000 - 0CE1 1 PIE, Acknowledge Register

PIEIER1 0x0000 - 0CE2 1 PIE, INT1 Group Enable Register

PIEIFR1 0x0000 - 0CE3 1 PIE, INT1 Group Flag Register

PIEIER2 0x0000 - 0CE4 1 PIE, INT2 Group Enable Register

PIEIFR2 0x0000 - 0CE5 1 PIE, INT2 Group Flag Register

PIEIER3 0x0000 - 0CE6 1 PIE, INT3 Group Enable Register

PIEIFR3 0x0000 - 0CE7 1 PIE, INT3 Group Flag Register

PIEIER4 0x0000 - 0CE8 1 PIE, INT4 Group Enable Register

PIEIFR4 0x0000 - 0CE9 1 PIE, INT4 Group Flag Register

PIEIER5 0x0000 - 0CEA 1 PIE, INT5 Group Enable Register

PIEIFR5 0x0000 - 0CEB 1 PIE, INT5 Group Flag Register

PIEIER6 0x0000 - 0CEC 1 PIE, INT6 Group Enable Register

PIEIFR6 0x0000 - 0CED 1 PIE, INT6 Group Flag Register

PIEIER7 0x0000 - 0CEE 1 PIE, INT7 Group Enable Register

PIEIFR7 0x0000 - 0CEF 1 PIE, INT7 Group Flag Register

PIEIER8 0x0000 - 0CF0 1 PIE, INT8 Group Enable Register

PIEIFR8 0x0000 - 0CF1 1 PIE, INT8 Group Flag Register

PIEIER9 0x0000 - 0CF2 1 PIE, INT9 Group Enable Register

PIEIFR9 0x0000 - 0CF3 1 PIE, INT9 Group Flag Register

PIEIER10 0x0000 - 0CF4 1 PIE, INT10 Group Enable Register

PIEIFR10 0x0000 - 0CF5 1 PIE, INT10 Group Flag Register

PIEIER11 0x0000 - 0CF6 1 PIE, INT11 Group Enable Register

PIEIFR11 0x0000 - 0CF7 1 PIE, INT11 Group Flag Register

PIEIER12 0x0000 - 0CF8 1 PIE, INT12 Group Enable Register

PIEIFR12 0x0000 - 0CF9 1 PIE, INT12 Group Flag Register

124 Flash and OTP Memory Blocks SPRUFN3C–January 2009–Revised October 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFN3C

www.ti.com Peripheral Interrupt Expansion (PIE)

6.5 PIE Interrupt Registers

Figure 81. PIECTRL Register (Address 0xCE0)
15 1 0

PIEVECT ENPIE

R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 111. PIECTRL Register Address Field Descriptions

Bits Field Value Description

15-1 PIEVECT These bits indicate the address within the PIE vector table from which the vector was fetched. The
least significant bit of the address is ignored and only bits 1 to 15 of the address is shown. You can
read the vector value to determine which interrupt generated the vector fetch.

For Example: If PIECTRL = 0x0D27 then the vector from address 0x0D26 (illegal operation) was
fetched.

0 ENPIE Enable vector fetching from PIE vector table.

Note: The reset vector is never fetched from the PIE, even when it is enabled. This vector is always
fetched from boot ROM.

0 If this bit is set to 0, the PIE block is disabled and vectors are fetched from the CPU vector table in
boot ROM. All PIE block registers (PIEACK, PIEIFR, PIEIER) can be accessed even when the PIE
block is disabled.

1 When ENPIE is set to 1, all vectors, except for reset, are fetched from the PIE vector table. The reset
vector is always fetched from the boot ROM.

Figure 82. PIE Interrupt Acknowledge Register (PIEACK) Register (Address 0xCE1)
15 12 11 0

Reserved PIEACK

R-0 R/W1C-1

LEGEND: R/W1C = Read/Write 1 to clear; R = Read only; -n = value after reset

Table 112. PIE Interrupt Acknowledge Register (PIEACK) Field Descriptions

Bits Field Value Description

15-12 Reserved Reserved

11-0 PIEACK Each bit in PIEACK refers to a specific PIE group. Bit 0 refers to interrupts in PIE group 1 that are
MUXed into INT1 up to Bit 11, which refers to PIE group 12 which is MUXed into CPU IN T12

bit x = 0 (1) If a bit reads as a 0, it indicates that the PIE can send an interrupt from the respective group to the
CPU.

Writes of 0 are ignored.

bit x = 1 Reading a 1 indicates if an interrupt from the respective group has been sent to the CPU and all
other interrupts from the group are currently blocked.

Writing a 1 to the respective interrupt bit clears the bit and enables the PIE block to drive a pulse into
the CPU interrupt input if an interrupt is pending for that group.

(1) bit x = PIEACK bit 0 - PIEACK bit 11. Bit 0 refers to CPU INT1 up to Bit 11, which refers to CPU INT12

125SPRUFN3C–January 2009–Revised October 2009 Flash and OTP Memory Blocks
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFN3C

Peripheral Interrupt Expansion (PIE) www.ti.com

6.5.1 PIE Interrupt Flag Registers

There are twelve PIEIFR registers, one for each CPU interrupt used by the PIE module (INT1-INT12).

Figure 83. PIEIFRx Register (x = 1 to 12)
15 8

Reserved

R-0

7 6 5 4 3 2 1 0

INTx.8 INTx.7 INTx.6 INTx.5 INTx.4 INTx.3 INTx.2 INTx.1

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 113. PIEIFRx Register Field Descriptions

Bits Field Description

15-8 Reserved Reserved

7 INTx.8 These register bits indicate whether an interrupt is currently active. They behave very much like the CPU
interrupt flag register. When an interrupt is active, the respective register bit is set. The bit is cleared when the6 INTx.7
interrupt is serviced or by writing a 0 to the register bit. This register can also be read to determine which

5 INTx.6 interrupts are active or pending. x = 1 to 12. INTx means CPU INT1 to INT12

4 INTx.5 The PIEIFR register bit is cleared during the interrupt vector fetch portion of the interrupt processing.

3 INTx.4 Hardware has priority over CPU accesses to the PIEIFR registers.

2 INTx.3

1 INTx.2

0 INTx.1

NOTE: Never clear a PIEIFR bit. An interrupt may be lost during the read-modify-write operation.
See Section Section 6.3.1 for a method to clear flagged interrupts.

6.5.2 PIE Interrupt Enable Registers

There are twelve PIEIER registers, one for each CPU interrupt used by the PIE module (INT1-INT12).

Figure 84. PIEIERx Register (x = 1 to 12)
15 8

Reserved

R-0

7 6 5 4 3 2 1 0

INTx.8 INTx.7 INTx.6 INTx.5 INTx.4 INTx.3 INTx.2 INTx.1

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 114. PIEIERx Register (x = 1 to 12) Field Descriptions

Bits Field Description

15-8 Reserved Reserved

126 Flash and OTP Memory Blocks SPRUFN3C–January 2009–Revised October 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFN3C

www.ti.com Peripheral Interrupt Expansion (PIE)

Table 114. PIEIERx Register (x = 1 to 12) Field Descriptions (continued)

Bits Field Description

7 INTx.8 These register bits individually enable an interrupt within a group and behave very much like the core interrupt
enable register. Setting a bit to 1 enables the servicing of the respective interrupt. Setting a bit to 0 disables6 INTx.7
the servicing of the interrupt. x = 1 to 12. INTx means CPU INT1 to INT12

5 INTx.6

4 INTx.5

3 INTx.4

2 INTx.3

1 INTx.2

0 INTx.1

NOTE: Care must be taken when clearing PIEIER bits during normal operation. See Section
Section 6.3.2 for the proper procedure for handling these bits.

6.5.3 CPU Interrupt Flag Register (IFR)

The CPU interrupt flag register (IFR), is a 16-bit, CPU register and is used to identify and clear pending
interrupts. The IFR contains flag bits for all the maskable interrupts at the CPU level (INT1-INT14,
DLOGINT and RTOSINT). When the PIE is enabled, the PIE module multiplexes interrupt sources for
INT1-INT12.

When a maskable interrupt is requested, the flag bit in the corresponding peripheral control register is set
to 1. If the corresponding mask bit is also 1, the interrupt request is sent to the CPU, setting the
corresponding flag in the IFR. This indicates that the interrupt is pending or waiting for acknowledgment.

To identify pending interrupts, use the PUSH IFR instruction and then test the value on the stack. Use the
OR IFR instruction to set IFR bits and use the AND IFR instruction to manually clear pending interrupts.
All pending interrupts are cleared with the AND IFR #0 instruction or by a hardware reset.

The following events also clear an IFR flag:

• The CPU acknowledges the interrupt.
• The 28x device is reset.

NOTE:
1. To clear a CPU IFR bit, you must write a zero to it, not a one.
2. When a maskable interrupt is acknowledged, only the IFR bit is cleared automatically.

The flag bit in the corresponding peripheral control register is not cleared. If an
application requires that the control register flag be cleared, the bit must be cleared by
software.

3. When an interrupt is requested by an INTR instruction and the corresponding IFR bit is
set, the CPU does not clear the bit automatically. If an application requires that the IFR
bit be cleared, the bit must be cleared by software.

4. IMR and IFR registers pertain to core-level interrupts. All peripherals have their own
interrupt mask and flag bits in their respective control/configuration registers. Note that
several peripheral interrupts are grouped under one core-level interrupt.

127SPRUFN3C–January 2009–Revised October 2009 Flash and OTP Memory Blocks
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFN3C

Peripheral Interrupt Expansion (PIE) www.ti.com

Figure 85. Interrupt Flag Register (IFR) — CPU Register
15 14 13 12 11 10 9 8

RTOSINT DLOGINT INT14 INT13 INT12 INT11 INT10 INT9

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

7 6 5 4 3 2 1 0

INT8 INT7 INT6 INT5 INT4 INT3 INT2 INT1

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 115. Interrupt Flag Register (IFR) — CPU Register Field Descriptions

Bits Field Value Description

15 RTOSINT Real-time operating system flag. RTOSINT is the flag for RTOS interrupts.

0 No RTOS interrupt is pending

1 At least one RTOS interrupt is pending. Write a 0 to this bit to clear it to 0 and clear the interrupt
request

14 DLOGINT Data logging interrupt fag. DLOGINT is the flag for data logging interrupts.

0 No DLOGINT is pending

1 At least one DLOGINT interrupt is pending. Write a 0 to this bit to clear it to 0 and clear the interrupt
request

13 INT14 Interrupt 14 flag. INT14 is the flag for interrupts connected to CPU interrupt level INT14.

0 No INT14 interrupt is pending

1 At least one INT14 interrupt is pending. Write a 0 to this bit to clear it to 0 and clear the interrupt
request

12 INT13 Interrupt 13 flag. INT13 is the flag for interrupts connected to CPU interrupt level INT13I.

0 No INT13 interrupt is pending

1 At least one INT13 interrupt is pending. Write a 0 to this bit to clear it to 0 and clear the interrupt
request

11 INT12 Interrupt 12 flag. INT12 is the flag for interrupts connected to CPU interrupt level INT12.

0 No INT12 interrupt is pending

1 At least one INT12 interrupt is pending. Write a 0 to this bit to clear it to 0 and clear the interrupt
request

10 INT11 Interrupt 11 flag. INT11 is the flag for interrupts connected to CPU interrupt level INT11.

0 No INT11 interrupt is pending

1 At least one INT11 interrupt is pending. Write a 0 to this bit to clear it to 0 and clear the interrupt
request

9 INT10 Interrupt 10 flag. INT10 is the flag for interrupts connected to CPU interrupt level INT10.

0 No INT10 interrupt is pending

1 At least one INT6 interrupt is pending. Write a 0 to this bit to clear it to 0 and clear the interrupt
request

8 INT9 Interrupt 9 flag. INT9 is the flag for interrupts connected to CPU interrupt level INT6.

0 No INT9 interrupt is pending

1 At least one INT9 interrupt is pending. Write a 0 to this bit to clear it to 0 and clear the interrupt
request

7 INT8 Interrupt 8 flag. INT8 is the flag for interrupts connected to CPU interrupt level INT6.

0 No INT8 interrupt is pending

1 At least one INT8 interrupt is pending. Write a 0 to this bit to clear it to 0 and clear the interrupt
request

6 INT7 Interrupt 7 flag. INT7 is the flag for interrupts connected to CPU interrupt level INT7.

0 No INT7 interrupt is pending

1 At least one INT7 interrupt is pending. Write a 0 to this bit to clear it to 0 and clear the interrupt
request

128 Flash and OTP Memory Blocks SPRUFN3C–January 2009–Revised October 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFN3C

www.ti.com Peripheral Interrupt Expansion (PIE)

Table 115. Interrupt Flag Register (IFR) — CPU Register Field Descriptions (continued)

Bits Field Value Description

5 INT6 Interrupt 6 flag. INT6 is the flag for interrupts connected to CPU interrupt level INT6.

0 No INT6 interrupt is pending

1 At least one INT6 interrupt is pending. Write a 0 to this bit to clear it to 0 and clear the interrupt
request

4 INT5 Interrupt 5 flag. INT5 is the flag for interrupts connected to CPU interrupt level INT5.

0 No INT5 interrupt is pending

1 At least one INT5 interrupt is pending. Write a 0 to this bit to clear it to 0 and clear the interrupt
request

3 INT4 Interrupt 4 flag. INT4 is the flag for interrupts connected to CPU interrupt level INT4.

0 No INT4 interrupt is pending

1 At least one INT4 interrupt is pending. Write a 0 to this bit to clear it to 0 and clear the interrupt
request

2 INT3 Interrupt 3 flag. INT3 is the flag for interrupts connected to CPU interrupt level INT3.

0 No INT3 interrupt is pending

1 At least one INT3 interrupt is pending. Write a 0 to this bit to clear it to 0 and clear the interrupt
request

1 INT2 Interrupt 2 flag. INT2 is the flag for interrupts connected to CPU interrupt level INT2.

0 No INT2 interrupt is pending

1 At least one INT2 interrupt is pending. Write a 0 to this bit to clear it to 0 and clear the interrupt
request

0 INT1 Interrupt 1 flag. INT1 is the flag for interrupts connected to CPU interrupt level INT1.

0 No INT1 interrupt is pending

1 At least one INT1 interrupt is pending. Write a 0 to this bit to clear it to 0 and clear the interrupt
request

6.5.4 Interrupt Enable Register (IER) and Debug Interrupt Enable Register (DBGIER)

The IER is a 16-bit CPU register. The IER contains enable bits for all the maskable CPU interrupt levels
(INT1-INT14, RTOSINT and DLOGINT). Neither NMI nor XRS is included in the IER; thus, IER has no
effect on these interrupts.

You can read the IER to identify enabled or disabled interrupt levels, and you can write to the IER to
enable or disable interrupt levels. To enable an interrupt level, set its corresponding IER bit to one using
the OR IER instruction. To disable an interrupt level, set its corresponding IER bit to zero using the AND
IER instruction. When an interrupt is disabled, it is not acknowledged, regardless of the value of the INTM
bit. When an interrupt is enabled, it is acknowledged if the corresponding IFR bit is one and the INTM bit
is zero.

When using the OR IER and AND IER instructions to modify IER bits make sure they do not modify the
state of bit 15 (RTOSINT) unless a real-time operating system is present.

When a hardware interrupt is serviced or an INTR instruction is executed, the corresponding IER bit is
cleared automatically. When an interrupt is requested by the TRAP instruction the IER bit is not cleared
automatically. In the case of the TRAP instruction if the bit needs to be cleared it must be done by the
interrupt service routine.

At reset, all the IER bits are cleared to 0, disabling all maskable CPU level interrupts.

The IER register is shown in Figure 86, and descriptions of the bits follow the figure.

129SPRUFN3C–January 2009–Revised October 2009 Flash and OTP Memory Blocks
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFN3C

Peripheral Interrupt Expansion (PIE) www.ti.com

Figure 86. Interrupt Enable Register (IER) — CPU Register
15 14 13 12 11 10 9 8

RTOSINT DLOGINT INT14 INT13 INT12 INT11 INT10 INT9

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

7 6 5 4 3 2 1 0

INT8 INT7 INT6 INT5 INT4 INT3 INT2 INT1

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 116. Interrupt Enable Register (IER) — CPU Register Field Descriptions

Bits Field Value Description

15 RTOSINT Real-time operating system interrupt enable. RTOSINT enables or disables the CPU RTOS
interrupt.

0 Level INT6 is disabled

1 Level INT6 is enabled

14 DLOGINT Data logging interrupt enable. DLOGINT enables or disables the CPU data logging interrupt.

0 Level INT6 is disabled

1 Level INT6 is enabled

13 INT14 Interrupt 14 enable. INT14 enables or disables CPU interrupt level INT14.

0 Level INT14 is disabled

1 Level INT14 is enabled

12 INT13 Interrupt 13 enable. INT13 enables or disables CPU interrupt level INT13.

0 Level INT13 is disabled

1 Level INT13 is enabled

11 INT12 Interrupt 12 enable. INT12 enables or disables CPU interrupt level INT12.

0 Level INT12 is disabled

1 Level INT12 is enabled

10 INT11 Interrupt 11 enable. INT11 enables or disables CPU interrupt level INT11.

0 Level INT11 is disabled

1 Level INT11 is enabled

9 INT10 Interrupt 10 enable. INT10 enables or disables CPU interrupt level INT10.

0 Level INT10 is disabled

1 Level INT10 is enabled

8 INT9 Interrupt 9 enable. INT9 enables or disables CPU interrupt level INT9.

0 Level INT9 is disabled

1 Level INT9 is enabled

7 INT8 Interrupt 8 enable. INT8 enables or disables CPU interrupt level INT8.

0 Level INT8 is disabled

1 Level INT8 is enabled

6 INT7 Interrupt 7 enable. INT7 enables or disables CPU interrupt level INT7.

0 Level INT7 is disabled

1 Level INT7 is enabled

5 INT6 Interrupt 6 enable. INT6 enables or disables CPU interrupt level INT6.

0 Level INT6 is disabled

1 Level INT6 is enabled

4 INT5 Interrupt 5 enable.INT5 enables or disables CPU interrupt level INT5.

0 Level INT5 is disabled

1 Level INT5 is enabled

130 Flash and OTP Memory Blocks SPRUFN3C–January 2009–Revised October 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFN3C

www.ti.com Peripheral Interrupt Expansion (PIE)

Table 116. Interrupt Enable Register (IER) — CPU Register Field Descriptions (continued)

Bits Field Value Description

3 INT4 Interrupt 4 enable.INT4 enables or disables CPU interrupt level INT4.

0 Level INT4 is disabled

1 Level INT4 is enabled

2 INT3 Interrupt 3 enable.INT3 enables or disables CPU interrupt level INT3.

0 Level INT3 is disabled

1 Level INT3 is enabled

1 INT2 Interrupt 2 enable.INT2 enables or disables CPU interrupt level INT2.

0 Level INT2 is disabled

1 Level INT2 is enabled

0 INT1 Interrupt 1 enable.INT1 enables or disables CPU interrupt level INT1.

0 Level INT1 is disabled

1 Level INT1 is enabled

The Debug Interrupt Enable Register (DBGIER) is used only when the CPU is halted in real-time
emulation mode. An interrupt enabled in the DBGIER is defined as a time-critical interrupt. When the CPU
is halted in real-time mode, the only interrupts that are serviced are time-critical interrupts that are also
enabled in the IER. If the CPU is running in real-time emulation mode, the standard interrupt-handling
process is used and the DBGIER is ignored.

As with the IER, you can read the DBGIER to identify enabled or disabled interrupts and write to the
DBGIER to enable or disable interrupts. To enable an interrupt, set its corresponding bit to 1. To disable
an interrupt, set its corresponding bit to 0. Use the PUSH DBGIER instruction to read from the DBGIER
and POP DBGIER to write to the DBGIER register. At reset, all the DBGIER bits are set to 0.

Figure 87. Debug Interrupt Enable Register (DBGIER) — CPU Register
15 14 13 12 11 10 9 8

RTOSINT DLOGINT INT14 INT13 INT12 INT11 INT10 INT9

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

7 6 5 4 3 2 1 0

INT8 INT7 INT6 INT5 INT4 INT3 INT2 INT1

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 117. Debug Interrupt Enable Register (DBGIER) — CPU Register Field Descriptions

Bits Field Value Description

15 RTOSINT Real-time operating system interrupt enable. RTOSINT enables or disables the CPU RTOS
interrupt.

0 Level INT6 is disabled

1 Level INT6 is enabled

14 DLOGINT . Data logging interrupt enable. DLOGINT enables or disables the CPU data logging interrupt

0 Level INT6 is disabled

1 Level INT6 is enabled

13 INT14 . Interrupt 14 enable. INT14 enables or disables CPU interrupt level INT14

0 Level INT14 is disabled

1 Level INT14 is enabled

12 INT13 Interrupt 13 enable. INT13 enables or disables CPU interrupt level INT13.

0 Level INT13 is disabled

1 Level INT13 is enabled

131SPRUFN3C–January 2009–Revised October 2009 Flash and OTP Memory Blocks
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFN3C

Peripheral Interrupt Expansion (PIE) www.ti.com

Table 117. Debug Interrupt Enable Register (DBGIER) — CPU Register Field Descriptions (continued)

Bits Field Value Description

11 INT12 Interrupt 12 enable. INT12 enables or disables CPU interrupt level INT12.

0 Level INT12 is disabled

1 Level INT12 is enabled

10 INT11 Interrupt 11 enable. INT11 enables or disables CPU interrupt level INT11.

0 Level INT11 is disabled

1 Level INT11 is enabled

9 INT10 Interrupt 10 enable. INT10 enables or disables CPU interrupt level INT10.

0 Level INT10 is disabled

1 Level INT10 is enabled

8 INT9 Interrupt 9 enable. INT9 enables or disables CPU interrupt level INT9.

0 Level INT9 is disabled

1 Level INT9 is enabled

7 INT8 Interrupt 8 enable. INT8 enables or disables CPU interrupt level INT8.

0 Level INT8 is disabled

1 Level INT8 is enabled

6 INT7 Interrupt 7 enable. INT7 enables or disables CPU interrupt level INT77.

0 Level INT7 is disabled

1 Level INT7 is enabled

5 INT6 Interrupt 6 enable. INT6 enables or disables CPU interrupt level INT6.

0 Level INT6 is disabled

1 Level INT6 is enabled

4 INT5 Interrupt 5 enable.INT5 enables or disables CPU interrupt level INT5.

0 Level INT5 is disabled

1 Level INT5 is enabled

3 INT4 Interrupt 4 enable.INT4 enables or disables CPU interrupt level INT4.

0 Level INT4 is disabled

1 Level INT4 is enabled

2 INT3 Interrupt 3 enable.INT3 enables or disables CPU interrupt level INT3.

0 Level INT3 is disabled

1 Level INT3 is enabled

1 INT2 Interrupt 2 enable.INT2 enables or disables CPU interrupt level INT2.

0 Level INT2 is disabled

1 Level INT2 is enabled

0 INT1 Interrupt 1 enable.INT1 enables or disables CPU interrupt level INT1.

0 Level INT1 is disabled

1 Level INT1 is enabled

132 Flash and OTP Memory Blocks SPRUFN3C–January 2009–Revised October 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFN3C

www.ti.com Peripheral Interrupt Expansion (PIE)

6.6 External Interrupt Control Registers

Three external interrupts, XINT1 –XINT3 are supported. Each of these external interrupts can be selected
for negative or positive edge triggered and can also be enabled or disabled. The masked interrupts also
contain a 16-bit free running up counter that is reset to zero when a valid interrupt edge is detected. This
counter can be used to accurately time stamp the interrupt.

Table 118. Interrupt Control and Counter Registers (not EALLOW Protected)

Name Address Range Size (x16) Description

XINT1CR 0x0000 7070 1 XINT1 configuration register

XINT2CR 0x0000 7071 1 XINT2 configuration register

XINT3CR 0x0000 7072 1 XINT3 configuration register

reserved 0x0000 7073 - 0x0000 7077 5

XINT1CTR 0x0000 7078 1 XINT1 counter register

XINT2CTR 0x0000 7079 1 XINT2 counter register

XINT3CTR 0x0000 707A 1 XINT3 counter register

reserved 0x0000 707B - 0x0000 707E 5

XINT1CR through XINT3CR are identical except for the interrupt number; therefore, Figure 88 and
Table 119 represent registers for external interrupts 1 through 3 as XINTnCR where n = the interrupt
number.

Figure 88. External Interrupt n Control Register (XINTnCR)
15 4 3 2 1 0

Reserved Polarity Reserved Enable

R-0 R/W-0 R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 119. External Interrupt n Control Register (XINTnCR) Field Descriptions

Bits Field Value Description

15-4 Reserved Reads return zero; writes have no effect.

3-2 Polarity This read/write bit determines whether interrupts are generated on the rising edge or the
falling edge of a signal on the pin.

00 Interrupt generated on a falling edge (high-to-low transition)

01 Interrupt generated on a rising edge (low-to-high transition)

10 Interrupt is generated on a falling edge (high-to-low transition)

11 Interrupt generated on both a falling edge and a rising edge (high-to-low and low-to-high
transition)

1 Reserved Reads return zero; writes have no effect

0 Enable This read/write bit enables or disables external interrupt XINTn.

0 Disable interrupt

1 Enable interrupt

For XINT1/XINT2/XINT3, there is also a 16-bit counter that is reset to 0x000 whenever an interrupt edge is
detected. These counters can be used to accurately time stamp an occurrence of the interrupt. XINT1CTR
through XINT3CTR are identical except for the interrupt number; therefore, Figure 89 and Table 120
represent registers for the external interrupts as XINTnCTR, where n = the interrupt number.

Figure 89. External Interrupt n Counter (XINTnCTR) (Address 7078h)
15 0

INTCTR[15-8]

R-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

133SPRUFN3C–January 2009–Revised October 2009 Flash and OTP Memory Blocks
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFN3C

Peripheral Interrupt Expansion (PIE) www.ti.com

Table 120. External Interrupt n Counter (XINTnCTR) Field Descriptions

Bits Field Description

15-0 INTCTR This is a free running 16-bit up-counter that is clocked at the SYSCLKOUT rate. The counter value is
reset to 0x0000 when a valid interrupt edge is detected and then continues counting until the next valid
interrupt edge is detected. When the interrupt is disabled, the counter stops. The counter is a free-running
counter and wraps around to zero when the max value is reached. The counter is a read only register and
can only be reset to zero by a valid interrupt edge or by reset.

134 Flash and OTP Memory Blocks SPRUFN3C–January 2009–Revised October 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFN3C

	TMS320F2802x/TMS320F2802xx Piccolo System Control and Interrupts
	Table of Contents
	Preface
	1 Flash and OTP Memory
	1.1 Flash Memory
	1.2 OTP Memory
	1.3 Flash and OTP Power Modes
	1.3.1 Flash and OTP Performance
	1.3.2 Flash Pipeline Mode
	1.3.3 Reserved Locations Within Flash and OTP
	1.3.4 Procedure to Change the Flash Configuration Registers

	1.4 Flash and OTP Registers

	2 Code Security Module (CSM)
	2.1 Functional Description
	2.2 CSM Impact on Other On-Chip Resources
	2.3 Incorporating Code Security in User Applications
	2.3.1 Environments That Require Security Unlocking
	2.3.2 Password Match Flow
	2.3.3 Unsecuring Considerations for Devices With/Without Code Security
	2.3.3.1 C Code Example to Unsecure
	2.3.3.2 C Code Example to Resecure

	2.4 Do's and Don'ts to Protect Security Logic
	2.4.1 Do's
	2.4.2 Don'ts

	2.5 CSM Features - Summary

	3 Clocking
	3.1 Clocking and System Control
	3.1.1 Enabling/Disabling Clocks to the Peripheral Modules
	3.1.2 Configuring the Low-Speed Peripheral Clock Prescaler

	3.2 OSC and PLL Block
	3.2.1 Input Clock Options
	3.2.1.1 Trimming INTOSCn
	3.2.1.2 Device_Cal

	3.2.2 Configuring Input Clock Source and XCLKOUT Options
	3.2.3 Configuring Device Clock Domains
	3.2.3.1 Switching the Input Clock Source
	3.2.3.2 Switching to INTOSC2 in the Absence of External Clocks

	3.2.4 PLL-based Clock Module
	3.2.5 Input Clock Fail Detection
	3.2.6 NMI Interrupt and Watchdog
	3.2.6.1 NMI Watchdog Emulation Considerations

	3.2.7 XCLKOUT Generation
	3.2.8 PLL Control (PLLCR) Register
	3.2.9 PLL Control, Status and XCLKOUT Register Descriptions
	3.2.10 External Reference Oscillator Clock Option

	3.3 Low-Power Modes Block
	3.3.1 Options for Automatic Wakeup in Low-power Modes

	3.4 CPU Watchdog Block
	3.4.1 Servicing The Watchdog Timer
	3.4.2 Watchdog Reset or Watchdog Interrupt Mode
	3.4.3 Watchdog Operation in Low Power Modes
	3.4.4 Emulation Considerations
	3.4.5 Watchdog Registers

	3.5 32-Bit CPU Timers 0/1/2

	4 General-Purpose Input/Output (GPIO)
	4.1 GPIO Module Overview
	4.1.1 JTAG Port

	4.2 Configuration Overview
	4.3 Digital General Purpose I/O Control
	4.4 Input Qualification
	4.4.1 No Synchronization (asynchronous input)
	4.4.2 Synchronization to SYSCLKOUT Only
	4.4.3 Qualification Using a Sampling Window

	4.5 GPIO and Peripheral Multiplexing (MUX)
	4.6 Register Bit Definitions

	5 Peripheral Frames
	5.1 Peripheral Frame Registers
	5.2 EALLOW-Protected Registers
	5.3 Device Emulation Registers
	5.4 Write-Followed-by-Read Protection

	6 Peripheral Interrupt Expansion (PIE)
	6.1 Overview of the PIE Controller
	6.1.1 Interrupt Operation Sequence

	6.2 Vector Table Mapping
	6.3 Interrupt Sources
	6.3.1 Procedure for Handling Multiplexed Interrupts
	6.3.2 Procedures for Enabling And Disabling Multiplexed Peripheral Interrupts
	6.3.3 Flow of a Multiplexed Interrupt Request From a Peripheral to the CPU
	6.3.4 The PIE Vector Table

	6.4 PIE Configuration Registers
	6.5 PIE Interrupt Registers
	6.5.1 PIE Interrupt Flag Registers
	6.5.2 PIE Interrupt Enable Registers
	6.5.3 CPU Interrupt Flag Register (IFR)
	6.5.4 Interrupt Enable Register (IER) and Debug Interrupt Enable Register (DBGIER)

	6.6 External Interrupt Control Registers

	7 VREG/BOR/POR
	7.1 On-chip Voltage Regulator (VREG)
	7.1.1 Using the on-chip VREG
	7.1.2 Bypassing the on-chip VREG

	7.2 On-chip Power-On Reset (POR) and Brown-Out Reset (BOR) Circuit

	Appendix A Revision History

