Real-Time Operating Systems

2. Priority Inversion

Assume the following:

e two tasks share the same mutually-exclusive resource

ELEX 7820 Lecture Notes — Fall 2017

e theresource is protected by a locking mechanism (e.g. blocking semaphore)

e the two tasks have fixed priorities indicated by their names: HIGH and LOW

e |et us call the time when HIGH or LOW owns the resource as its “critical section” of code

e athird task of fixed medium priority does not require the resource

Then consider the following scenario:

- HIGH requests resourc
but gets blocked

i

1

1
\4

€,

HIGH -

N\
LOW resumes

HIGH
pre-empts
LOW MED pre-empts LO
A A
1
1 |
LOW starts — = ' -LOW acquires
resource
where:

normal execution

execution in critical section

blocked

B.C.I.T. DNR

MED done, so
LOW resumes

W

HIGH done, so
LOW resumes

- =LOW done its critical section,
so HIGH pre-empts it

6-30



Real-Time Operating Systems ELEX 7820 Lecture Notes — Fall 2017

Solution — Priority Inheritance

To invoke priority inheritance, do the following:

When a higher-priority task gets blocked from executing because a lower-priority task has ownership
of a mutually-exclusive shared resource that the higher-priority task also wants, then, temporarily,
raise the priority of the lower-priority task to match that of the higher-priority task.

Here is the previous scenario, but this time with priority inheritance:

HIGH ' E

MED I_'\

N

I
LOW resumes with priority elevated- + -LOW finished using resource so
to “HIGH” so MED can’t pre-empt it its priority is set back to LOW

- normal execution

execution in critical section

\ e.g. MED becomes

ready to run here

A A
I I
l

where:

blocked

B.C.I.T. DNR

note: SYS/BIOS has “GateMutexPri” to
support priority inheritance

6-31




Real-Time Operating Systems

3. Deadlock

Definition:

ELEX 7820 Lecture Notes — Fall 2017

Deadlock in computer programming is when two or more tasks

are each waiting for one another to finish before continuing.

Resources:

A ~
SS
~
~
~
~.

Scenario:
1. T1requests A and receives it

T2 requests B and receives it
T1 requests B and waits for it
T2 requests A and waits for it

vk W

Conditions for Deadlock to Occur

All four conditions must be met for deadlock to be possible.

i.e., a task can hold a resource
while waiting for another resource

1. mutual exclusion —

™ 2. task can hold and wait

circular pend

4. no pre-emption of resource hold .

i.e., circular chain of tasks holding
resources needed by others in the chain

B.C.I.T. DNR

solid line:
- has resource

dotted line:
- wants resource

i.e., only one task can use
a resource at one time

— Coffman et. al.

—

i.e., a resource can only be
released by the task itself

6-32



Real-Time Operating Systems ELEX 7820 Lecture Notes — Fall 2017

Handling Deadlock

large, general-purpose operating systems = usually the responsibility of the OS to handle deadlock

small RTOSs = usually the responsibility of the user to handle deadlock

Three Basic Ways to Handle Deadlock

1.

3.

B.C.I.T.

Prevent — follow some policy that guarantees that at least one of the four conditions of deadlock
does not exist

a) remove mutual exclusion

- not always possible since some resources cannot be shared “simultaneously”

b) remove multiple hold and wait

- requires task to acquire all resources it needs at the same time

c) remove circular pend condition

- requires that resources always be acquired in a certain order
e.g. task must request resource A before resource B or resource B before resource C, etc
i.e., in a hierarchical order

also, SYS/BIOS has a timeout

d) allow pre-emption of resource holds 4’/_ feature for semaphore pend

- if a task can’t acquire a particular resource, it must surrender all resources it holds and
try again

Detect and Recover — allow the four conditions of deadlock to be present and detect when
deadlock occurs

- can be very difficult to do so
- more appropriate for a large OS
- alast resort: watchdog times out and issues processor reset

Avoid - allow the four conditions of deadlock to be present and avoid the occurrence of
deadlock

- dynamically detect if allowing a resource request could cause or lead to deadlock

if yes,
don’t grant request
DNR 6-33



Real-Time Operating Systems ELEX 7820 Lecture Notes — Fall 2017

B.C.I.T. DNR 6-34



Real-Time Operating Systems ELEX 7820 Lecture Notes — Fall 2017

Deadlock Avoidance

B.C.I.T.

each time a task requests a resource, the OS observes the current resource allocation state

the resource allocation state consists of:
0 number of resources available
0 number of resources already allocated
0 maximum number of resources each task could request

OS runs an algorithm with the resource allocation state as its input

if the algorithm determines that granting the new request will not lead to an “unsafe” state,
it grants the request

if the algorithm determines that granting the new request will lead to an “unsafe” state,
it denies the request

safe state: will not lead to deadlock

unsafe state: can potentially lead to deadlock

DNR 6-35



Real-Time Operating Systems

Example of Safe and Unsafe States

Assumptions:

e 3tasks

e resources = 12 identical blocks of memory

e tasks have equal priority

ELEX 7820 Lecture Notes — Fall 2017

Are the four conditions for

deadlock present in this example?

e each task needs a certain number of blocks of memory to complete its processing

e each task has a maximum number of blocks it can ever require to complete its processing

e itis notimportant which task completes its processing first

Current State:

Process Number of Memory Maximum Number of
Blocks Task Has Memory Blocks Task
Could Need
Task 1 5 10
Task 2 2 4
Task 3 2 9
path to completion: T2
T1 scheduled in this order by OS

T3

Task 1 requests another memory block:

Safe or Unsafe?

Safe or Unsafe?

Process Number of Memory Maximum Number of
Blocks Task Would Have Memory Blocks Task
Could Need
Task 1 6 10
Task 2 2 4
Task 3 2 9
path to completion: T2
T1
T3
%
B.C.L.T. DNR

6-36




Real-Time Operating Systems

You do these:

or Task 2 requests another memory block:

ELEX 7820 Lecture Notes — Fall 2017

Process Number of Memory Maximum Number of
Blocks Task Would Have Memory Blocks Task
Could Need
Task 1
Task 2
Task 3

or Task 3 requests another memory block:

B.C.I.T.

Safe or Unsafe?

Process Number of Memory Maximum Number of
Blocks Task Would Have Memory Blocks Task
Could Need
Task 1
Task 2
Task 3

DNR

Safe or Unsafe?

6-37



