
Interrupt Processing ELEX 7820 Lecture Notes – Fall 2017

B.C.I.T. DNR 4-1

Chapter 4 – Interrupt Processing

What is an interrupt?

 An asynchronous event that re-directs the program flow.
o The source of the interrupt (i.e., the cause of the interrupt) can be external to the

µC or internal1 to the µC.
o An external source is often asynchronous to the µC clock and therefore needs to be

synchronized to the µC clock.
o Both external and internal sources are, in a sense, “asynchronous” to the code flow.

1e.g. CPU timer timed out, A-D conversion done (ready for reading), etc

Task 1

Interrupt
Vector
Table

Task 3

Task 2

Task 2

Return
•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

Interrupt Processing ELEX 7820 Lecture Notes – Fall 2017

B.C.I.T. DNR 4-2

Why is it useful?

 The code does not need to poll (idle in a loop) to detect when an event occurs.

interrupts facilitate pre-emption facilitate multi-tasking2

fast interrupt response time facilitates real-time processing

What happens when there is an interrupt?

1. Interrupts are disabled

2. Context is saved (to stack) (14 registers on c2000)

3. Pipeline is flushed

4. Program counter loaded with address stored in interrupt vector table at

position that corresponds to the source of interrupt

5. Code branches to ISR (Interrupt Service Routine)

6. ISR code runs

7. Context is restored (from stack)

8. Interrupts are re-enabled

9. ISR returns to previous task

2 More specifically, hardware-based interrupts. An operating system can implement software task switching.

Interrupt Processing ELEX 7820 Lecture Notes – Fall 2017

B.C.I.T. DNR 4-3

Example – interrupt keyword

DSP2802x_DefaultISR.h

//function prototype:

interrupt void ADCINT1_ISR(void);

ELEX7820-Lab3AD-AdcIsr.c

//function definition:

interrupt void ADCINT1_ISR(void)
{
.
.
.
}

This keyword causes compiler to include
interrupt processing operations.

Interrupt Processing ELEX 7820 Lecture Notes – Fall 2017

B.C.I.T. DNR 4-4

Watch out for this:

 Temporary disabling of interrupts to protect a section of code…

•
• •
• •

disable interrupts •
wait to take effect

e.g. NOPs

use A, B

update A
update B

enable int’s •
 • •

• •
• Return

Task 2 must not interrupt Task 1 here, else A,B combination will be invalid

Case Study – High-Voltage Measurement Product Based on DSPs

 Motorola datasheet said “user should wait 7 NOP’s for
interrupt disable to take effect”

 Systems installed in field in September, each system had 12
DSP chips

 We observed problem in field in May:

- DC offset “jump”
- occurred 1 in 10 billion times

 Spent 6 weeks debugging in lab using “accelerated testing”

 Motorola published erratum in July:

- must wait 12 NOP’s, not 7

Task 1

V

t

Task 2
•
•
•

disable
 wait to

take
 update A

update B
enable

•
•
•

By intention, Task 2 can
interrupt Task 1 if
interrupts are enabled.

Task 1’s algorithm
requires A,B to be
computed and updated
together periodically.

Interrupt Processing ELEX 7820 Lecture Notes – Fall 2017

B.C.I.T. DNR 4-5

 Changed to 12 NOP’s (upgraded code in field):
problem went away

 Calculated chance of original problem:

- There were 12 – 7 = 5 NOP’s of time where
code was “exposed”

- Chance of problem: 1 in 10 billion waveforms

Same as observed!

Interrupt Processing ELEX 7820 Lecture Notes – Fall 2017

B.C.I.T. DNR 4-6

Interrupt Logic on c2000 (Refer to “sprufn3d (or newer) - … Interrupts Reference Guide.pdf”)

Cpu Timer 1
Cpu Timer 2

14

14

MUX

μC Core

Flag Register (IFR)

Enable Register (IER)

Global Mask

Grouped mostly according to function:
 e.g. Group 6 = SPI (e.g. Rx buffer full)
 Group 10 = ADC (e.g. Result ready)
 Group 1 = eclectic (e.g. CPU Timer 0
 timed out)

programmer can enable/disable
each Group

c2000 sets to “1” when interrupt occurs

programmer can set to “1” to enable

programmer can enable:
 asm(“ CLRC INTM”);
programmer can disable:
 asm(“ SETC INTM”);

NMI
(programmer cannot disable)

1 note: space

Map Each Group to
One Summary Interrupt

Peripheral Interrupts
(12 Groups of 8)

programmer can enable/disable
each source

each has position in Interrupt
Vector Table

12

96

• • • • • • •

• • • • • • •

	Chapter 4 – Interrupt Processing

