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Image and video processing – concept (Cont.)

 Processing example

 Changes in color / size/ brightness

 Old movies to color

 Various display size

 Quality Enhancement 

 Object detection and recognition

 Face detection/ red eye

 Construction example

 Comparing

 Finger print

 Industrial PCB

 Search based on Image

 Finding motion

 Position recovery

 Speed and acceleration recovery

 Car license plate

 Security /alarm 

 Pattern recognition

 Barcode

 Shiny code

 Compression

 Storage

 Transmission / network capabilities

 Synthetic image and video

 3D movie

 Virtual world

 Image video and projector

 digital ink

 Digital Piano

 Watermarking



Image and video processing - concept
 Digital image 

 Visual representation of an object, a person, or a scene produced by an optical device. 

 An image is represented in two-dimensional domain using a finite number of points, 

usually referred to as  pixels 

 Digital video 

 A sequence of images representing visual information over time 

 A digital video signal is represented in three-dimensional domain

 Digital Image & video processing

 Modifying a digital image or a digital video sequence using computer algorithms for the 

purpose of  

 Enhancement : techniques to improve the image or video to be more suitable than the original 

one for a specific application

 Restoration : techniques to improve the image or video that were subject to degradation &noise

 Compression : techniques to reduce the size of an image or video

 Segmentation: techniques to partition  the objects inside the image or video

 Recognition : the techniques to assign  label to an object inside an image or video

 The result of processing 

Input : image or video   Output : image or video

Input : image or video   Output : attributes extracted from the image or video



Image and video processing - concept (Cont.)

Edge detection

Blurring



Image and video processing - concept (Cont.)

Noise removal

Segmentation



Image and video processing - concept (Cont.)

Lossy Image 

compression

Object recognition



Energy source for image 

 Images can by created  synthetically by computers or taken by a sensor.

 In capturing images by a sensor, usually we will assume that source of radiation is 

within visible light frequency domain but it could be other electromagnetic 

frequency bands (gamma rays, X rays, Ultraviolet ,microwave, radio waves, 

acoustic, or ultrasound) 

 Gamma rays : medicine and astronomy

 X rays: Medical and industrial application

 Ultraviolet: lithography, industrial application 

 Visible: most familiar, personal and industrial applications

 Infrared : used in conjunction with the visible range

 Microwaves : radar 

 Radio waves : medicine ( MRI) and astronomy 

 Acoustic: medical and geological exploration

 Ultrasonic: medical and manufacturing

Source of radiation 
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Surface

Sensors receive signals reflected from the surface.
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Image acquisition & 

presentation



Visual perception 
 In application whose goal is to enhance the quality of the image or video for human 

perception, It is important to understand the capabilities and limitations of human 

visual system (HVS)

 HVS is composed of eye as a visual sensor, brain as a processing and optical nerve 

as a transmission path between the eye and the brain.

Eye sections

Lens : is used to focus an image. There are some 

muscles for controlling the movement of the lens

Iris diaphragm: is used to control the amount of light 

that enters the eye 

Pupil: the central opening of the iris is called pupil and 

its diameter varies inversely proportional with to the 

amount of incoming light.

Retina: innermost membrane of the eye which is 

coated with photosensitive receptors called cones and 

rods. 

Fovea: center of retina is called fovea and its covered 

by cones ( 6-7 millions) which are very sensitive to 

color. The rest of retina is covered by rods ( 75-150 

millions) which gives a general picture of field of 

view.



Vision sensors in HVS system
 Blind spot is an area with no vision sensors (cones and rods). If 

receptor density is measured in degrees from the center of fovea (0’), 

blind spot is 20’ off the center. 

 Cone vision is called photonic or bright light vision.

 Rod vision is called scotopic or dim-light vision

Blind spot



Brightness perception
 Perceived brightness is a function of intensity and  It is proportional to the 

logarithm of the light intensity incident on the eye.

 The range for brightness perception is large, but our visual system can’t operate 

over this large range of illumination levels simultaneously. 

 At any condition, the perceived brightness is called brightness adaptation which is 

small range as compared to range of illumination levels.

 For instance, If eye is adopted to Ba, then the adaption level is the short 

intersecting curve having a level Bb at the end.

Log of intensity

Subjective 

brightness

Scotopic (rod vision)

Dim-light

Ba
Bb

Phototopic (cone vision)

Bright light



Brightness perception (Cont.)

 There are phenomena that shows that perceived brightness are not a 

simple function of intensity.

 The visual system tends to undershoot or overshoot around the boundary.

 The perceived brightness of an area also depends on the contrast between the area 

and its surroundings

Intensity of light along 

the red line

distance

Brightness perception 

along the red line

distance



Optical illusion
 Optical illusion: eye wrongly perceives geometrical information, 

size of an object or fills in non-existing information 

Illusion of lines of 

Triangle. 

Eye fills in the outline

of the triangle.

Illusion of a 

rectangle. 

Eye fills in the 

complete 

rectangle.

Perceiving wrong 

size.

Both lines have the 

same size

eye wrongly 

perceives geometrical 

information. All 

horizontal lines are 

parallel.



Optical illusion (Cont.)



Image sensing and acquisition
 For natural images we need a light source . The energy of  a light source having 

wavelength of        at the location of                 is  

 Each point such as                       in the scene has a reflectivity function to a specific 

wavelength. We can define the reflectivity function  as

 Light reflects from a point and the reflected light is captured by an imaging sensor . 

The energy of light received by the sensor can be defined as 

 Each 3-D coordinates in real world is projected to a 2-D coordinate            inside the 

sensor. The projection (P) can be considered as 
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Image sensing and acquisition (cont.)

 Perspective Projection is a type of projection which has been widely used. HVS and 

camera sensor use this type of projection. In this type of projection the objects closer 

to the sensor appear larger in size. 

 For each sensor, we can define a sensitivity function           . This function  

determines how sensitive it is in capturing the range of wavelengths present in 

 The amount of reflected light that is captured at the camera coordinates can 

be calculated as 

 For a camera that captures color images, imagine that it has three sensors at each 

location            with sensitivity functions tuned to the wavelengths of the colors red, 

green and blue, outputting three image functions:
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Image sensing and acquisition
 Incoming energy reflected from a surface is captured by a sensor element projected 

to a 2-D plane and depending on the sensor sensitivity function generates a voltage

 The sensor that is wildly used as imaging sensor in industry 

is CCD (charge-coupled device ).

 An image is projected through a lens onto CCD which has 

capacitor accumulate an electric charge proportional to the 

light intensity. The charge is then is converted to voltage. 

 To capture an image a collections of sensors are arranged in various form such as to 

capture images

 Line of images sensor 

 1-D CCD, used in fax machines

 Array of images sensor 

 ( 2-D CCDs, used often in digital camera)

Voltage output

Energy

Sensor



CCD - Example
 In a camera, an image is projected through a lens onto a CCD array. The lens has a 

fixed focal length of 30mm.  The image is located 500m from the lens. The array has 

a size of  6x6 mm and  has 4000x4000 sensor elements. How many sensor elements 

per mm will this camera is able to detect?

 The resolution of  one line is 4000/100= 40 elements per mm. 

 Image resolution can be measured in various ways. Basically, resolution quantifies 

how close lines can be to each other and still be visibly resolved. Resolution units 

can be tied to physical sizes such as lines per mm. Line pairs are often used instead 

of lines; a line pair comprises a dark line and an adjacent light line. How many line 

pairs per mm will this camera is able to detect?

 To find the line pairs per mm, the number of elements per mm must be divided by 2. 

 So 40/2= 20 LP per mm.

100
50030

6
 h

h

h

500 mm 30 mm

6 mm

Field of view



Image sensing and acquisition
 The image function            varies in a continuum given by the respective intervals. 

Digital computers cannot process parameters/functions that vary in a continuum. To 

discretize, we need the following tasks:

 Sampling

 Quantization.

 To sample, the intensity should be read in  equally spaced intervals along a 

given row. The intensity values resulted from sampling process has a 

continuous ranges of intensity values. The quantization process changes the 

sampled values in discrete quantities. 
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Digital image representation
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 A pixel M located at (x,y) has

 4 horizontal and vertical neighbors called

 4 diagonal neighbors called 

 Together 4 horizontal and vertical as well as 4 diagonal neighbors are called 
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)(TND
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Spatial resolution (based on sampling)

 Spatial resolution

is determined by how sampling was carried out and simply refers to the smallest 

discernible detail in an image

 Vision specialists will often talk about pixel size

 Graphic designers will talk about dots per inch (DPI)



512X512 128X128 64X64 32X32

16X16 8X8



Intensity resolution (based on quantization)

 Is determined by how many intensity levels exist in an image or the 

number of bits used to quantize an image

Image quantized to 8 bits
Image quantized to 5 bits

Image quantized to 3 bits Image quantized to 1 bits

Image quantized to 7 bits

Image quantized to 2 bits



Intensity Transformation 

(point processing)



Point Processing
 The reason for point processing is 

 To enhance the image quality for human viewing 

 To modify the image in such a way that is more suitable for further processing and 

feature detection

 In point processing, the value of a pixel r in original image is changed to a new 

value s using a transformation which can be shown as:

 Examples of the transformation that can be used in point processing are:

 Linear point processing      

 Negative  ( contrast reverse)  c=-1, b=255

 Power law ( Gamma transformation)       

 Log transform

 Piecewise linear transformation 

 Contrast stretching, amplitude scaling

 Thresholding                           

 Auto contrast adjusting                                   ,      , L is the max. of intensity level        
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Linear Point Processing
 Linear point processing      

=>  ][rTs  brcs  .

s s s

C=2,b=20 C=1,b=-60 C=0.4,b=0

brightening darkening Contrast reduction



Negative (contrast reverse) 
 Special case of linear point processing  c= -1, b=255 -> 255 rs

Negative 

Transformation



Gamma Transformation
 Applying gamma transformation to an input image with gamma less than 1 produces 

a brighter image; while with gamma value greater than 1 produces darker image.
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Log Transformation
 It is a non-linear transformation 

 It is useful when we like to compress, or expand the dynamic range of pixel values 

in an image

 It maps a narrow range of low intensity  input levels into a wider range of output levels

 Inverse log also can be used in which

 Consider that the values of an 2-D matrix are in range of [ 0, 20000], but most of them are close to 

zero. if you scale linearly the values to 8-bit [0 256] range, It would be hard to see anything. 

However, using a log transform , the dynamic range can be compressed. 

)1log(. rcs 

C=10

C=1
C=0.1
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Piecewise linear Transformation
 It consists of several intervals of intensity values. For each interval, the 

transformation is defined as a linear equation.

 This shows that the different range of pixel intensity in the input image needs to be 

treated differently. 

 Intlut function in MATLAB can be used to build the piecewise linear transformation

 Example
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L=uint8(zeros([1 256]));

L(1:61)=2*(0:60)+1;

L(62:121)=121;

L(122:256)=(122:256)-1;

Transformed_image=intlut(input_image,L)
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Contrast stretching, Thresholding & intensity slicing 

 Contrast stretching is a process that expands the range of intensity values in low 

contrast image 
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Auto contrast adjusting
 This transformation maps the darkest pixel value in the original input image       to 0 

and the brightest pixel value in the original image      to 255 and linearly change the 

values of the other pixels in the input image.

 If L-1 be the highest gray value in the input image ( L is 256 for uint8 class), then 

the Auto contrast adjusting function can be defined as

 If r is the intensity of the original image f(x,y) , first subtract all the intensities such 

as r from the min value of f(x,y) , let say       , this produce image g(x,y) which 

intensity r in g(x,y) is changed to     , where   

 Then divide g(x,y) by its maximum intensity value,                , to find an the 

intensities in range [0 1]. Then multiply the result to L-1 to find a function with 

values in the range of [0, L-1] 
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Geometric

Transformation and 

Interpolation 



Geometric transformation
 It is a spatial transformation of the coordinates of  pixels

 So, the pixel in location            must be transformed to location

 Affine transformation is a type of geometric transformation that is widely used. This 

transformation can be used to scale( resize), rotate, translate or shear an image by 

using correct values for transformation operator T

 The affine transform can be defined as 

),(),( yxTyx 

Pixel coordinates in 

the original image 
Pixel coordinates in 

the transformed image 

),( yx ),( yx 



















1

0

0

]1[]1[

3231

2221

1211

tt

tt

tt

yxyx

T



Affine Transformation Example

 In IPT, we can use two functions to implement affine 

transformation 

 1- maketform function to define an affine transformation 

 2- imtransform function to apply the transformation to the 

original image 
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Transformed_image=imtransform(original_image,T);
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Geometric transformation process
 Using the transformation, the coordinates of a pixel goes to new coordinates, but 

what pixel intensity should be used when

 Several coordinates to the same coordinate in the transformed image 

 No pixel gets transformed to some coordinates of the transformed image

 There are two ways for geometric transformation processing 

 Forward mapping : this is based on what we explained so far. The question 

raised above somehow needs to be answered.

 Inverse mapping : In this case for any pixel in the transformed image, we 

calculate the corresponding location in the original image using 

x,y might not be an integer number. We need then to interpolate among the nearest 

pixels in the original image to find the value of the pixel in the transformed image.

1]1,,[]1,,[  Tyxyx

Inverse mapping is more efficient . MATLAB uses inverse mapping



Image registration
 Image registration is the process of aligning an input image against a reference 

image. 

 The input and reference image are usually taken from the same scene, in 

different time or with different devices having different resolutions. The images 

might be taken from different distances and with different viewing angles

 In this process usually the two images ( input and reference ) are known and we 

are trying to estimate a transformation to align the input image against the 

reference frame. Applying the transformation to input image, will produce a new 

image that should be close to reference image.

 One way for image registration is done by using some control points in the scene. If 

theses control points in two images cab be detected, then using a using bilinear 

approximation, a transformation for these two images can be found. 

 In this case, we need 4 control points to find all the coefficients.

When the coefficients of the transform are found, use the transform to all the 

pixels in the input image to find a new image.

 The new image is the aligned or register image
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Image registration-Example
 Application:

detecting missing components on a PCB board in a assembly line

 Reference image the correct PCB with all the correct components

 Input image image taken from the same product during the operation 

 Register the image            against the reference image to align the 

image to reference image. Lets call the new image as  

 Subtract               from            to find the difference image 

 If all the pixel in             are zero or smaller than a threshold value , 

the product is OK, otherwise needs to be checked out.
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Image Interpolation
interpolation is a method of constructing new data points within the range of a set of 

known data points. One application in image processing is resizing. 

Resizing: image of size 512x512 pixels needs to be enlarged to size 765X765 pixels. 

Image interpolation methods: Find where each pixel in the original image will 

be transformed in enlarged image.in the enlarged image, for the locations that no pixel 

from the original pixel exist, assign the intensity value of those pixels, based on 

1- nearest neighbor interpolation method

assign the values based on the intensity values of the nearest neighbors

2- bilinear interpolation

assign the intensity values in location   (x,y) based on the  following formula. The value 

for coefficients a, b, c, d can be calculated by solving four equations using 4 nearest 

neighbors.

3- Bicubic interpolation

 assign the intensity values in location   (x,y) based on the  following formula . The 

value for 16 coefficients of         can be calculated by solving 16 equations using 16 

nearest neighbors.
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Interpolation – Example I
 The image f(x, y) is going to be rotated 60◦ counterclockwise. 

Compute the pixel value of the pixel marked with a question mark (?). 

Use nearest neighbor interpolation. 

the pixel which is in marked with a question mark will get the value 4.

f(x,y)
Rotated picture

g(x’,y’)
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Interpolation – Example II
 The image below will be rotated 20◦ clockwise. Calculate the value at the point 

marked with a question mark. Use bi-linear interpolation. Assume that the white 

points have value 1 and that the black points have value 0.

 The point (x’, y’) = (2, 0) and the angle = -20◦ inserted in the formula above gives 

the coordinate (x, y) ≈ (1.879, 0.684). There is three ways to interpolate in 2D, 

 1) 1D interpolation in the x-direction followed by 1D interpolation in the y-direction 

2) 2D interpolation directly

 3) solving                                                      equation using 4 neighbors to find the 

value of a,b,c,d and using f(x,y) to find the new value
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Interpolation – Example II (cont.)

 Method 1) 1D interpolation in the x-direction followed by 1D interpolation in the y-

direction 

f(1.879, 1) = f(1, 1) h(−0.879) + f(2, 1) h(0.121) = (0) (0.121) + (1) (0.879) = 0.879,

f(1.879, 0) = f(1, 0) h(−0.879) + f(2, 0) h(0.121) = (0) (0.121) + (0) (0.879) = 0,

f(1.879, 0.684) = f(1.879, 0) h(−0.684) + f(1.879, 1) h(0.316) = (0) (0.316) + (0.879) (0.684) = 

0.6012

 Method 2) 2D interpolation directly (h2D(x, y) = h(x) h(y))

f(1.879, 0.684) = f(1, 1) h2D(−0.879, 0.316) + f(2, 1) h2D(0.121, 0.316) +                                        

f(1, 0)h2D(−0.879,−0.684) + f(2, 0) h2D(0.121,−0.684)

= (0) (0.121) (0.684) + (1 ) (0.879) (0.684) + (0) (0.121) (0.316) + (0) (0.879) (0.316) = 0.6012

 Method 3) 
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Assignment #1
1) A video is composed of images that are 512x384 pixels, where each pixel is 3 bytes or 24 bits (consisting 

of red/green/blue color information). The video is 50 minutes and 40 seconds  long. Images play at a rate of 

23 frames per second. With no compression, how big would this file be? (Compressed file is 350 MB.)

2) we can treat the human fovea as a square  sensor array of size 1.5 mm x 1.5 mm, containing about 337,000 

cones. Also, the space between the cones is equal to width of the cones.

a) What is the field of view (in degrees) of the human fovea? Assuming the focal length of the eye is 17 mm.

b) A person observes a fishing boat out at sea that is approximately 1 mile away. The person claims that they 

can see a seagull following the boat. Is that possible?  Justify your answer with quantitative estimates. 

Assume for simplicity that the size of the image of the seagull must cover at least two receptors (cones). 

Seagulls can range in size from 29 cm to 76 cm.

3) It is often useful to generate a synthetic image with known properties that can be used to test algorithms. 

Generate an image composed of two concentric circles as shown below. The inner circle should have a radius 

of 50 pixels and a mean value of 192. The outer circle should have a radius of 100 pixels and a mean value of 

128. The background should have a mean value of 64. Add uniform random noise to each pixel in the range -

16 .. +16. Save the image in “tif” format, and make sure the saved image looks correct. 

4) You are given one image f1. You are asked to synthesize an image f2 that is f1 shifted 

5pixels to the right, 2 pixels up, and then rotated by 30 degree in clockwise direction. 

Assuming f1 uses image coordinate (x,y), and f2 uses image coordinate (u,v).

a)Find the forward mapping function from f1 to f2.  b) Find the inverse mapping 

function from f2 to f1. 

C. Explain how you can generate f2 using step (a) or (b)?



Histogram Processing 



Definition of histogram
 Histogram of a             image with intensity levels in the range of [0, L-1] is defined 

as 

 The normalized histogram is defined as 

 Normalized histogram function

 It is the probability of occurrence of intensity level             in an image 

 The sum of all components of a normalized histogram function is equal to 1
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Histogram processing
 Histograms provides useful image 

statistics that can be used in many 

image processing techniques such as 

image enhancement, image 

segmentation, image compression

 Histogram is a very popular tool in 

image processing. It has low 

computational complexity and can be 

performed in software or hardware       

( for real-time image processing)

High contrast image

Low contrast image

Bright image

Dark image



A  note on Random variables
 If a random variable r with the probability density function ( PDF ) of                

goes under transformation T(r), then the output is a random variable s=T(r) which 

its probability density function can be calculated as 

 Assume the following T(r) function

 If we calculate the PDF  of the transformed random variable s,            , using (1) 

and (2)
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The relationship between random variable and an image

 The values of pixels within an image ,r, can be viewed as random variables. If all 

the pixel in the image go under a transformation such as  T(r), the pixel values of 

the transformed image ,s, are also random variables. 

 Therefore, we can use the transformation function,                                           to 

produce an image with  flat histogram. For discrete values of an image, we deal 

with histograms instead of probability density functions. So, T(r) can be defined as
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 Histogram equalization is the process of 

transforming an image in such a way that 

transformed image has a flat  histogram

 Since a histogram is an approximation to a 

PDF, the result histogram usually is not a 

uniform histogram (flat histogram) 
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Histogram equalization
 An image of size            with intensity levels in the range of [0,…7], has the 

following histogram values, find the Transformation function and the equalized 

histogram. 

6464

0 750 0.183105
1 1000 0.244141

2 900 0.219727
3 600 0.146484

4 300 0.073242
5 300 0.073242
6 150 0.036621
7 96 0.023438

4096

round(Sk)

1.281738 1

2.990723 3
4.528809 5
5.554199 6
6.066895 6
6.57959 7

6.835938 7

7 7
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Histogram Matching
 In some applications, it is needed to change the histogram of an image to a specific 

histogram. In this case, we can specify the shape of desired histogram for the 

processed image.

 The process used to generate a processed image that has a specified histogram is 

called histogram matching or histogram specification.

 Histogram Matching Process

 1. Find the histogram            of the input image and determine its equalization 

transformation: 

 2. Use the specified pdf ,            of the output image to obtain the transformation 

function:

 3. match s=G(z) and find the inverse transformation the mapping 

from s to z:

 4. Obtain the output image by equalizing the input image first; then for each 

pixel in the equalized image, perform the inverse mapping to obtain the 

corresponding pixel of the output image.
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Histogram Matching- Example I

 Given a 3-bit gray-level input image A with the following histogram:

 Design point operation to match it to the following desired histogram 
( the desired histogram can be the histogram of image B)

0 1028

1 3544
2 5023

3 3201
4 1867

5 734
6 604

7 383

kr

0 0
1 0
2 1638

3 4096

4 4916
5 4096

6 1638
7 0

kr

ks
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Histogram Matching - Example I ( cont.)

 1- Equalize the input image A and find an image B which has a flat 

histogram

 2- Equalize the desired histogram

round(       )

0 1028 0.062744 0.439209 0
1 3544 0.216309 1.953369 2

2 5023 0.30658 4.099426 4
3 3201 0.195374 5.467041 5

4 1867 0.113953 6.264709 6
5 734 0.0448 6.578308 7

6 604 0.036865 6.836365 7
7 383 0.023376 7 7

16384

kr )( kr rp ks ks

Round(    )

0 0 0 0 0

1 0 0 0 0
2 1638 0.099976 0.699829 1

3 4096 0.25 2.449829 2
4 4916 0.300049 4.550171 5
5 4096 0.25 6.300171 6
6 1638 0.099976 7 7
7 0 0 7 7

16384
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Histogram Matching- Example I ( cont.)

)(1 sGz  3- Find the inverse function

 For each value of        ,find the smallest value of       , so that             is closest to 

the value of        . When more than one value of         satisfies the given           , 

choose the smallest value by convention.

 4- Take image B (found in step 1), and replace pixel s by z using the 

table II 

qz )( qzGks
ks

0 0

2 3

4 4

5 4

6 5

7 6

qz

qz
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Histogram Matching- Example II

Write a MATLAB program to read an image and match its histogram to histogram 

defined as h,  where h is 

D = 0:255;

h = exp(-(D-50).^2/(2*16^2)) + exp(-(D-200).^2/(2*16^2));

Plot (D,h)

I=imread('barbara.jpg');

figure

subplot(2,2,1);imhist(I); title('Barbara');

subplot(2,2,3);imshow(I); title('Barbara');

im2 = histeq (I, h);

subplot(2,2,2);imhist(im2); title('Barbara matched to h histogram');

subplot(2,2,4);imshow(im2); title('Barbara matched to h histogram');
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Histogram Matching – Example II ( cont.)
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Local Histogram

 Local histogram processing

 Simplest way for local histogram processing is to divide the image to sub-

images and performing histogram processing( equalization , matching) on these 

sub-images instead of over entire image

 If the image is divided into non-overlapping sub-images, the process will produce 

undesirable artifacts.

 A better way for local histogram processing explained as follows:

 Define an area 

 Compute the histogram processing function

 Use the computed function to map the intensity of pixel in the center

 The center of the area needs then to be moved to adjacent location and repeat the 

above steps

 Q:

Histogram of intensity k in an area of n pixel is                      . If the area is shifted by 

one pixel to the right, calculate the new histogram of intensity k is terms of the 

 A:

n

n
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Thresholding using histogram 
 Thresholding is used widely in image processing to produce binary images.

 An image with bright objects and a dark background can often be thresholded to a 

binary image. Such an image has a histogram with two peaks. Suppose that the 

histogram           looks as in the figure below.

 The main question is the thresholding point. 

 A  good threshold can be found with the midway method. The midway method is 

iterative and calculates mean values. 
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Thresholding- midway method 
 midway method:

 1) Set i = 0 and choose an initial threshold                    .

 2) Calculate the mean to the left and to the right            of T(i).

 A new threshold           is calculated as the mean of the two means,

 4) Set i = i + 1. Repeat from 2.

 The stop criteria is when T(i+1) ≈ T(i).

 The mean of the function to the left / right of the threshold        can be calculated as:

 A good initial threshold        can also be found by 

calculating another mean.
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Example of Thresholding using midway method 

0 11 0

1 10 10

2 300 600

3 150 450

4 39 156

5 60 300

6 700 4200

7 30 210

1300 5926

0 11 0

1 10 10

2 300 600

3 150 450

4 39 156

5 60 300

570 1516

6 700 4200

7 30 210

730 4410

0 11 0

1 10 10

2 300 600

3 150 450

4 39 156

510 1216

5 60 300

6 700 4200

7 30 210

790 4710

5,556.4
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Assignment #2
1) An image has the PDF                        . It is desired to transform the intensity values of this image so that 

its PDF changes to               . Assume continuous quantities and find the transformation to perform this 

task.

2) An image has the PDF  shown below. It is desired to transform the intensity values of this image so that 

its PDF becomes   . is also  shown below. Assume continuous quantities and find the 

transformation to perform this task.

3) Why do histogram equalization of a digital image usually not produce images with flat histograms?

4) A 50x70 image has 3-bit pixels. Its histogram, H(r),  looks like a ramp as shown below. The counts in the 

histogram follow the formula H(r) = kr, where k is a constant.

a) Determine the value of k.

b) Compute the mean and standard deviation of this image from the histogram.

c) Compute the transformation function s = T(r) that will equalize the histogram.

d) Compute the histogram H(s) of the resulting image, if it were transformed by T.

e) Compute the mean and standard deviation of the resulting image.
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Spatial Filtering 



Spatial Filtering
 Spatial domain techniques operate directly on the pixels of an image as opposed to 

the frequency domain in which operation is performed on the Fourier transform of 

an image.

 Depending on the processing, we might choose to perform spatial or frequency 

domain techniques. Some processing tasks are easier or better suited to be done in 

spatial domain, while many others need to be done in frequency domain.

 A spatial domain process can be defined as  

)],([),( yxfTyxg 
Input image

Operator defined over a neighborhood of point (x,y)

output image

Image 

f(x,y) y

x

(x,y) 3x3 neighborhood of ( x,y)

T To find the value of g(x,y),

The operator T must be 

applied to all the pixels in 

the neighborhood 

Special case: if the neighborhood is 1x1, spatial 

domain is the same as point processing



Spatial Filtering- Fundamental
 To perform special filtering on an image, we need 

 To identify a neighborhood which typically represented by a rectangle and is called mask, window, 

kernel or template

 To consider an operation which is performed on the image pixels in that neighborhood. If the 

operation is linear, the process is called linear spatial filtering. If the operation is non-linear, then the 

process is non-linear spatial filtering.

 The result of spatial filtering is a new pixel value for the given pixel.

 In linear spatial filtering, 

Image 

f(x-1,y-1) f(x-1,y) f(x-1,y+1)

f(x+1,y-1) f(x+1,y)
f(x+1,y+1)

f(x,y+1)
f(x,y-1)

f(x,y)

w(-1,-1) w(-1,0) w(-1,1)

w(1,-1) w(1,0) w(1,1)

w(0,1)w(0,-1)

w(0,0)

Mask

g(x,y) = w(-1,-1) f(x-1,y-1)+ w(-1,0) f(x-1,y)+ w(-1,1) f(x-1,y+1) +

w(0,-1) f(x,y-1)+ w(0,0) f(x,y)+ w(0,1) f(x,y+1)  +

w(1,1) f(x+1,y-1)+ w(1,0) f(x+1,y)+ w(1,1) f(x+1,y+1)New pixel value



Spatial filtering by Correlation or Convolution 

 Correlation: 

 moving a filter mask over an image and computing the sum of products at each 

location ( like what is shown in previous slide)

 Convolution

 Convolution is the same as correlation, but the mask is first rotated by 180 

degree and then the rotated mask should be moved over the image.   

 New value for the middle pixel  with value 147  using                                                                   

Correlation: (221*-1)+ (198*0)+(149*1)+(205*-2)+(147*0)+(173*2)+(149*-1)+(170*0)+(22*1)= -63

Convolution: (221*1)+ (198*0)+(149*-1)+(205*2)+(147*0)+(173*-2)+(149*1)+(170*0)+(22*-1)= 63

maskportion of an image, 

with a fragment of it 

highlighted and the 

greyscale values 

shown 1 0 -1

2 0 -2

1 0 -1

Rotated mask 

by 180



Spatial filtering Examples  
 To do spatial filtering using a mask of size               , we need to specify             

coefficients. These            coefficients should be chosen in such away that applying 

the spatial filter result in desired processing.   

 Processing examples which can be done using spatial filtering 

 Example I – smoothing filter ( linear filter)

 Smoothing filters can be used for blurring of an image ( reducing sharp transition)

 Noise reduction

 Removal of small detail before object extraction

 Example II- Median filter ( non-linear filter)

 Excellent noise reduction especially for impulse  noise( salt and pepper noise)

 Example III-Sharpening filter ( linear filter)

 To highlight transition in intensity

 To shows edges or other types of discontinuities

 Deemphasize areas of image that intensities won’t change sharply

nm nm
nm



Spatial filtering- Example I ( Smoothing filter)  
 Smoothing filtering can be achieved by replacing all pixels in the 

image by the average of intensity of a 3x3 neighborhood created on 

those pixels . 

 Smoothing filters also called averaging filter or low-pass filter

 To calculate the average, the mask can be selected as 

1 1 1

1 1 1

1 1 1

1/9  X Also called box-filter since all coefficients are equal

1 2 1

2 4 2

1 2 1

1/16 X Also called weighted average, since all coefficients 

are not equal. It gives more weight to pixels at the 

center of the mask  



Spatial filtering- Example I( Smoothing Filter)  
 Effect of window size in smoothing

Original window 3x3

window 5x5 window 7x7



Spatial filtering- Example II( Median Filter)  
 Median filter is a kind of order-statistic filters. These filters are not 

linear. In this filtering method, the value of a pixel is replaced by the 

median of the intensity value of the neighborhood of that pixel.

 To do median filtering

 1- sort the values of the pixels in the neighborhood from low to high

 2-find the median value

 3- assign this value to the corresponding pixel in the filtered image 

 Median is not the only order–statistic filters, the other example of 

these type of filters are

Max filter, Min filter, various percentage filters

10 20 10

15 20 17

20 11 12

10  10 11 12  15 17 20 20 20

3x3 neighborhood: the median is the 5th largest value



Spatial filtering- Example III( Sharpening Filter)  
 Smoothing filters use averaging, sharpening filters use differentiation.

 Differentiation can be achieved by derivation such as

 First order derivation 

 on areas of constant intensities   results in zero

 along ramp-like transition in intensity  results non-zero

 start of a ramp or step intensity transition  results non-zero

 Second-order derivation

 on areas of constant intensities   results in zero

 along ramp-like transition in intensity  results zero

 start of a ramp or step intensity transition  results non-zero
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Spatial filtering- Example III( Sharpening Filter)  - (Cont.)

intensities first order Second-order

6

6 0 0

6 0 0

6 -1 -1

5 -1 0

4 -1 0

3 -1 0

2 -1 0

1 0 1

1 0 0

1 0 0

1 0 0

1 0 0

1 5 5

6 0 -5

6 0 0

6 0 0

6 0 0

-2

-1

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

intensities

first order

-6

-4

-2

0

2

4

6

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

intensities

Second-order
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Spatial filtering- Example III( Sharpening Filter) –(cont.) 

 Edges in the image often are ramp-like transitions in intensity

 Using First order derivation for sharpening

 Produce thick edge, because is non-zero along the ramp

 Using Second order derivation for sharpening

 Produce double edge with one pixel thick, because is zero along the ramp

 Second order gives better edge representation and it is easier to 

implement. So usually second-order functions are used.

 For a 2-D image, the simplest derivative operator is Laplacian
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Spatial filtering- Example III( Sharpening Filter) –(cont.) 

 The mask to implement the Laplacian formula is shown below

 The other practical implementation of sharpening filters are

 In general, the ones with 8, -8 at the center produce sharper-looking result as 

compared to the ones with 4 and -4 at the center. The reason is the fact that the ones 

with 8/-8 at the center detects changes along diagonals as well as horizontal and 

vertical directions.

 The Laplacian filter highlights intensity discontinuity in image and deemphasizes 

regions with slowly varying intensity.. 

 To sharpen an image the result needs to be added to the image 

),(4)1,()1,(),1(),1(),(2 yxfyxfyxfyxfyxfyxf 

0 1 0

1 -4 1

0 1 0

1 1 1

1 -8 1

1 1 1

0 -1 0

-1 4 -1

0 -1 0

-1 -1 -1

-1 8 -1

-1 -1 -1



Spatial filtering- Example IV (High-boost filtering) 

 A sharpening method used by printing industry is called high-boost 

filtering or unsharp-masking which has the following steps:

 Smooth ( blur) the original image            and call the blurred image as 

 Subtract the smoothed image from the original image and call the result image 

as a mask

 Add the mask image to the original image 

 For the original signal showing below, explain how High-boost 

filtering sharpen the image

),( yxf ),( yxf

),(),(),( yxfyxfyxgmask 

),(),(),( yxgyxfyxg mask



Image padding
 The Spatial filter should be applied to the entire pixels within an image by sliding 

the filter window over the image. However, there is an inherent problem when you 

are working with the image boundaries. The problem is that some of the "neighbors" 

are missing. There are several solution for this problem:

 Zero padding where the missing value is replaced by zero. The disadvantage of 

zero padding is that it leaves dark artifacts around the edges of the filtered image 

(with white background).

 Replicate where the missing value is replaced by the image boundary values. 

 Symmetric where the size of the image is extended by mirror-reflecting it across 

its border 1 2 3

4 5 6

7 8 9

Image

0 0 0 0 0

0 1 2 3 0

0 4 5 6 0

0 7 8 9 0

0 0 0 0 0

mask
1/
4

1/
4

1/
4

1/
4

1 1 2 3 3

1 1 2 3 3

4 4 5 6 6

7 7 8 9 9

7 7 8 9 9
Zero Padding

Replicate is the same as 

symmetric in this case



Padding example

 Calculate the correlation                       and convolution                    using            as 

defined above. Use zero padding to calculate boundary values.. 
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Padding example
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Padding example
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Assignment #3
1) For the image below (let’s call it image A), apply a 

3x3 averaging low pass filter and call it image B. Apply 

the same averaging filter to Image B to produce image 

C. Draw image B and C. Explain what happens when 

you repeatedly apply an averaging filter to an image?

2) In Image shown here, each bar has a width of 6 pixels. The gaps 

between bars are 19 pixels. Explain the result of filtering this image 

using 

a) An averaging mask of 25x25      b) An averaging mask of 20x20

3) In spatial filtering, a mask is applied to top-left corner of an image and then the center of the mask will be 

moved through the image. At each location, the sum of product of the mask coefficients with the 

corresponding pixel values at that location is calculated. Then the pixel value of the image corresponding 

with the center of the mask will be updated.

Considering an averaging mask of size with coefficients of . Calculate the minimum 

computational complexity of applying the averaging filter to an image. Remember that for an averaging 

mask all the coefficients are one considering a scale factor of .

4) A digital image f(x,y) is  changed to a  black and white image b(x,y).                                                           

b(x,y) is passed through a 3x3 blurring filter as shown here to produce 

output image o(x,y). What are possible intensity values in the output image.
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2-D Fourier Transformation



Fourier series and Transform
 Fourier series: 

 A periodic function ( with period T) can be expressed as the sum of sines and /or 

cosine each multiplied by a different coefficient.

 Fourier transform

 A non-periodic function (with finite area under curve) can be expressed as the 

integral of sines and/or cosines multiplied by a weighing function
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1-D impulse function       and impulse train)(t










00

0
)(

tif

tif
t






1)( dtt

 Impulse function is a spike of infinity amplitude and zero duration, having the unit area

 One of the properties of impulse function is its Sifting property

 A series of impulse function can make a Impulse train

which can be defined as 

 The Fourier transform of          ,              and                are shown here. 
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2-D impulse function        and impulse train),( zt
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 Impulse function is a spike of infinity amplitude and zero duration, having the unit area

 One of the properties of impulse function is its Sifting property

 2-D Impulse train                     can be defined as 
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1-D sampled function 
 Continuous function needs to be transformed into 

discrete  values before getting processed by a computer 

which is done using sampling and quantization 

processes 

 The kth sampled value is

 The Fourier transform of the sampled function is 

 By replacing                 by                              and 

calculating the convolution 
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1-D sampled function (cont.) 
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1-D Sampling Theorem 
 The condition                 shows that a continuous , band limited function can be 

converted without loss of information from a set of its samples if the samples are 

obtained at a rate exceeding twice the highest frequency content of the function  
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 To recover the main function from the 

sampled function, we need a lowpass

filter. Lets consider          as the low pass 

filter that helps us to convert          to

 By using inverse Fourier transform, the 

function        can be recovered 
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1-D Aliasing
 The Fourier transform of a sampled band-limited function is periodic. If the function 

has been sampled at a rate less than twice its highest frequency ( under-sampling), 

then 

 The periods of the transform overlap with each other 

 As a result of this overlap, High frequency components of a function appears  in low 

frequency components of the sampled function

 No filter can filter a single period

 Applying inverse Fourier transform will result in a corrupted function 

 The effect caused by under-sampling is called aliasing

 Also, if a function is not band limited, we should see the aliasing effect. Since , in 

practice, we always limit the duration of a function to an interval such as [0, T], the 

sampled function is not band-limited anymore.

 The amount of aliasing can be reduced by smoothing the input function before 

sampling to attenuate the function’s higher frequency. This process is called anti-

aliasing. No action can be done after aliasing happened.



2-D sampling and aliasing
 In a manner similar to 1-D sampling, the sampling 

process in 2-D case can be modeled using a 2-D 

impulse train. If       and      are the separations between 

samples along t and z axis, then the impulse train is 

 for a 2-D band-limited function such as 

 Band-limited means that the Fourier transform 

of the function is zero outside of a rectangle-

shape region defined by

 Sampling theorem says that the function           

can be recovered from its samples if the 

sampling intervals are   
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2-D sampling / aliasing example

 The function f(x, y) has a 2D Fourier transform

F(u, v) as shown here. The function f(x, y) is sampled by

a 2D train to

a) Sketch G(u, v) in the (u, v)-plane and grade the axes

b) Sketch H(u, v) in the (u, v)-plane and grade the axes if  function f(x, y) is sampled by another 

2D impulse train to

c) One of the two functions g(x, y) and h(x, y) in a) and b) shows aliasing. Which one?

d) How does aliasing show up in an image? See the pattern below. Will the distance between the 

stripes be longer or shorter after aliasing? Will the direction of the stripes change or not
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2-D sampling / aliasing example (cont.)

c) There is aliasing in the function H(u, v). There is 20 aliasing areas shown in

the figure and one of them is marked with an arrow.

d) After aliasing, the distance between the stripes will be longer. The direction

of the stripes may change. The actual direction depends on the original direction

and the sampling frequency.



Image Aliasing Example

 a

2 pixels per pattern

Frequency: ½ per pixel 

Nyquist Frequency=2X1/2=1 per pixel 

Sampling frequency > = 1 per pixel 

2 pixels per pattern

Sampling freq.= 1 sensor per pixel

Sampling freq.= 4/5 sensor 

per pixel

Sampling freq.= 1/3 sensor 

per pixel



1-D Discrete Fourier transform DFT
 Given a set of               consisting of  M samples of        ,   Discreet Fourier 

transform ( DFT)  yields a sample set              of  M complex discrete value which is 

defined as 

 The Inverse DFT ( IDFT) can also be expressed as 

 Example
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2-D Discrete Fourier transform (DFT)
 For 2-D DFT, 1-D DFT cab be expanded as

 The 2-D inverse DFT can also expressed as

 For calculating any value of F(u,v), you should use all pixels of f(x,y). F(u,v) are 

complex values, which can be expressed in polar form  
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Polar form Magnitude, Fourier spectrum

Phase angle

Magnitude, Fourier spectrum



2-D DFT of an image
 F(0,0) is called the DC component since                                               calculates the 

sum of all values in f(x,y) 
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 2D FFT and its inverse in Matlab can be  implemented using fft2 and ifft2 function.

 Some observation after applying fft on a giveen image as shown below

 DFT of original image shows some values around the corners of the image. 

 DFT is periodic and for visualization purposes we shift the DFT results in such a way that zero 

frequency component goes to the center of the image 

 The log transformation shows more detail. The log display can be presented as shows                              

. 

),(log1 vuF

Original image 2D FFT 2D FFT- centered 2D FFT- after a Log 

transformation



Image Frequency domain concept

Low frequency row

low 

frequency 

column

1,2,3,4: low frequency row and column

5,16,10,11: low frequency row , high frequency column

6,9,12,15: high frequency row , low frequency column

7,8,13,14: high frequency row , high frequency column

Space domain Frequency domain

FT

FT



2-D Fourier transform properties
 justify the FFT and phase for each of the following images

 Image a is the original image consists of a white rectangle and black background

 In Image b, the rectangle is translated

 In image c, the rectangle is rotated

 In image d, the rectangle is enlarged

 Image e and f are just thin vertical and horizontal lines

a)

b)

c)

d)

e)

f)

Image FFT Phase Image FFT Phase



Filtering in Frequency domain



Filtering in frequency domain Examples

 Low pass filter (LPF): 

 LPFs attenuate the high frequency components of the Fourier Transform of an image, 

while leaving the low frequency components unchanged. 

 The typical overall effect of applying a LPF to an image is a controlled degree of 

blurring. 

 The following examples will be discussed

 Ideal LPF

 Butterworth LPF

 Gaussian LPF

 High pass filter  (HPF)

 HPFs attenuate the low frequency components of the Fourier Transform of an 

image, while leaving the high frequency components unchanged. 

 The typical overall effect of applying a HPF to an image is a controlled degree 

of sharpening. 

 The following examples will be discussed

 Ideal HPF

 Butterworth HPF

 Gaussian HPF



Frequency domain filtering Fundamental

 Filtering in frequency domain means

 Finding the Fourier transform of the image                as  

Modifying the Fourier transform using a filter function

 Computing the inverse Fourier transform to obtain the processed image  

 If image            , has a size of             , then functions          ,            
and the processed image g(x,y) are matrixes of size  
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Example I- ideal Low Pass Filter (ILPF) ideal LPF

])2/()2/[(),(

),(0

),(1
),(

22

0

0

QvPuvuD

DvuD

DvuD
vuH












 If P and Q are the sizes of  the image, a 2-D ideal LPF which 

does not attenuate the frequencies within a circle of radius        

and filters all frequencies outside this circle can be defined as 
0D

0D

),( vuH

1

),( vuD

Ideal LPF

150 D 200 D 250 D 300 D 400 D

Original image

Result of LPF filtering

1- Lower values of D0 generates 

blurrier images

2- it generates ringing artifacts 

because of sharp transition between 

pass-band and stop-band in ideal LPF

500 D



Example II- Butterworth LPF (BLPF)
 A 2-D BLPF order n  with cut-off frequency        from the origin 

can be defined as  

 BLPF does not have a sharp transition between pass-band and 

stop-band. The cut off frequency      is usually defined as the 

location that                 is 0.5( 50% down its max value 1)

 Ringing artifact does not happen in BLPF order 1 and it is not 

significant in BLPF order 2, but can become significant in 

higher-order filters.

 BLPF of order 20 or higher is the same sharp transition between 

stop-band and pass-band as ideal LPF.

 BLPF order 2 is a good in terms of    both low ringing artifacts 

and being an effective LPF.
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Example II- Butterworth LPF (BLPF)-Cont.

 The first row shows filtering with BLPF n=2 and various cut-off frequencies

 The second  row shows ideal at the same cut-off frequencies for comparison 

150 D 200 D 250 D 300 D 400 D

Original image

500 D



Example III- Gaussian LPF (GLPF)
 A 2-D GLPF can be defined as  

 Where             is the distance from the center of frequency 

rectangle and      is the cut-off frequency.  

 GPLF does not produce ringing artifact, since the transition 

between stop-band and pass-band is not sharp and is controlled 

the value of  by  

Gaussian LPF
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Example VI- ideal High Pass filter (HPF)
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 A 2-D ideal HPF which filters frequencies within a circle of 

radius        and does not attenuate frequencies outside this circle 

can be defined as 

 As ILPF, ideal HPF is not physically realizable.

 It produces ringing artifacts similar to ideal LPF. The reason for 

ringing artifact is the sharp transition between pass-band and 

stop-band.

 Since low frequency components of the image are strongly 

attenuated, we may lose information present in large part of the 

original image. 
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Ideal HPF



Example VI- ideal High Pass filter (IHPF)
 The ringing in first image filtered by D0=10 is severe and has produce distorted 

edges and boundaries. 

 Edges that are not strong and their intensities are very close to the background 

would be vanished 

 As          increases , we see filtering in small fonts, but with             , we can’t see the 

small fonts

 As         increases, the edges are less distorted  

Original image 500 D100 D

0D 100 D

0D



Example V- Butterworth HPF (BHPF)
 A 2-D BLPF order n  with cut-off frequency        from the origin 

can be defined as  

 BLPF acts smoother than ideal high pass filter. This means that 

the edges are less distorted. However, we should not see much 

difference in filtering small fonts or objects and the objects and 

fonts with intensities close to the background. 
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Original image 2,500  nD2,100  nD 2,300  nD



Example VI- Gaussian HPF (GHPF)
 A 2-D GLPF can be defined as  

 The result of filtering using GHPF would be comparable  with 

the results of BHPF , but somehow more gradual than BHPF. In 

other word, the edges must be somehow cleaner and less 

distorted.  

Gaussian LPF

2
0

2 2/),(
1),(

DvuD
evuH






High frequency Emphasis
 When a high pass filter is applied to an image, the low –frequency data in the image 

are severely attenuated or  completely will be filtered. 

 Filtering low frequency leads to losing info which exist in large part of the image

 High frequency emphasis is the name of a technique that can be used to keeps the 

low frequency component, while enhance the high – frequency component.  

),(),( vuHbavuHhfe  The transfer function 

of a high pass filter

The constant for enhancing high 

frequency component  b>a

Original image 2,30: 0  nDBHPF

1&5.0

2,30: 0
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Assignment #4
1) An image has defined as  ,   find the Fourier transform of this image               ?

2) An image f (x,y) is padded with zeros and the result is called g(x,y). Explain the difference you think will 

appear in F(u,v) and G(u,v)?

3) Find the filter transfer function H(u,v) for a filter that averages the four immediate neighbors of a point 

(x,y) , but does not include f(x,y)?

4) A Gaussian low pass filter with has a the transfer function of ,Find                      

and                   also find

5) Consider a 2D image 

a) determine its Fourier transform and illustrate the spectrum in Fig. (a).

b) suppose this signal is sampled uniformly with sampling interval                         . Draw the spectrum of the 

sampled signal in Fig. (b).

c)  suppose the sampled signal is filtered by an ideal low-pass filter                 with frequency response

Where, .  Draw the spectrum of the reconstructed signal in Fig. (c). 

Give the spatial representation of the reconstructed signal                     .
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1-D DCT and IDCT
 There have been designed a variety of transformation for transforming the data to 

frequency domain . So far, we have studied DFT.

 Example of other frequency domain transformation are  Walsh-Hadamard (WHT), 

Discreet cosine transform( DCT) and KLT 

 DCT has been used widely in image processing and it is somehow similar to DFT

 1-D DCT is defined as 

Input data
Forward Kernels (basis function)
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1-D DCT-Example
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Input data

Kernels or basis function
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1-D inverse DCT-Example

]15.0023.27[)(,4  uTn

]5432[)( xg

]0023.27[)(,4  uTn

f=[7 -2.23 0 0]

p=idct(f)
p =

2.0432    2.8966    4.1034    4.9568

In MATLAB
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1-D DCT Kernel ( basis function)
Input data

Forward Kernels (basis function)
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Inverse Kernels 

DCT IDCT
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2-D DCT and IDCT

 2-D DCT has been used widely in image processing and is more 

efficient than DFT 

Input data

Forward Kernels (basis function)

Inverse Kernels DCT IDCT
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2-D DCT Examples
 2-D DCT has been used widely in image processing and is more efficient than DFT 
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2-D DCT Examples
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800    0   0       0     0     0     0     0

-100    0     0    0  0     0     0     0     

0     0     0    0     0     0     0     0

0   0     0    0     0     0     0     0

0   0     0   0     0     0     0     0

0   0     0  0     0     0     0     0

0     0     0    0     0     0     0     0

0   0     0    0     0     0     0     0

117   117   117   117   117   117   117   117

115   115   115   115   115   115   115   115

110   110   110   110   110   110   110   110

103   103   103   103   103   103   103   103

97     97     97    97     97   97   97    97

90     90     90   90   90    90     90     90

85     85     85    85     85     85   85    85

83     83    83     83    83     83    83    83

83    83    83    83    83    83    83    83

85    85    85    85    85    85    85    85

90    90    90    90    90    90    90    90

97    97    97    97    97    97    97    97

103   103   103   103   103   103   103   103

110   110   110   110   110   110   110   110

115   115   115   115   115   115   115   115

117   117   117   117   117   117   117   117

800   100     0    0   0     0     0     0     

300    0  0     0     0     0     0     0

0     0    0     0     0     0     0     0

0     0    0     0     0     0     0     0

0     0    0     0     0     0     0     0

0     0    0     0     0     0     0     0

0     0    0     0     0     0     0     0

0     0    0     0     0     0     0     0

169   167   162   155   149   142   137   135

161   159   154   148   141   134   129   127

147   144   139   133   126   120   115   112

128   125   120   114   107   101  96  93

107   104   99 93   86   80  75   72

88     85     80   74     67    61     56  53

73     71   66    59     52   46     41     39

65  63   58  51  45   38   33   31



2-D DCT Examples

800   0      0     0     0     0     0     0

0 0   0     0     0     0     0     0

0   0   0     0     0     0     0     0

0   0   0     0     0     0     0     0

0    0   0     0     0     0     0     0

0    0   0     0     0     0     0     0

0   0   0     0     0     0     0     0

0    0   0     0     0     0     0    10 0

101    97   104    95   105    96   103    99

97   108    88   114    86   112    92   103

104    88   117    80   120    83   112    96

95   114    80   124    76   120    86   105

105    86   120    76   124    80   114    95

96   112    83   120    80   117    88   104

103    92   112    86   114    88   108    97

99   103    96   105    95   104    97   101

 2-D DCT, is often used in signal and image processing, especially for lossy data 

compression, because it has a strong "energy compaction" property 

 most of the signal information tends to be concentrated in a few low-frequency components 

of the DCT

 The DCT is used in JPEG image compression and MPEG video compression standards

800   100  100   0     0     0     0     0     

0     0    0     0     0     0     0     0

0     0    0     0     0     0     0     0

0     0    0     0     0     0     0     0

0     0    0     0     0     0     0     0

0     0    0     0     0     0     0     0

0     0    0     0     0     0     0     0

0     0    0     0     0     0     0     0

134   121   103    87    80    83    92    99

134   121   103    87    80    83    92    99

134   121   103    87    80    83    92    99

134   121   103    87    80    83    92    99

134   121   103    87    80    83    92    99

134   121   103    87    80    83    92    99

134   121   103    87    80    83    92    99

134   121   103    87    80    83    92    99



2-D DCT Kernel
 How to build 2-D Kernel from a set of  1-D kernels 

 If there are some 1-D kernels such as                           and they are orthonormal, then you can 

calculate a set of 2-D kernel from them by 

 Orthonormality condition means

To show orthonormality for  2-D DCT kernels, we should for all possible values of i

and j. As an example show orthonormality for                     and calculate  
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Building 2-D kernel- Example

 You are given two 1-D vectors below

(a) Show that they are orthonormal vectors.

(b) Derive four 2-D basis images using these 1-D vectors.

(c) Calculate the transform of the image using the basis images derived in step (b).

(d) Find the reconstructed image obtained with the largest coefficients (in 

magnitude). What can you say about the physical meaning of ?

Solution 

a)
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Building 2-D kernel- Example (cont.)

(b)

(C)

(d)

11/4 is the average of all the pixels in the image. So building the image using    , 

produces an image that all the pixels has the average value of the original image. 
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2-D DCT  vs. DFT
 DCT express a function or a signal in terms of a sum of sinusoids with different 

frequencies and amplitudes. So DCT acts as any other Fourier-related transform. 

 Similar to DFT,  a DCT operates on a function at a finite number of discrete data 

points. 

 DFT uses both cosines and sines (in the form of complex numbers). While DCT uses 

only cosine functions which is the real part of DFT. 

 it is clear that any function with less transition and sharp discontinuities should be 

represented by fewer terms in its DFT or DCT and therefore compressed more 

effectively. 

 Efficacy of a transformation scheme can be directly gauged by its ability to pack 

input data into as few coefficients as possible. This allows the quantizer to discard 

coefficients with relatively small amplitudes without introducing visual distortion in 

the reconstructed image. DCT exhibits excellent energy compaction for highly 

correlated images. 



JPEG
 One of the most popular Image compression standards is the JPEG (Joint 

Photographic Experts Group) standard which uses DCT in one of its modes.

 JPEG uses block transform coding, in which the input image is first will be divided 

into small non-overlapping blocks, and then each small blocks will be processed 

independently. 



JPEG modes of operation
 JPEG offers adjustable compression/quality and 

has 4 different modes of operations:

 Sequential (line-by-line)  (also called baseline 

implementation)

 In sequential encoding, the whole image is 

encoded and decoded in a single run. It allows 

decoding with immediate presentation, but in a 

top-to-bottom sequence

Sequential

 Progressive (blur-to-clear) ( also called layer coding)

Progressive mode encodes and reconstructs the image with a very rough representation, 

and refines it during successive steps. 

 Hierarchical (multiple resolutions)

down-sample by factors of 2 in both directions,  (reduce 640480 to 320240 ,..) 

Repeat the following process recursively until the full resolution image is compressed. 

Initially, encode the smallest image. Then at each level, decode and up-sample the 

smaller image and then encode the difference between the up-sampled and the original 

images. 

 Lossless (pixel-for-pixel)
A special case of JPEG where there is no loss in the encoding process. In this mode, 

image processing and quantization use a predictive technique instead of transformation 

encoding

Progressive



JPEG
 JPEG processing steps in base-line mode:

 1- subdivide the input image              into non-overlapping blocks of size . 

These blocks need to be processed from left to right and top to bottom. 

 2- process each            block, by first shifting the level of a block and then 

calculating its 2-D cosine transform. Lets call the DCT coefficient as  . A 

block of 64 pixels can be  level shifted by subtracting , when the number of 

gray levels in the image is      . For instance, in 8-bit mode, the range [0,255] 

needs to be shifted to [-128,127] range.

 3- The DCT coefficients of each block,           are then de-normalized by using 

an normalization array              and quantized as follows

 4- the coefficient of              are then arranged in a zigzag pattern as a 1-D array

 5- The 1-D array in step 4 is then coded using variable length coding 
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JPEG block diagram

Build  
blocks of 

Level shift  & 
Transform each 

block

De-normalization 
&  Quantization

Zig-zag
pattern and 

Encoding

Image
Compressed 

Image

Decoding
Inverse 

Tranform
Merging small 

blocks

De- compressed 

ImageCompressed 

Image

88

),( yxf ),( vuT

),( vuZ Normalization array ]
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),(
[),(ˆ

vuZ
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roundvuT 

16    11    10    16    24    40   51   61

12    12    14    19    26    58   60   55

14    13    16    24    40    57   69   56

14    17    22    29    51    87    80     62

18    22    37    56    68   109   103    77

24    35    55    64    81   104   113    92

49    64    78    87   103   121   120   101

72    92    95    98   112   100   103    99



Encoding Process

 DC component encoded using differential encoding
 DC coefficient determines the average intensity of the block.  

 Between adjacent blocks, the variation is (usually) small.

 DC coefficient is calculated by finding the difference between the current DC coefficient and the 
one of the previous block

 Since DC are differentially encoded, its range is [-2048,2047].

 DC values is encode to  (size) and ( amplitude).  Size is number of bits needed to represent the 
amplitude and is 4 bits. The Amplitude is the DC value.

 AC components are 

 The 63-number stream has lots of zeros in it.

 AC coefficients are calculated as  (skip , size) amplitude, where skip is the number of 
zeros and amplitude is the next non-zero component. And size is the number of bits that 
is needed to represent the non-zero component.

 Skip must be in range of 0 to 15. if the number of zeros are more than 15, then more (skip, size) 
pair should be used. For example, for 28 zeros, we can write (15,0)(13,size) amplitude

 Amplitude is the amplitude of the nonzero AC coefficient and it is in the range of [-1024,+1023]. 
So the size needs maximum of 10 bits

 The DCT coefficients are then converted into a compact binary sequence using 
Huffman table

size Amplitude code

1 1,-1 1=1, -1=0

2 -3,-2,2,3
-3=00, -2=01, 

2=10,3=11



JPEG-Example
140   144   147   140   139   155   179   175

144   152   140   147   140   148   167   179

152   155   136   167   163   162   152   172

168   145   156   160   152   155   136   160

162   148   156   148   140   136   147   162

147   167   140   155   155   140   136   162

136   156   123   167   162   144   140   147

148   155   136   155   152   147   147   136

12    16    19    12    11    27    51    47

16    24    12    19    12    20    39    51

24    27     8    39    35    34    24    44

40    17    28    32    24    27     8    32

34    20    28    20    12     8    19    34

19    39    12    27    27    12     8    34

8    28   -5    39   34   16    12 19

20    27     8    27    24    19    19     8

185   -17    14    -9    23    -9   -13   -19

20   -34    26    -9   -11    10    13     6

-10   -23    -1     5   -18     3 -20    -1

-8    -5    14   -14    -8    -2  -3   8

-3     9     8     1  -11    18    18    15

3    -2   -18     8     8   -3     0      -6

8     0    -2     3    -1    -7  -1 -2

0    -7    -2     1     1     4      -6   0

3      5    7    9    11    13    15    17

5   7   9    11   13    15    17    19

7   9   11    13    15    17    19    21

9    11    13    15   17    19    21    23

11  13    15    17   19    21    23    25

13   15    17    19  21    23    25    27

15   17    19    21  23    25    27    29

17  19    21    23  25    27    29    31

61    -3     2    0     2     0    0 -1

4    -4     2     0     0     0     0     0

-1    -2     0     0    -1     0    -1 0

0     0     1     0     0     0     0     0

0     0     0     0     0     0     0     0

0     0    -1     0     0     0     0     0

0     0     0     0     0     0     0     0

0     0     0     0     0     0     0     0

61    -3     4    -1    -4     2    0     2    -2     0     0     0     0 0     2     0     0     0     1     0     0     0     0     0     0    -1 0     0    -1     0     0     0     0 

-1     0     0     0     0     0 0     0    -1     0     0     0     0     0     0     0     0     0     0 0     0     0     0     0     0     0     0     0     0     0     0

(6) (61), (0,2)(-3),(0,3)(4),(0,1)(-1),(0,3)(-4),(0,2)(2),(1,2)(2),(0,2)(-2), (5,2)(2),(3,1)(1), 

(6,1)(-1),(2,1)(-1), (4,1)(-1),(7,1)(-1),(0,0)

Block of 8x8 Level shifted block DCT coefficients

Normalization and 

quantization matrix
Normalized DCT coefficients

Zig-zag pattern of Normalized DCT coefficients

Encoded ,Zig-zag pattern of Normalized DCT coefficients



JPEG-Example (cont.)

(0,0) EOB 1010 (3,1) 111010 

(0,1) 00 (4,1) 111011 

(0,2) 01 (5,2) 11111110111 

(0,3) 100 (6,1) 1111011 

(1,2) 11011 (7,1) 11111010 

(2,1) 11100 (6) 1110 

 

 

(1110)(111101) (01)(00)(100)(100)(00)(0)(100)(011)(01)(10)(11011)(10)(01)(01)

(1111110111)(10)(111010)(1)(1111011)(0)(11100)(0)(111011)(0)(11111010)(0)(1010)

Encoded ,Zig-zag pattern of Normalized DCT coefficients

JPEG binary format based on Huffman coding

Partial Huffman 

encoding tables

size Amplitude code

1 1,-1 1=1, -1=0

2 -3,-2,2,3
2=10   -2=01 
3=11  -3=00

3
-7,-6,-5,-4    4, 

5, 6, 7

4=100  -4=011
5=101  -5=010
6=110  -6=001
7=111  -7=000

(6) (61), (0,2)(-3),(0,3)(4),(0,1)(-1),(0,3)(-4),(0,2)(2),(1,2)(2),(0,2)(-2), (5,2)(2),(3,1)(1),

(6,1)(-1),(2,1)(-1), (4,1)(-1),(7,1)(-1),(0,0)



JPEG- Hierarchical Mode

original

640x480 320 x

240 160x

120

down sample
down sample

JPEG

up sample

diff.

sum

JPEG

uncomp.

up 

sample

diff.
JPEG

 The block diagram of JPEG in hierarchical mode has been shown here

Compressed image



Image restoration and reconstruction



Image restoration and reconstruction

 Image restoration is a process which tries to recover  an image that has been 

degraded. 

 The restoration  techniques usually model the degradation and apply the inverse 

process to recover the original image.  

 To do the image restoration, we should model the degradation function and 

therefore, we should have a knowledge of how the image is degraded.

 Thus, Image restoration techniques enhance the degraded image in general.

 Difference between image enhancement process and restoration process

 Image enhancement techniques tries to manipulate an image to be suited more for human 

eyes , while restoration techniques tries to find the source of degradation and formulate a 

process to recover the signal

 Image enhancement is usually a subjective process, where as image restoration is an 

objective process

Point processing Image enhancement

De-blurring Image restoration



Image restoration model

 The  degradation / restoration  processes can be modeled as follows

 An image              is degraded by a degradation function h(x,y)  and additive noise   

 The degraded  image  is                which is 

 The Fourier transform of 

 Having              as the degraded image and some knowledge about the degradation 

function H(u,v) and the type of noise , the restoration process tries to find an estimate            

of the original image

 if H is an identity operator, the degradation is just dependent to noise. 

 When the estimated image is close to the original image ?

Degradation 
function (H)

+
Restoration

process
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Noise and noise model
 Noise can be defined as an undesired artifact that has been generated during image 

acquisition and/ or transmission

 Noise can be considered as a random variable whose probability density function (PDF) 

describes its shape and distribution across the of intensity values. 

 Not always true, but for simplicity purpose, we assume that the noise is uncorrelated with 

respect to the image

 Example of some noise model

 Gaussian noise : (sensor noise , electronic circuit noise)

 Uniform noise : ( not very practical)

 Rayleigh noise ( range imaging)

 Erlang (Gamma) noise: ( laser imaging)

 Exponential noise : ( laser imaging)

 Impulse noise( salt and pepper) : ( quick transients situation, faulty switching)

 Periodic noise  ( electrical and electromagnetic interference)



Selected noise PDF

 Gaussian noise: ( z is intensity value,     is the mean ,      is the standard 

deviation  and      is the variance of z) 

 Uniform noise :

 The value of the mean  is  

 The value of variance is 
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Selected noise PDF

 Rayleigh noise

 There is a displacement from the origin and the density is skewed to the right. This is 

quite useful for estimating skewed histograms

 Erlang (Gamma) noise

Rayleigh
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The value of the mean  is  

The value of variance is 
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Selected noise PDF

 Exponential noise

 The value of the mean  is  

 The value of variance is 

 Impulse noise( salt and pepper) 

 and       are the probability of occurrence of pixels whose values are equal to  P ( for 

pepper) and s for salt.

Exponential
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Periodic noise

 If the image is subject to a periodic, rather than a random disturbance, an  image 

corrupted by periodic noise is generated.

 The function imnoise in can be used to make some random noise such as ( Gaussian 

or Salt and Pepper noise), but it does not support  periodic noise

 The periodic noise can be added to an image in MATLAB by adding a periodic 

matrix(using a trigonometric function) to the image:
[M,N]=size(f);

[x,y]=meshgrid(1:M,1:N);

p= 0.25*(2*sin(x)+2*sin(y)+sin((x+y)/2)+sin((x-y)/2)) ;

f_pn=(im2double(f)+p/2)/2;

 The random noises are usually be removed using spatial filtering. The best way to 

remove periodic noise is using frequency-domain filtering. 

Original Image Periodic noise Degraded image Image spectrum

A pair of 

impulse 

for each 

sine wave



Restoration due to random noise

 We can use spatial filtering to remove additive random noise. Spatial filtering needs 

a window as mask. If       is this  window and the size of this window is             and 

the window is centered at  location          , the spatial filtering calculates the value of  

restored image at coordinates          .  As           . To apply spatial filtering to whole 

image The window would be moved over               the degraded image. 

 There are various filtering methods that can be used for this purpose. Examples are

Mean filters

 Arithmetic mean filter

 Geometric mean filter

 Harmonic mean filter

 Contra-harmonic mean filter

 Order statistic filters

 Median filter

 Max and Min filter

 Midpoint filter

 Alpha-trimmed filter
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Restoration due to random noise- Mean filters
 Mean filters

 Arithmetic mean filter

 calculates the average value of  the corrupted image in the neighborhood       . So it 

has smoothing effect on the  image.

 Geometric mean filter

 It has smoothing effect comparable to arithmetic filters, but  less image detail is lost 

 Harmonic mean filter

 As a mean filter has a smoothing effect. It works well with various random noise 

except for the pepper noise. It does well for the salt noise.

 Contra-harmonic mean filter

 It uses a parameter called Q that 

o Q=0  the filter acts as Arithmetic mean filter

o Q=-1   the filter acts as harmonic mean filter

o Q>0   the filter reduces the pepper noise

o Q< 0   the filter works well for filtering salt noise
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Restoration due to random noise- Order statistic filters

 Order statistic filters

Median filter

 Modifies the value of a pixel by the median of the intensity value in the 

neighborhood window of that pixel ( 50 percentile of the set)

 Very effective in reducing of impulse noise (salt and pepper)

Max and Min filter

 Max filter works well with pepper noise ( pepper noise has low values) 

 Min filter works well with salt noise ( salt noise has high value)

Midpoint filter

 This filter calculates the average of min and max values

 Works well with uniform and Gaussian noise

 Alpha-trimmed filter

 This filter , first erase        highest and        lowest values of  in neighborhood       . 

We can call the remaining ( mn-d) values as               . The filter then calculates the 

average of the values in The values in
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Restoration due to periodic noise

 Frequency –domain filtering can effectively filters the periodic noise

 The FFT of  the Periodic noise shows bright sections at locations corresponding 

to the frequencies of the periodic noise. Filtering does frequency location, will 

eliminate the periodic noise.

 Various filters can be used for filtering periodic noise

 Band-reject filters

o Attenuates frequency components within a certain area , while leaving all other areas 

untouched. 

 Band-pass Filters

o The opposite of band- reject filter. 

 Notch filters

o This filter rejects ( or passes) frequencies in predefined neighborhood about the center 

frequency.
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Band pass Notch-reject Notch-passBand reject



Restoration due to periodic noise- Frequency filtering
 Band-Reject filters ( W is the width of the band)

 Band –pass filters
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Ideal band –reject filter

Butterworth band –reject filter Gaussian band –reject filter
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Restoration due to periodic noise- Frequency filtering – cont.















elsewhere

DvuDor

DvuDif

vuH Nri

1

),(

),(0

),( 02

01

2

0

2

01 )2/()2/(),( vNvuMuvuD  2

0

2

02 )2/()2/(),( vNvuMuvuD 

n

NrB

vuDvuD

D
vuH

2

21

2

0 )
),(),(

(1

1
),(





 Notch filter : considering the notch filter of radius    with center at ),( 00 vu0D
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Noise reduction – Special case
 If the degradation is just dependent to noise, and the noise is uncorrelated and has a 

average of zero, then the noise can be reduced by averaging several noisy image of 

the same image. 
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Degradation Function Estimation

 The methods to estimate degradation function

 By image observation which tries to estimate from the image itself. For instance, a sub-

image of the degraded image can be considered              . Try to improve the quality of 

the sub-image to find             .  So you can find the transfer function of the degradation 

function for the sub-image as 

Then try to find H(u,v) in larger scale

 By experiment . In this method , if we have the device that has been used to take the 

picture , we try to find the setting that produces the same degraded picture. Now, under 

this setting,  try to find the impulse response

 By modeling. In this method, we try to find the mathematical formula depending on the 

situation
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Degradation Function Estimation by modeling - Example

 Assume that a picture is taken by a perfect camera, but the scene is moving 

by a planner motion of          and        in the x and y directions. If              is 

the image without any motion and              is the image considering the 

motion. Then
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Degradation Function Estimation by modeling – Example

 If we know that the motion is                                     , model the distortion 

under the motion 
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Color Image Processing



Electromagnetic Spectrum
 Visible light wavelength: from around 400 to 700 nm

 How to describe the quality of an light source

 For an achromatic (monochrome) light source, the attribute to describe the 

quality is intensity

 For a chromatic light source, there are 3 attributes to describe the quality:

 Radiance= total amount of energy flow from a light source (Watts)

 Luminance= amount of energy received by an observer (lumens)

 Brightness= intensity ( subjective descriptor like intensity)

Gamma 
rays

X-Ray Ultra v visible
Infra 
red

Microwave, TV, radio

0.001nm 1nm 10nm 400nm 750nm 1mm

400nm 500nm 600nm 700nm



Sensitivity of Cones in the Human Eye
 6-7 millions cones in a human eye

 65% sensitive to Red light

 33% sensitive to Green light

 2 % sensitive to Blue light

 Primary colors: Defined by CIE (The International Commission on Illumination)

 Red = 700 nm Green = 546.1nm  Blue = 435.8 nm



Primary and Secondary Colors
 Additive primary colors: RGB

 use in the case of light sources (i.e color monitors)

 The primary colors can be added to make the 

secondary colors 

 (Magenta= Blue + red), Cyan ( green + blue), 

Yellow (red+ green)

 Mixing three primary colors or a secondary color 

with its opposite primary color makes white

 White= Green+Magenta =Blue+Yellow= red+Cyan

 Subtractive primary colors: CMY

 use in the case of pigments in printing devices

 The primaries are the ones that absorbs the primary 

color of light and reflects the other two colors 

 Yellow absorbs blue, Cyan absorbs red, Magenta  

absorbs green

 Mixing colors

 White – (C+M+Y) = Black

 White – ( C+Y)= green

 White – ( M+Y) = red

(Image from Rafael C. Gonzalez and Richard E. Wood, Digital Image Processing, 3rd Edition



Color differentiation

 The amount of red (X), green (Y) and blue (Z) to form any particular 

color is called tri-stimulus. We can define  x, y, z as normalized value 

representing X, Y and Z respectively.
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Chromaticity diagram
 The amount of red (X), green (Y) and blue (Z) 

to form any particular color is called tri-

stimulus. We can define  x, y, z as normalized 

value representing X, Y and Z respectively.

 Chromaticity diagram is useful in color 

mixing

 The horizontal axes is x and vertical axes is y. 

For each value of x and y, the z value is fixed. 

( z=1-x-y)

 Each point in the diagram shows a specific 

color.

 A straight line from connecting any two points 

in this diagram, gives all the combination that 

can be obtained by mixing these two colors 

additively.

 A line from the point of equal energy to any 

point on the boundary of the chart, will define 

all the shades of that particular spectrum color.
Image from Rafael C. Gonzalez and Richard E. Wood, Digital Image Processing, 3rd Edition
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Color Gamut of Color Monitors and Printing Devices

Color Monitors

Printing 

devices

 Connecting three points of RGB 

makes a triangle which represents all 

the colors  that can be generated by a 

RGB monitor.

 The irregular region inside the 

triangle is the colors that high-

quality printers can generate.



Color Spaces or Models
 Purpose of color models is to facilitate the 

specification of colors in some standards 

 RGB 

 R, G and B color, each  has 8 bits. The color depth 

is 24 bits = almost 16 million different colors

 The model is based on Cartesian coordinate 

system. 
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 Safe RGB

 A subset of all possible RGB combination. This subset has 256 members including 

216 fixed member and 40 that can be processed by OS or application program.

 CMYK

 Most printing devices use CMYK color model

 HSI

 RGB, CMY models are not good for describing colors as human interpretation, no 

one describes a color based on three RGB values.

 Human describe the color in terms of Hue, saturation and brightness.

o Hue: Dominant color 

o Saturation: Relative purity (inversely proportional to amount of white light added)

o Intensity: grayscale image

Red Yellow

green

CyanBlue

Magenta

Black

White

Gray scale

R

G

B



HSI Color Model- intensity value
 To determine the intensity component of any RGB color point, pass a plane 

perpendicular to the intensity axis which contains the color point. The intersection of 

this plane with the intensity axis, is a point. The value of this point in intensity axis 

is the intensity value of HSI model. 

RGB

Red Yellow

green

Cyan
Blue

Magenta

Black

White

Gray scale

R

G

B

Intensity axis

RGB color point
The plane containing the RGB 

point  Which is perpendicular to 

intensity axis

The plane can be defined to be 

triangular, circular or have a 

shape of hexagon 



HSI Color Model- Hue and Saturation Planes
 Circular and triangular plane are shown here. A point is the plane is an arbitrary 

RGB color.

 To find the Saturation, calculate the distance from the center of the plane to the RGB 

point.

 To find the Hue, connect the RGB point to the center of the plane . Also connect a 

line from the pure red point to the center of the plane. The angle between these two 

lines is Hue.

Image from Rafael C. Gonzalez and Richard E. Wood, Digital Image Processing, 3rd Edition

Intensity axis



Converting Colors from RGB to HSI and vice versa
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RGB to HSI conversion-example
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Example: HSI Components of RGB Colors
RGB Image

Saturation

Hue

Intensity

Image from Rafael C. Gonzalez and Richard E. Wood, Digital Image Processing, 3rd Edition



Color image processing
 To process color images, any color model can be used. Some processing can be done 

in a specific model easier or more efficiently. HSI model is one of the model that has 

been used widely for color image processing. 

 One way to process the color image expressed in HSI model, is to apply the 

processing to the intensity values and then Hue and Saturation to be added to the 

modified intensity image to make the processed color image. This method can 

be used in many processes such as color image smoothing, color image 

sharpening, segmentation, noise removal, edge detection and so on.

 Another way to process the color image expressed in RGB model, is to apply the 

processing to each color separately and then combine the modified R ,G and B 

images to make the color image. This method can be used in many processes 

such as color image smoothing, color image sharpening, segmentation, 

histogram equalization, edge detection and so on.



Color Image Smoothing
 Image smoothing per-color-plane  method: 

 1- smooth each color plane (R , G, B) using moving averaging and 

the combine back to RGB

 2- Smooth only Intensity component while leaving H and S unmodified
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Color Image Sharpening

Sharpening all RGB 

components

 Image sharpening can be done in the same manner as color image 

smoothing:

 1. Per-color-plane method for RGB,CMY images

 2. Sharpening only I component of a HSI image

Sharpening Intensity 

component of HSI

The difference between 

two methods

Images from Rafael C. Gonzalez and Richard E. Wood, Digital Image Processing, 3rd Edition



Example of other color Image processing
 Histogram equalization

 Histogram equalization of a color image can be performed by adjusting color intensity 

uniformly in HSI domain while leaving hue and saturation unchanged. The HSI model is 

suitable for histogram equalization where only Intensity image is equalized.

 Pseudo-color Image Processing

 In some application, it is needed to change gray scale image to color one. Pseudo color is 

a false color. In some case there is no “color” concept for a gray scale image but we can 

assign “false” colors to an image. The reason for this processing is that Human can 

distinguish different colors better than different shades of gray.

 Binary Intensity slicing

 Multi level intensity slicing

 Gradient of color image

 The following formulas can be used to define the gradient of a color image. 
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Assignment #5
1) An image has 200 X 200 pixels. The image shows a white rectangle of size 10 x 10 pixels in middle of the 

image  and the background is black. If Gaussian noise with mean of 0.5 and variance of 0.01 is added to the 

image. 

a) In Gaussian noise, what percentage of noise value is in the range of                              and  what  

percentage in the range of   

b) What is the histogram of image before and after applying noise?

2) An image f(x,y) and its FFT , F(u,v) are shown below. The following noise functions (a-d) are added to the 

image and the Fourier transform of the degraded function due to noise are shown below. Explain which one 

corresponds to the noise function of a-d

a) sin (x+y)+sin(x+2*y)              b) sin(x+y)

c) sin(x-y)                                    d) sin(x/4+y/4)+sin(2x-2y)

3) Explain how contra-harmonic filter operates if the area has constant intensity values of   P?

4) What is the difference between salt noise and pepper noise. Why contra-harmonic filters are effective in 

elimination of salt noise when Q= negative and pepper noise, when Q is positive?

  zz ,

 2,2  zz

f(x,y) F(u,v)



Multi-resolution processing



Image Pyramid

 A simple way for showing an image in multi resolution is pyramid 

representation with J+1 level

 Level J is the base of the pyramid . The image in this level has a size of

 Level 0 is the top of the pyramid . The image in this level has a size of  

 Level i is a level between 0 and J.  The image in this level has the size of 

 To build an image in level i

 Usually we keep level P  to J, not 0 to J . Why?

 What is the total number of pixels from level P to J ? ( in terms of N) 
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Level 0

Level i

Level J

Approximation 
filter

2

2

Interpolation 
Filter

Image at 

level i+1

+ -

Level i, approximation

Level i+1 residual



Image Pyramid(Cont.)

 Different types of approximation filtering can be used

 No filtering  subsampling pyramid

 Averaging filtering mean pyramid

 Gaussian LPF filtering Gaussian pyramid

 Different types of interpolation filtering can be used

 Nearest neighbor

 Bilinear

 Up-sampling by 2. ( inserting a sample after any sample both in row and column directions ) 

 Down-sampling by 2. ( discarding every other sample both in row and column directions )  

Approximation 
filter

Interpolation 
Filter

2

2



Image pyramid- MATLAB
 MATLAB uses  impyramid function for Image pyramid reduction 

and expansion

 B = impyramid (A, direction) computes a Gaussian pyramid 

reduction or expansion of original image A by one level. 

direction can be 'reduce' or 'expand'.

 If A is M-by-N and direction is 'reduce', then the size of B is 

ceil(M/2)-by-ceil(N/2). If direction is 'expand', then the size 

of B is (2*M-1)-by-(2*N-1). 

I9 = imread('cameraman.tif');

I8 = impyramid(I9, 'reduce');

I9e = impyramid(I8, 'expand');

R9=imsubtract(I9(1:255,1:255),I9e);

I7 = impyramid(I8, 'reduce');

I8e = impyramid(I7, 'expand');

R8=imsubtract(I8(1:127,1:127),I8e);

I6 = impyramid(I7, 'reduce');

I7e = impyramid(I6, 'expand');

R7=imsubtract(I7(1:63,1:63),I7e);

Level 9

Level 8

Level 7
Level 6

Residual

Approximation



Sub-band Coding
 In this technique, an image is decomposed into a set of sub-bands at source and the sub-bands 

can be reassembled to reconstruct the original image at destination.

 Decomposition and reconstruction can be implemented using digital filters.

 An order K digital filter can be shown as  

 In special case if 

+
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Sub-band Coding- Decomposition
 Decomposition for 1-D and 2-D signal can be implemented as follows

2
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Sub-band Coding- Reconstruction
 Reconstruction  for 1-D and 2-D signal can be implemented as follows
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Sub-band Coding- Design
 In sub-band coding the filters             ,            ,           ,             are selected in such a way that

 There are many ways to design the filters to satisfy the above condition, such as 

 1- All filters are designed  based on filter  which is called the prototype filter.

If K is the number of filter coefficients for             ,  and K is even, the rest of filters can be 

designed as 

 2- the filters             ,            are designed based on having filter               and
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Sub-band Coding- Example
 Design using Prototype filter                : 8 Tap Daubechies Filter 
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g0 =[  0.2304    0.7148    0.6309   -0.0280   -0.1870    0.0308    0.0329   -0.0106]

Other filters can be designed using

g1= [ -0.0106   -0.0329    0.0308    0.1870   -0.0280   -0.6309    0.7148   -0.2304]

h0= [ -0.0106    0.0329    0.0308   -0.1870   -0.0280    0.6309    0.7148    0.2304]

h1= [ -0.2304    0.7148   -0.6309   -0.0280    0.1870    0.0308   -0.0329   -0.0106]
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Wavelet Transform- why there is a need for another transformation

 In Fourier Transformation (FT) , a signal is represented  in terms of the sum of 

indefinitely long sine waves. So, Fourier transformation is good for finding the 

spectrum of stationary signals in which all  frequency components exist at all time. 

 For the non- stationary signals in which their spectral characteristics vary with 

time, FT does not give any information of when a  frequency component exist. FT 

only gives what frequency components exist in the Signal. The Time and Frequency 

information can not be seen at the Same Time. 

 For non-stationary signals,  Time-frequency Representation of the signal is needed. 

Time Frequency

A stationary signal 

2Hz + 10 Hz + 20 Hz

Time Frequency

A non- stationary signal 

2Hz (0-0.4 sec) +10 Hz (0.4 sec-0.7 sec)

+ 20 Hz (0.7 sec-1 sec)



STFT ( short time Fourier Transform)
 STFS is a variation of FT that calculates the Fourier transforms in a short-time 

called a window . 

 The assumption is that the signal is stationary in each window.

 There is a dilemma in choosing the size of the window

 Narrow window -> poor frequency resolution 

Wide window -> poor time resolution

 Uncertainty principle

 It is not possible to find what frequency exists at what time intervals

Window

Time

Frequency



Wavelet Transform
 Wavelet transform is an alternative approach to the STFT to overcome the resolution 

problem. Similar to STFT, the signal is multiplied with a function

 Multi-resolution Analysis 

 Analyze the signal at different frequencies with different resolutions

 Good time resolution and poor frequency resolution at high frequencies

 Good frequency resolution and poor time resolution at low frequencies

More suitable for short duration of higher frequency; and longer duration of 

lower frequency components

 Split Up the Signal into a Bunch of Signals

 Representing the Same Signal, but all Corresponding to Different Frequency Bands

 Only Providing What Frequency Bands Exists at What Time Intervals

Better frequency resolution; Poor time 

Better time resolution; Poor frequency resolution



Wavelet of a continuous signal
 A wavelet is a waveform of effectively limited duration that 

has an average value of zero.

 The wavelet function can be scaled using a scaling function 

Example of a 

Wavelet function

 Continuous wavelet transform is calculated by the 

sum over all time of the signal, multiplied by scaled 

and shifted versions of the wavelet function 

 1- Take a Wavelet and compare  it to a section at the 

start of the original signal

 2- Calculate a number, S, that represents how closely 

correlated the wavelet is  with this section of the 

signal. The higher S is, the more the similarity.

 3-Shift the wavelet to the right and repeat step 2 until 

you’ve covered the whole signal

 4- Scale (stretch) the wavelet and repeat steps 2-3

S=0.01

S=0.2

Scaling



Discrete Wavelet Transform
 For a sequence of f(n), where the sequence has M elements, the sequence can be 

represented in wavelet domain using the scaling function               and the wavelet 

function  as )(,0
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Discrete Wavelet Transform
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 Find the wavelet coefficients for f{3, 4, 5, 6}, if  

}2,2,0,0{)(

}0,0,2,2{)(

}1,1,1,1{)(

}1,1,1,1{)(

1,1

0,1

0,0

0,0









n

n

n

n









70711.0]2*62*50*40*3[
4

1
)1,1(

70711.0]0*60*52*42*3[
4

1
)0,1(

2]1*61*51*41*3[
4

1
)0,0(

9]1*61*51*41*3[
4

1
)0,0(

















W

W

W

W



• Haar  function

• Daubechies 
function

Wavelet function examples

Scaling Function Wavelet



JPEG 2000
 An image compression standard that uses wavelet transformation and provides Low 

bit-rate compression performance

 Besides, it offers several interesting features

 Progressive transmission by quality, resolution, component, or spatial locality

 support for the tiling of images

 Images can be compressed in rectangular tiles of any size. Only those tile parts of interest or 

those parts that can fit on the display screen need be decompressed for viewing. Each tile can 

be compressed and decompressed by resolution or quality. 

 Support for region of interest 

 Coding different regions of the image with different quality

JPEG JPEG 2000

JPEG 2000 is generating a 

better quality image as 

compared to JPEG 

(for the  same image size)



Assignment #6

1) In a pyramid image representation, the approximation process use a  2x2 averaging filter  and the 

interpolation process  repeats the same value. For 4x4 image shown below, build the pyramid and show the 

approximation and prediction residual frame ?

2) In image, what is the percentage of increase in data size in pyramid representation?
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Video Processing



Motion Estimation

 There are many ways to estimate the motion within frames. Block based motion 

estimation techniques are  very popular. We will study some of the existing block-

matching methods in this course.  

 Block-based method

 Mesh-based method

Time domain 

Frequency domain 

Matching

Gradient
Block recursive

Feature matching

Block matching

Pel recursive

In DCT domain

In Wavelet 
domain

Phase 
correlation



Block-Matching Ttechnique (BMT)
 Current Frame: Frame which is being analyzed to derive motion vectors

 Reference Frame : Frame in past (or future) used to predict in current frame

 Motion vector : The displacement of the closest matching block in reference frame for a 

block in current frame

 Motion estimation is the process of finding the values of motion vectors for each frame

 Block matching techniques assume that  all pixels within a block have the same uniform 

motion ( no rotational motion)

 Range of motion vector is constrained by ‘Search area’

 To do block matching, for each block in current Frame 

 Search in the reference frame within search area

 Find the closest matching block (One with the least distortion with respect to the current 

block)

 Determine the displacement as motion vector

Reference 
Frame

Current 
Frame

Current Macroblock
Search area

Motion vector

Reference 
Macroblock



Overview of BMT

 Search Area of size                          represents displacement of the 

blocks in reference frame in the range (-p, p) and (-q, q) in x and y 

directions.

 the distortion (distance) between current block and all possible displacements of 

the blocks in reference frame within the search area needs to be calculated based 

on a distortion measure.

 the position of the block in search area with the least distortion will be chosen as 

best matched block.

 The Vector represents the relative position of the best-matched block with 

respect to current block is the motion vector.

)12()12(  qP



Distortion Measures
 distortion criterion for measuring distance between previous block and search area 

block. Various Criterions are

Mean Square Error (MSE)

Mean Absolute Error(MAE) =Mean Absolute difference (MAD)

 Cross Correlation Function (CCF)

 Sum of Absolute Difference (SAD)

 MSE and MAD are commonly employed due to their simplicity in hardware 

implementation. If      and      are the pixels the current and reference block 

respectively, and macro-block is              , then
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Exhaustive Search (ES)

 This method is also called exhaustive block matching algorithm ( EBMA) 

 In this method all possible displacements in Search area are evaluated. And as a 

result finds the best match possible, as compared to other block matching 

algorithms.

 The disadvantage of this method is its computational complexity

 For a search area of (-p, p), (-q, q) around the current position,                              

distortion values need to be  computed.

 Simplest algorithm, but computationally most expensive

 The obvious disadvantage to ES is that the larger the search window gets the 

more computations it requires.

 Fast block matching algorithms try to achieve almost the same result by doing as 

little computation as possible. Example of fast methods:

 Three step search (TSS)

 2D Logarithmic Search (2DLS)

 Orthogonal Search (OS)

 New Three Step Search (NTSS)

 Hierarchical block matching algorithm( HBMA)
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Three Step Search (TSS or 3SS)
For each step, nine checking points are matched and the minimum distorion point of 

that step is chosen as the starting center of the next step. 

A search paths are shown here, which needs (9 + 8 + 8)=25 checking points.  

For larger search window, this method can be easily be extended to n-steps using the 

same searching strategy with the number of checking points required equals to 

[1 + 8 log2(d + 1) ].

Step 1

Step 2

Step 3



2D Logarithmic Search (2DLS)
 This fast method, starts from the zero displacement and computes the error of blocks in the 

five locations points which are arranged in a diamond shape with an  initial step size. It select 

the location corresponding to minimum error and uses that location as a center of next step. 

 The step size is reduced by half only when the selected points for the next step is the center 

one or the current minimum point reaches the search window boundary. Otherwise, the step 

size remains the same. 

 When the step size reduced to 1, all 

the 8 checking points adjacent to the 

center checking point of that step are 

searched. 

 Two different search paths are shown 

here, 

 The top search path requires (5 

+3 +3 +8) = 19 checking points. 

 The lower-right search path 

requires (5+3+2+3+2+8) =23 

checking points.

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6



Orthogonal Search (OS)
 It consists of pairs of horizontal and vertical steps with a logarithmic decreasing in step 

size 

 The search paths of OSA are shown in  Starting from the horizontal searching step, three 

checking points in the horizontal direction are searched. 

 The minimum checking point then becomes the center of the vertical searching step which 

also consists of three checking points. 

 Then the step size decreases by half 

and using the same searching 

strategy. The algorithm ended with 

step size equals to one. 

 Two different search paths are shown 

here. 

 For d = 7, the OSA algorithm requires 

a total of (3 + 2 + 2 +2 + 2 +2)=13 

checking points. For the general case, 

the OSA algorithm requires                   

(1 + 4 log2(d + 1) ) checking points.

Step 1

Step 2

Step 3



New Three Step Search (NTSS)

 The upper-right path shows the 

case of searching large motion. In 

this case, the minimum distortion 

point of the first step is one of the 

outer eight checking points. Then 

the searching procedures proceed 

the same as the 3SS algorithm. The 

number of checking points required 

is(17 + 8 + 8)=33.

Step 1

Step 2

Step 3

 For those video sequences where the motion vector distribution is highly center biased, an 

additional 8 neighbor checking points are searched in the first step of N3SS

 Two search paths with d = 7 are shown.

 The center path shows the case of searching small motion. In this case, the minimum 

distortion point of the first step is one of the 8 neighbor checking points. The search is 

halfway-stopped with matching three more neighbor checking points of the first step's 

minimum distortion point. The number of checking points required is    (17 + 3) = 20. 



Hierarchical block matching algorithm (HBMA)
 The basic idea of hierarchical (multi-resolution) 

block matching is to perform motion estimation at 
each level successively, starting with the lowest 
resolution level . 

 The estimate of the motion vector at a lower 
resolution level is then passed onto the next higher 
resolution level as an initial estimate. The motion 
estimation at higher level refine the motion vector 
of the lower one. At higher levels, relatively 
smaller search window can be used as it starts with 
a good initial estimate. 

 For each level, one could use fast BMAs such as 
3SS, 2DLOG for fast motion estimation. 

 Suppose there is a HBMA with two levels as 
shown. The lower level is formed by sub-
sampling, the higher level by a factor of two in 
both horizontal and vertical directions. One pixel 
displacement at the lower level corresponds to two 
pixels displacement at the higher level. That is, the 
search window size in pixel is fourth of the one at 
higher level. 

Step 1

Step 2

Step 3Refined motion 

vector



Sub-Pixel Motion Vector
 If the horizontal and vertical components of a motion vector are integers the relevant 

block in the reference frame actually exist

 If one or both components are fractional values, the relevant block is virtually 

generated by processing and interpolation

 Sub-pixel motion compensation can provide significantly better compression 

performance than the integer-pixel compensation

 The half pixel positions are generated first and are interpolated from neighbouring 

integer-pixel samples using 6-tap FIR filter. Once all the half-pixel samples are 

available, each quarter-pixel is produced using bilinear interpolation between 

neighbouring half or integer pixels. 



Motion Compensation
 Components of a Typical Motion-Based Video Coding System are shown avove.

 Block-based motion compensation scheme

 Fixed-Size Block Motion Compensation (FSBMC) 

 Divides a frame into non-overlapping blocks of equal size. It is simple and does not require any 

partitioning structure since, the location of each block is fixed based on the block size

 Variable-Size Block Motion Compensation (VSBMC)

 A frame is partitioned  into variable size square. This scheme needs a quad-tree decomposition 

structure. One bit corresponding to a node in this structure indicates whether or not the 

corresponding block has been split into four sub-blocks

 Region-Wise Motion Compensation (RWMC)

 a frame is partitioned into variable-size rectangular and L-shaped regions according to the 

motion information of a frame. It utilizes a quad-tree to represent the partitioning structure

Motion 

Compensation
Motion 

Estimation

Residual Frame 

Coding

FSBMC VSBMC RWMC



Video Coding Standards
 ITU-T standards, developed by  video coding expert Group (VCEG)

 H.261 (1990)

 Video compression over ISDN network with bit rates up to 128 kbps and supporting  CIF 

(352x240) and QCIF (176x144) video formats

 H.263 (1995), (H.263+, 1997), (H.263++, 2000)

 video coding standard targeted for visual telephone over PSTN with bit rates of 18- 24 kbps 

but with higher quality as compared to H.261 or over the Internet

 ISO/IEC standards, developed by Moving Pictures Expert Group (MPEG) 

 MPEG-1 (1990) 

 AV compression and coding , video compression based on block-based motion estimation, bit 

rate up to 1.5 Mbps and CIF video format 352x240

 MPEG-2 (1994)

 the same as MPEG-1 , but bit rate 2-8 Mbps  for TV quality and 18-45 Mbps for HDTV and  

and video format of  704x480 and HDTV

 MPEG-4 : the same as MPEG2 but object based 

 MPEG-7 : structures for describing and annotating audio-visual (AV) content

 ITU-T/ISO/IEC standard, developed by Joint Video Team (JVT){MPEG & VCEG}

 H.264/MPEG-4 AVC ( 2003 and today)

 one of the most commonly used formats for the recording, compression, and distribution of  

high HD video and It is also widely used by streaming internet sources, such as Youtube



MPEG-1/2 Structure
 In MPEG 1/2 standards the coded video has a structure called GOP(Group of pictures)

 GOP is composed of I, P and B frames.

 I frame : compressed similar to JPEG (intra-frame coded using  8X8 DCT, 
zigzag scan, Differential coding of DC-coefficients, Uniform quantization, 
Entropy coding)

 P Frame: contains motion-compensated information from the preceding I or 
P frame (residual frame compressed as in I picture)

 B Frame: Motion-compensated frame from two consecutive P or I pictures 
(residual frame compressed as in I picture)

o either only forward prediction, only backward prediction or average of forward 

and backward prediction

 A GOP starts with an I frame and must contain at least one I.

 A GOP can defined as having the length N, and  a distance of, M,  between any I/ P 
frame and next P frame. N=12

M=3

I frame

B frame
P frame

Compressed video stream

I frame B frame B frame P frame B frame B frame P frame B frame B frame P frame B frame B frame I frame



MPEG 1 /2  video structure
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Morphological image processing



Morphological image processing

 Morpho= shape  

Morphological image processing = shape-based image processing

 So it is not related to colors, but related to shape

 This filed of image processing provides a tool for extracting image components 

such as boundaries & skeleton, and removing or connecting isolated shapes in 

the images.  

Morphological image processing is usually applies to binary images ( which can 

be generated after thresholding of a grayscale image

Morphological image processing is based on set theory. It introduces some 

morphological operators that takes a set of pixels and produces another set of 

pixels. 

 A set of pixels is a list of (x,y) coordinates of pixels

Set of pixels

morphological 
operators Another Set of 

pixels

Input output



Set Theory operator
 If B is a set of coordinates, and b = (𝑏1, 𝑏2) is an element of B then, (b ∈ 𝐵)

 If B is a set with no element , B is called Null or empty set and represented by ∅

 If B is a set of elements 𝑤 , such that 𝑤 is formed by multiplying each of elements 

of set C by 2, then we can say 𝐵 = 𝑤 𝑤 = 2 ∗ 𝑐, 𝑐 ∈ 𝐶}

 If every element of set B is also an element of set C , then set B is said to be a subset 

of C and shown as 𝐵 ⊆ 𝐶

 The complement of a set B is a set of elements that are not in B and it is represented 

as 𝐵𝑐 = 𝑤 𝑤 ∉ 𝐵

 The union of two sets of B and C is shown as 𝐵 ∪ 𝐶 and it is a set of elements 

belonging to either B or C or both.

 The intersection of two sets of  B and C is shown as 𝐵 ∩ 𝐶 and it is a set of elements 

belonging to both  B and C.

 The difference of two sets of Band C is shown as  B - C and it is a sets that its 

elements belong to B, but not to C.

 The translation of set B by a vector z is shown as 𝐵𝑧. If B is a set of coordinates, 

then 𝐵𝑧= (𝑥 + 𝑧, 𝑦 + 𝑧 |(𝑥, 𝑦) ∈ 𝐵 𝑜𝑟 𝐵𝑧 = 𝑐 | 𝑐 = 𝑏 + 𝑧, 𝑏 ∈ 𝐵

 The reflection of  set B is shown as  𝐵 𝑤ℎ𝑒𝑟𝑒 ,  𝐵 = (−𝑥,−𝑦)|(𝑥, 𝑦) ∈ 𝐵



Structuring Elements
 The key idea in morphological image processing is defining a structuring element. 

 The structuring element is a small pixel template that we use to apply to the input 

image using a specific morphological operator to generate an output image of the 

same size as input image.

 In Matlab, strel function can be used to define various structuring elements.

 Each structuring element should have an origin

 Example of structure elements:

0 1 0

1 1 1

0 1 0

1 1 1 1 1

1

1

1

0 0 0 0 1

0 0 0 1 0

0 0 1 0 0

0 1 0 0 0

1 0 0 0 0



Basic Morphological operations

 If A is an image and B is the structuring element, then the following morphological 

operators can be expressed as:

 Erosion                  𝐴⊝ 𝐵 = 𝑧 𝐵𝑧 ⊆ 𝐴}
 Set of z, such that the structure element translated by z fits fully inside A

 Dilation                𝐴⊕𝐵 = {𝑧 | 𝐵𝑧 ∩ 𝐴 ⊆ 𝐴}
 Set of z, such that the shifted structuring element has any overlap with A

 Opening                𝐴 ∘ 𝐵 = (𝐴⊝ 𝐵)⊕ 𝐵
 Erode and then dilate (same structuring element)

 Closing 𝐴 ∙ 𝐵 = (𝐴 ⊕ 𝐵)⊖ 𝐵
 Dilate and then erode



Erosion

 𝐴⊝ 𝐵 = 𝑧 𝐵𝑧 ⊆ 𝐴}
 Set of z, such that the structure element translated by z fits fully inside A

A                                                                  B

To find the erosion of A and B, we should move B over A and label all locations that 

structure B fits in A completely.

Example of places 

that B does not fit in A
Example of places 

that B fits in A

𝐴⊝𝐵

In a white background, 

the black shapes 

becomes thinner, 

breaking objects that 

are connected using 

thin black links



Dilation

 Dilation 𝐴⊕𝐵 = {𝑧 | 𝐵𝑧 ∩ 𝐴 ⊆ 𝐴}

 Set of z, such that the shifted structuring element has any overlap with A

A                                                             B

To find the dilation of A and B, we should move B over A and label all 

locations that structure B has any overlap with  A .

Example of places 

that one pixel of B has 

overlap with A

𝐴⊕𝐵

In a white background, 

the black shapes 

become fatter, 

connects objects that 

are seprated


